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ABSTRACT: In this paper, we show the set containment characteri-
zation with quasiconvex inequalities, and give a few examples of this
characterization.
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1. INTRODUCTION

Recently, various extensions of the containment problem to more general situ-
ations have been obtained in [1, 3, 4, 5], by means of mathematical programming
theory, conjugacy theory and quasiconjugacy theory. Mangasarian[4] established
dual characterization of containment of a polyhedral set in an arbitrary polyhe-
dral set, and of general closed convex set, defined by finite convex constraints, in
a reverse-convex set, defined by convex constraints. Jeyakumar([l, 3] also estab-
lished dual characterizations of the containment of a closed convex set, defined by
infinite convex constraints, in an arbitrary polyhedral set, in a reverse-convex set,
defined by convex constraints, and in another convex set, defined by finite convex
constraints. The dual characterizations are provided in terms of epigraphs of the
Fenchel conjugate functions. Suzuki and Kuroiwal[5] established dual character-
izations of the containment of a convex set, defined by quasiconvex constraints,
in an open half space, in a reversepace, in a reverse-convex set, defined by quasi-
convex constraints. The dual characterizations are provided in terms of levelsets
of H-quasiconjugate and R-quasiconjugate functions.

In this paper, we show the set containment characterization with quasiconvex
inequalities, and give some examples of this characterization in [5].

2. NOTATION AND PRELIMINARIES

Throughout this paper, let f be a function from R™ to R, where R = [—00, o0].
Remember that f is said to be quasiconvex if, for all z;, z2 € R" and a € (0, 1),
f((1 = )71 + azs) < max{f(z1), f(z2)}.

Define
L(f,o,a) ={z € R" | f(z) o a}
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for any a € R, symbol ¢ means any binary relations on R, then f is quasiconvex
if and only if for any a € R,

L(f,S,0) ={z € R"| f(z) < a}
is a convex set, or equivalently, for any o € R,
L(f,<,a) ={z €R"| f(z) < a}

is a convex set. We know that the quasiconvexity for functions is a notion that
1s weaker than the convexity.

Definition 1. A subset S of R" is said to be evenly convex if there exists a family
of open halfspaces such that S is equal to the intersection of the family of open
halfspaces.

Definition 2. A subset S of R" is said to be H-evenly convex if there exists a
family of open halfspaces such that S is equal to the intersection of the family of
open halfspaces, and all open halfspaces contain 0.

Note that the whole space and empty set are evenly convex and H-evenly
convex. Also, any open convex set and any closed convex set are evenly convex.
Clearly, every evenly convex set is convex, A nonempty subset is H-evenly convex
if and only if it is an evenly convex set which contains 0.

Given a set S C R", we shall denote by intS, clS, and coS the interior, the
closure, and the convex hull generated by S respectively. The evenly convex
hull of S, denoted by ecS, is the smallest evenly convex set which contains S
(i.e., it is the intersection of all open halfspaces which contain S). The H-evenly
convex hull of S, denoted by HecS, is the smallest H-evenly convex set which
contains S. Note that coS C ecS C clcoS, and these differences are slight because
clcoS = clecS. Moreover if S is nonempty, then HecS = ec(S U {0}).

Definition 3. A function f is said to be evenly quasiconvex if L(f, <, a) is evenly
convex for all o € R.

Definition 4. A function f is said to be strictly evenly quasiconvex if L( f, <, a)
is evenly convex for all a € R.

Definition 5. A function f is said to be H-evenly quasiconvex if L(f,<,a) is
H-evenly convex for all o € R.

Definition 6. A function f is said to be strictly H-evenly quasiconvex if L(f, <
,) is H-evenly convex for all a € R.

Clearly, every evenly quasiconvex function is quasiconvex, every lower semi-
continuous (Isc for short) quasiconvex function is evenly quasiconvex, and every
upper semicontinuous (usc for short) quasiconvex function is strictly evenly qua-
siconvex. Also f is H-evenly quasiconvex if and only if f is evenly quasiconvex
and f(0) = xienn;fn f(z). Furthermore, we can check every strictly (H-)evenly qua-

siconvex function is (H-)evenly quasiconvex, see [5].
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We introduce H-quasiconjugacy, which is simply called quasiconjugate in [6].
To distinguish the notion of R-quasiconjugate, which is seen in [5, 7], we call it
by H-quasiconjugate.

Definition 7 ([6]). H-quasiconjugate of f is the functional f¥ : R® — R defined

by
) = { ~fi{f@) | & a) 21} i £#0
—suplf(z) |2 € R} if £=o.
The H-quasiconjugate of the function f# is called the H-biquasiconjugate of f
and denoted by fHH,

Definition 8 ([6]). We say that f achieves the maximum value at infinity if
f(zx) — sup{f(z) | ¢ € R"} for any sequence {zx} with ||zx|| — oo.

Definition 9 ([5]). We say that f achieves the minimum value at the origin if
f(zx) — inf{f(z) | x € R"\{0}} for any sequence {zx} C R*\{0} with z, — 0.

Let '™ and 7° be the set of all functions which achieves the maximum value
at infinity, and the set of all functions which achieves the minimum value at the
origin, respectively; That is,

I'* = {g:R"— R | g achieves the maximum value at infinity},

7° = {g:R™ — R | g achieves the minimum value at the origin}.

3. CHARACTERIZATION OF SET CONTAINMENTS

Jeyakumar[l, 3] established dual characterizations of the containment of a
closed convex set, defined by infinite convex constraints, in an arbitrary poly-
hedral set. The dual characterizations are provided in terms of epigraphs of the
Fenchel conjugate functions.

Theorem 1 ([3]). Let I be an arbitrary index set, and g; be a convex function
fromR*"toRforallie I, ue R*, a € R, {x € R* | Vi € I,g:(z) < 0} # 0.
Then the following (i) and (ii) are equivalent.
(i) {z € R" | Vi € I, gi(z) < 0} C {z € R" | Vj € J, (u;,7) < a5}
(ii) (u, @) € cl cone co |J;; epig;

In this paper, we show the characterization of the set contaiment with quasi-
convex inequalities.

Theorem 2 ([5]). v € R*\{0}, o, 8 € R, > 0, then
L(f,<,8) C{z | (v,2) < a} = = € L(f*,< ~B)
Example 1. Let f be a function from R — R as follows;

—z—2 if z<-1

T if —-1<z<0
f@) =199 if 0<z<1

-1 if 1<z
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Then, L(f,<,0) = (—2,0), and H-quasiconjugate of f is
(1 if ¢£€<-1
2+¢ if -1<¢<0
) =< —o0 if €=0
-+1 if 0<é<1
L0 if 1<¢
One has L(f¥,<,0) = [-1,00), and
L(f,<,0) c {x eR| (v,z) < 1} <= v e L(f¥,<,0).
Example 2. Let f be a function from R? — R as follows;
f(@1,z2) = (1 +1)* + 23 — 4.
Then, L(f, <,0) = {(z1,22) | (z1 + 1) + 72 < 4}, and H-quasiconjugate of f is
4 if & < -1
if  (61,62) =(0,0)

+ 4 otherwise.

A &,&) = :?21 +1)2

&+&
One has L(f¥, <,0) = {(&, &) | 9(& — 1)? + 12¢2 < 4}, and
L(f,<,0) c {z € R?| {(v,z) <1} <= wve L(fH¥,<,0).
Theorem 3 ([5]). Let I be an arbitrary index set, and f; be a strict evenly
quasiconvex function from R™ to R for all 7 € I. If sup f;(z) > sup f;(0) for all
i€l iel
z € R™"\{0}, then
(sup fi)" (z) = (inf £7)" (),
icl i€l
for all z € R™\{0}.
Theorem 4. Let I be an arbitrary index set, and f; be a strict evenly quassicon-
vex function from R to R for all ¢ € I, v € R"\{0}, a > 0, B € R, Vz € R*\{0},
sup;cs fi(x) > sup;e; £i(0), infier fff € I'™® be Ls.c. Then, the following (i) and

(ii) are equivalent:
(i) L(sup fi, <,B) S {z € R" | (v,7) < o},
iel

v
ss\ 2 H :H < . )

(i) € eciLEJIL(f, < -B)

Example 3. Let I = {1,2,3,4}, and fi, f2, f3 and f4 be the functions from
R? — R as follows;

fl(ml,xZ) = (1131 + 1)2 + SL'% - 4)

fa(z1,22) = (xy—1)% +22 —4,
fa(z1,22) = 3+ (2 —1)* -4,
fa(w,z2) = 22+ (z2+1)2 -4
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Then, for each ¢ € I, f; is a strictly evenly quasiconvex function and for all
z € R*\{0}, sup,¢; fi(z) > sup;c; f:(0). Then by using Theorem 3, (sup,c; f;)¥ =
(infiEI sz)HH‘ One ha’S L(fll17 S)O) = {(§1>§2) ‘ 9(51 - %)2 + 1263 S 4}7 L(ff, S
,0) = {(&,&) | 9(61+3)2+126 < 4}, L(fF,<,0) = {(&,62) | 1263 +9(&+3)° <
4} and L(fFf,<,0) = {(&, &) | 1262 + 9(& — 3)? < 4}. Moreover infie; f is Isc
and in I'*°, then by using Theorem 4,

L(sup f;,<,0) C {z € R? | (v,z) < 1} <= v € Hec| JL(f, <,0).
i€l icl

Also we can check this equivalence relation directly.

Example 4. Let I = {1,2}, and f;, fo be the same functions in Example 3.
Then, f, f2 are strictly evenly quasiconvex function and for all z € R?\{0},
sup;c; fi(z) > sup,c; f:(0). Then by using Theorem 3, (sup;¢; fi)¥ = (infier £ )HH.
Moreover inf;c; fH is not in I'*°, but

Hee[ | L(ff,<,0) = L((inf f/)™, <,0) = (| Hee[ | L(f¥, <,0+¢).

i€l >0 i€l
Therefore the following equivalence relation holds (see [5]).

L(sup fi, <,0) C {z € R? | (v,z) < 1} <= v € Hec| JL(f¥, <,0).
i€l

i€l
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