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1 Introduction

It is well known tliat an ideal fluid obeys a “non-canonical” Hamiltonian system of
PDEs-the generator of the infinite-dimensional dynamics (Lie group) constitutes
a degenerate Poisson bracket, and its “defect” represents a topological constraint
(Casimir invariant) on the “helicity” of the fluid vorticity [1, 2, 3]. In the theory
of linear dynamics, where the generator is represented by a linear operator, the
scope expands from the category of self-adjoint (Hermitian) operators, through that
of normal operators, and to the most general class of non-normal operators that
may have kernels. In an infinite-dimension space, the theory is already stuck at
general non-self-adjoint operators. A non-canonical Hamiltonian system is a nonlin-
ear version of a non-normal generator, which, however, may assume a Lie-algebraic
structure. The aini of this paper is to show how the kernel (Casimir) may be created
(to allow a finite helicity) and separated to “normalize” the Hamiltonian structure.

The use of the Clebsch parameterization of the flow field (with a finite vorticity)
is known to formulate a set of canonical equations that seems to be equivalent to the
fluid equations [4]. A Lagrangian that is capable to introduce the Clebsch parameters
and a finite vorticity was suggested by Lin [6], while the physical interpretation of the
“parasite variable” (Lagrange multipliers and constraints to create vorticity) has not
been established. On the other hand, a Lagrangian representation of motion, unlike
the Eulerian view, is freed from the vorticity (helicity) problem, and the Lagrangian
may be naturally constructed (reviewed in Sec. 2). In this paper, we will show
the “equivalence” of the Lagrangians both in the Eulerian and Lagrangian views,
and reveal that the “constraints” needed in the Eulerian formulation are nothing
but the Lagrangian labels (initial positions) of fluid elements. Since the Lagrangian
view attributes the origin of vorticity to the “initial condition”, its “diachronic”
analysis of vortex dynamics is unaware of the itopological defects” associated with
the vorticity. The Eulerian view finds singularities in formulating Poisson brackets
wit $h$ “synchronic” variables.
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2 Fluid Mechanics in Lagrangian View

The Lagrangian for the collective matter-field couplings may be naturally derived
by generalizing the Lagrangian of a particle (mass $m$ and charge e) in the presence
of an EM field (we consider the non-relativistic limit for simplicity):

$L=L_{P}+L_{E\Lambda I}$ , (1)

$L_{P}=P\cdot v-H$ , (2)

$L_{EM}=/ \mathcal{L}_{EM}dx=/-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}dx$ , (3)

where $H=p^{2}/(2m)+e\phi$ is the Hamiltonian, $P=p+(e/c)A$ is the canonical
momentum, and $p$ is the mechanical momentum. The vector and the scalar poten-

tials define the four potential $A^{\mu}=(\phi, A)$ whose curl is the Faraday (field strength)

tensor $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$ . The velocity $v$ is related to the particle orbit $q(t)$ (along

which $L_{P}$ is to be evaluated) by
$v=\dot{q}$ . (4)

The relation (4) is the essential input that ${}^{t}causes$” the motion of the particle.
Indeed, if we calculate the variation of $\int Ldt$ for general $\delta v$ , we find $P=0$, but,
for $\delta\dot{q}$ , with fixed end points $q(t_{0})$ and $q(t_{1})$ , the well-known Lagrange’s equation of
motion follows.

Generalizing tlie single particle orbit $q(t)$ to a diffeomorphism $Q(x_{0}, t)$ in $R^{3}$

( $x_{0}$ being the initial position of each streamline), we construct the fluid Lagrangian

$L_{F}= \int \mathcal{L}_{F}dx=/(P\cdot V-H_{F})\rho dx$ (5)

by replacing the single-particle velocity $\dot{q}$ in (4) by the flow velocity

$V(x, t)= \dot{Q}|_{x,t}=\frac{d}{dt}Q(x_{0}(x, t), t)$ . (6)

Here, $x_{0}(x, t)$ is $t1_{1e}$ initial position of the streamline being connected to the time-
space position $(x, f)$ . To relate $(x, t)$ to $(x_{0},0)$ , one needs the inverse map $x_{0}(x, t)\equiv$

$Q^{-1}(x, t)$ of the diffeomorphism $Q(x_{0}, t)$ , which traces-back the streamlines (the re-
lations among $x=Q(x_{0}, t),$ $x_{0}=Q^{-1}(x, t)$ , and $V$ will be discussed more explicitly

in sec. 5).

The fluid Hamiltonian $H_{F}$ consists of the kinetic and potential energies plus an
“internal (thermal) energy” $\epsilon(\rho)$ :

$H_{F}=H+\epsilon(\rho)$ . (7)

The fluid density $p$ is defined by

$\rho(x, t)=p_{0}(x_{0}(x_{7}t))\cdot\frac{D(x_{0})}{D(x)}$ . (8)
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When we formally take $\rho 0(x_{0})=\delta(q_{0}-x_{0})$ , we recover (1) with $\rho dxdt$ giving the

integral along the orbit $q(t)$ .

In what follows we deiiote

$D_{t}f$ $=$ $\partial_{t}f+V\cdot\nabla f$ , (9)

$D_{t}^{*}f$ $=$ $\partial_{t}f+\nabla\cdot(Vf)$ . (10)

The mass conservation law
$D_{t}^{*}\rho=0$ (11)

is a direct consequence of (8). By the criticality of the action $\int(L_{F}+L_{EM})dt$ , fixing

the space-time boundaries, we obtain, $hom$ the variation $\delta p,$ $p=mV$ $(=m\dot{Q})$ , and

from $\delta Q$ , the equation of motion

$mD_{t}V=- \nabla h+e(E+\frac{1}{c}V\cross B)$ , (12)

where $E=-\nabla\phi-\partial_{t}A/c,$ $B=\nabla\cross A$ , and $h$ is the enthalpy density defined by
$h=\partial(\rho\epsilon)/\partial\rho=\vee c+\mathcal{P}/\rho$ ( $\mathcal{P}$ is the pressure; $\rho\nabla h=\nabla \mathcal{P}$ ). Maxwell’s equations with

the currents $(e\rho, e/)V)$ follow from $\delta A_{\mu}$ .

3 Fluid Mechanics in Eulerian View

In this section, we formulate an Eulerian representation of the fluid Lagrangian.

In the Eulerian case where no a priori relation between the fluid velocity $V$ and

the streamlines is assumed, and the unrestricted variation $\delta V$ yields $P=0$. To

reproduce properlv the evolution equations, we inust appropriately “constrain” $V$ .
The measure $\rho dxdt$ , defined by (8), is the generalization of the integral along

a single orbit to collective orbits. It was argued, then, that imposing a physically

motivated “restriction” on $\rho$ that leads to the conservation law (11), must be a step

in the right direction. Serrin, in a pioneering paper,[5] proposed the Lagrangian

density
$\mathcal{L}_{F}=\rho(P\cdot V-H_{F})+SD_{t}^{*}\rho$ , (13)

in which the variation of the Lagrange multiplier $S$ does exactly that.

The Serrin Lagrangian, however, is inadequate because the momentum $P=\nabla S$

(obtained by the variation $\delta V$ ) describes only an ${}^{t}irrotationa1$” flow representing a

relatively small area of general fluid mechanics. We will see later that this restriction

is due to a “canonical structure” preinised by (13).

To derive flows with vorticity, Lin[6] imposed another constraint by including

a term $\rho\alpha(\partial_{t}\beta+V\cdot\nabla\beta)$ to the integrand of (13). The resulting flow $P=\nabla S+$

28



$\alpha\nabla\beta$ , corresponding to the so-called Clebsch parameterization of a vector field, does
acquire a finite “vorticity” $(\nabla\cross P=\nabla\alpha\cross\nabla\beta)$ . However. the Clebsch representation
(with a single pair of $\alpha$ and $\beta$) is not a global representation for arbitrary flows with
non-zero helicity.

We propose a generalized and rearranged Serrin-Lin-type Lagrangian density

$\mathcal{L}_{F}=[P\cdot V-H_{F}-(D_{t}S+\lambda^{j’}D_{t^{\sigma}j})]\rho$. (14)

The variational principle $\delta\int(\mathcal{L}_{F}+\mathcal{L}_{EM})dxdt=0$ yields a complete set of deter-
mining equations:

$\delta V$
$\Rightarrow$ $P=\nabla S+\lambda^{j}\nabla\sigma_{j}$ , (15)

$\delta p$ $\Rightarrow$ $p=mV$ , (16)
$\delta S$ $\Rightarrow$ $D_{t}^{*}\rho=0$ , (17)

$\delta\sigma_{j}$ $\Rightarrow$ $D_{t}^{*}(\rho\lambda^{j})=0$ $\Rightarrow$ $D_{t}\lambda^{j}=0$ , (18)
$\delta\lambda^{j}$

$\Rightarrow$ $D_{t}\sigma_{j}=0$ , (19)

$\delta\rho$ $\Rightarrow$ $D_{t}S=P\cdot V-(H+h)$ , (20)

and, by $\delta A_{\mu}$ , Maxwell’s equations with the currents $(e\rho, e\rho V)$ . The vector field
$P=\nabla S+\lambda^{j}\nabla\sigma_{j}$ is now “complete” to represent any three-dimensional vectors if
we take (at least) three independent scalars $\sigma j$ . The fluid (plasma) equation follows
from

$D_{t}P=D_{(}( \nabla S+\lambda^{j}\nabla\sigma_{j})=-\nabla(e\phi+h)+\frac{e}{c}[V\cross B+(V\cdot\nabla)A|$ ,

which is equivalent to (12).

The role of $S$ is best understood by referring to the original Serrin form $(\lambda^{j}=$

$\sigma_{j}=0)$ . Though Serrin’s $S$ is a Lagrange multiplier that imposes mass conservation
(11), we proffer a different interpretation. By moving (by integrating by parts) $D_{t}^{*}$

from $p$ to $S$ , one may think of $\rho$ as a Lagrange multiplier demanding that $\mathcal{L}_{F}$ must be
a complete derivative (evaluated through each streamline of $V$ ) of some scalar field
S–this is nothing but Hamilton’s principle demanding the criticality of the’action
integral with $S$ as the “action”. Indeed, if the thermal energy $\epsilon$ is neglected and
$\lambda^{j’}=\sigma_{j}=0$ in (15) and (20), we obtain the well-known Hamilton-Jacobi equations
$\partial_{t}S=-H(x, P, t)$ and $\nabla S=P$ .

The role and nieaning of the additional fields $\lambda^{j\prime}$ and $\sigma j$ will be discussed in the
following sections.
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4 Non-canonical Poisson Bracket and Clebsch Parame-

terization

We have to specify what we have called “non-canonical”. A canonical Hamiltonian

mechanics is endowed with a regular symplectic 2-form $\mathcal{A}_{ij}du^{i}\wedge du^{j}$ . Denoting
$\mathcal{A}_{ij}^{-1}=\mathcal{A}^{ij}$ and $\{F, G\}=-(\partial..F)\mathcal{A}^{ij}(\partial_{u^{j}}G)$ (Poisson bracket), the corresponding

equation of motioit is $u^{i}=\{H, u^{i}\}$ . If there exists $C$ such that $\{F, C\}\equiv 0$ for all
$F,$ $f^{ij}$ has a “kernel”, and hence, $\mathcal{A}_{ij}$ is singular. Then, we say that the system is

non-canonical. Such a $C$ is called a “Casimir invariant” (because $\{H, C\}=0,$ $C$ is

a constant of motion).

The fluid-meclianics equations (11)-(12) do have Casimir invariants [1, 2, 7].

Choosing $u={}^{t}(n,$ $P)$ as independent variables, the evolution equations can be ca.st

into a Hamiltoniaii form

$\partial_{\iota}(\begin{array}{l}nP\end{array})=(-\nabla 0$ $-(\nabla\cross P)\cross-\nabla$

.
$(\begin{array}{l}\partial_{r\iota}\mathcal{H}_{F}\partial_{P}\mathcal{H}_{F}\end{array})$ (21)

with the conventional Hamiltonian (total energy)

$\mathcal{H}_{F}=/H_{F}d^{3}x=/n[\frac{(P-eA/c)^{2}}{2m}+e\phi+\epsilon(n)]d^{3}x$

(see (7)). We $ma.\backslash \cdot$ write (21) as $\partial_{t}u=\mathcal{A}\partial_{u}\mathcal{H}_{F}$ . The anti-symmetric operator $\mathcal{A}$

defines the Poisson bracket $\{\mathcal{F}, \mathcal{G}\}=\langle \mathcal{A}\partial_{u}\mathcal{F},$ $\partial_{u}\mathcal{G}\rangle$ . One observes that the “helicity”

defined by
$C=/(\nabla\cross P)\cdot Pd^{3_{X}}$

is a Casimir invariant (the total particle number $N= \int nd^{3}x$ is also a Casimir
invariant).

Using the Clebsch parameterization (15) of the canonical momentum $P$ (induced

by our Lagrangian (14) $)$ in the Hamiltonian (21), however, we obtain a canonical

system governing the Clebsch variables:

$\{\begin{array}{l}\partial_{t}n=\partial_{S}\mathcal{H}_{F}\partial_{t}S=-\partial_{\tau\iota}\mathcal{H}_{F}\partial_{t}\Lambda^{j}=\partial_{\sigma_{j}}\mathcal{H}_{F}\partial_{t}\sigma_{j}=\partial_{\Lambda j}\mathcal{H}_{F}\end{array}$ (22)

where $\Lambda^{j}=n\lambda^{j}$ and $j=1,$ $\cdots$ , $\nu$ ( $\nu$ may be an arbitrary integer). This system is

equivalent to (17)-(20).

In the next section, we will reveal the physical meaning of the Clebsch variables

to explain why the topological defect of the non-canonical system is removed by the

constraints in (14).
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5 Unification of the Lagrangian and Eulerian Views

From (15), we see that the scalar fields $\lambda^{j}$ and $\sigma j$ may be seen as providing “pa-
rameterization” of the vector field $P$ as a l-form. If the index $j$ runs over the space
dimension $(=3)$ , then the vectors $\{\nabla\sigma_{j}\}$ may no longer be linear independent.
Henceforth, we assume both $\lambda^{j}$ and $\sigma j$ to be the components of three-vectors $\lambda$ and
$\sigma$ . This interpretation of $\lambda^{j}$ and $\sigma_{j}$ will now be exploited to relate the Lagrangian
and Eulerian formulations of the Lagrangians.

Using the identity $V\equiv D_{t}x$ ( $x_{j}$ is the Cartesian parameterization), one may
write

$P\cdot V-\lambda\cdot D_{t}\sigma=P\cdot D_{t}\xi-\mu\cdot D_{t}\sigma$ ,

where $\xi=x-\sigma$ and $\mu=\lambda-P$ . Then, (14) transforms to

$\mathcal{L}_{F}=(P\cdot D_{t}\xi-H_{F}-D_{t}S-\mu\cdot D_{t}\sigma)\rho$ . (23)

From this form, the equivalence between the Eulerian and the previous Lagrangian
(5) formalism will be established when we connect $D_{t}\xi$ with $\dot{Q}$ .

In (23), the variation of $\mu$ forces $D_{t}\sigma=0$ implying

$D_{t}\xi=D_{t}x\equiv V$ . (24)

This Eulerian representation of the flow velocity is compared with the Lagrangian
representation (6) that invoked the diffeomorphism $Q(x_{0}, t)$ . The time derivative of
$Q(x_{0}, t)$ is taken for fixed $x_{0}$ (the initial points of every streamlines). The convective
$D_{t}$ of $\xi_{7}$ on the other hand, must be evaluated under the condition $D_{t}\sigma=0$ . We will

now show that such a $\sigma$ (in its simplest choice) is nothing but $x_{0}$ (hence, $\xi=x-\sigma$

is the “displacement”). The constraint $D_{t}\sigma=0$ (i.e., fixing $x_{0}$ ), then, allows the
identification $\dot{Q}=D_{t}\xi$ .

To show $\sigma(x, t)=x_{0}=Q^{-1}(x, t)$ , let us first note that $D_{t}\sigma=0$ implies

that $\sigma$ is constant along every streamline defined by $V$ and, therefore, must be a
function only of the “initial condition” because the initial condition cannot change

during the evolution. The simplest expression of such a $\sigma$ is the initial condition
itself. Formally, we can construct $\sigma$ by solving $D_{t}\sigma=0$ for a given initial condition
$\sigma(x, 0)=\sigma_{0}(x)$ . The corresponding “characteristics” equation is

$\frac{d}{dt}x=V(x, t)$ , $x(O)=x_{0}$ . (25)

Solving (25) for every initial value $x_{0}$ , we may construct the diffeomorphism $x=$

$Q(x_{0}, t)$ . Using the inverse map $Q^{-1}(x, t)$ , we may write $\sigma(x, t)=\sigma 0(Q^{-1}(x, t))$ .
The simplest initial condition $\sigma_{0}(x)=x$ , i.e., $\sigma_{0}$ is the identity, leads to

$\sigma(x, t)=Q^{-1}(x, t)\equiv x_{0}(x, t)$ . (26)
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We already mentioned that when $\sigma=x_{0},$ $\xi=x-\sigma$ is the Eulerian representation
of the “displacement” so tliat $D_{t}\xi=V=\dot{Q}$ , establishing the equivalence of the

Eulerian and Lagrangian descriptions.
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