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FIXED POINT THEOREMS FOR NONLINEAR MAPPINGS RELATED
TO MAXIMAL MONOTONE OPERATORS IN BANACH SPACES

FUMIAKI KOHSAKA (#fR 3288) AND WATARU TAKAHASHI (##& #5)

ABSTRACT. In this paper, we study the existence of fixed points of nonspreading map-
pings and the approximation of fixed points of firmly nonexpansive type mappings in
Banach spaces. Applications to a proximal point algorithm for monotone operators in
Banach spaces are also included.

1. INTRODUCTION

Let E be a (real) Banach space and let T be a mapping from C into itself. We denote
the set of fixed points of T by F(T), that is, F(T) = {z € C : Tz = z}. The mapping T
is said to be nonezxpansive if

(1.1) Tz — Ty|| < ||z -yl
for all z,y € C. It is also said to be firmly nonezpansive [4] if
(1.2) 1Tz — Tyl < lIr(z —y) + (1 — r)(Tz — Ty)||

for all z,y € C and r > 0; see also [5, 11, 19].

The fixed point problem for nonexpansive mappings in Hilbert spaces is related to the
problem of finding zero points of maximal monotone operators in the space. In fact, if H
is a Hilbert space and A C H x H is a maximal monotone operator, then for each r > 0,
the resolvent J, of A defined by

(1.3) Jre={z2€ H:z € z+rAz}

for all z € H is a single-valued firmly nonexpansive mapping from H into itself and the
equality F(J,) = A~10 holds; see [31, 32].

There are two generalizations of the class of maximal monotone operators in Hilbert
spaces to Banach spaces. One of them is the class of m-accretive operators and the other is
that of maximal monotone operators. It is known that the class of resolvents of accretive
operators in Banach spaces coincides with that of firmly nonexpansive mappings. See [5,
24] on convergence theorems and {12, 29] on fixed point theorems for firmly nonexpansive
mappings in Banach spaces.

Let E be a smooth Banach space and let J be the (normalized) duality mapping from
E into E*. Following [1, 15], let ¢ be the mapping from E x E into [0, c0) defined by

(1.4) ¢(z,y) = llzl|* — 2 (=, Jy) + llyll?
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for all z,y € E. It is easy to see that ¢(z,y) > (||z|| = |lyll)? = 0 for all z,y € E. Let
C be a nonempty closed convex subset of E and let T' be a mapping from C into itself.
Then we say that T is nonspreading [16] if

(1.5) (T, Ty) + ¢(Ty,Tz) < ¢(Tx,y) + ¢(Ty, z)
for all z,y € C. We also say that T is firmly nonezpansive type [17] if
(1.6) (Te -Ty,JTz — JTy) < Tz — Ty, Jx — Jy)

for all z,y € C. It is easy to verify that if E is a smooth, strictly convex and reflexive
Banach space and A C E x E* is a maximal monotone operator, then for each r > 0, the
resolvent @, of A defined by

(1.7) Qrz={2€ E:JzeJz+rAz} (= (J+rA)'Jz)

for all z € E is a firmly nonexpansive type mapping. In fact, if z,y € E and r > 0, then
it follows from

(1.8) (Qra:, Ji‘—"gf-’f) , (er, fl'—‘ﬁ—y) €A

r
and the monotonicity of A that

(1.9) <Qrm - Qry,

This gives us that Q, is a firmly nonexpansive type mapping.

The purpose of the present paper is to state some results for nonspreading or firmly
nonexpansive type mappings in Banach spaces which were recently obtained in {16, 17].
Our paper is organized as follows: In Section 2, we state some definitions and results
needed in this paper. After that, we show that every firmly nonexpansive type mapping
is nonspreading. In Section 3, we obtain fixed point theorems for nonspreading mappings
in Banach spaces. In Section 4, we first show that every nonspreading mapping (resp.
firmly nonexpansive type mapping) with a fixed point is relatively nonexpansive (resp.
strongly relatively nonexpansive). Then we show a weak convergence theorem for a single
firmly nonexpansive type mapping in Banach spaces. In Section 5, we apply our results
to a proximal point algorithm in Banach spaces.

JioJQs _Jy=JQw)
: >0,

r

2. PRELIMINARIES

Throughout the present paper, every linear space is real. The sets of positive integers
and real numbers are denoted by N and R, respectively. Let E be a Banach space with
norm || - || and let E* be the dual space of E. Then the value of z* € E* at z € E is
denoted by (z,z*). The strong and weak convergence of a sequence {z,} of E to z € E
are denoted by z, — z and z, — =z, respectively. The duality mapping J from E into
28" is defined by Jz = {z* € E*: (z,2*) = ||z||? = ||z*||?} for all z € E. The space E is
said to be smooth if the limit

. t—0 t
exists for all z,y € S(E), where S(E) is the unit sphere of E. In this case, the norm of E
is said to be Gdteauz differentiable. The norm of F is also said to be uniformly Géteauz
differentiable if for all y € S(E), the limit (2.1) converges uniformly in z € S(E). The
space FE is said to be strictly convez if ||(z + y)/2|| < 1 whenever z,y € S(E) and = # y.
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It is also said to be uniformly convez if for all £ € (0,2], there exists 6 > 0 such that
i(z +1y)/2]| <1— 6 whenever z,y € S(E) and ||z — y|| > €. The duality mapping J from
a smooth Banach space E into E* is said to be weakly sequentially continuous if {Jz,}
converges to Jz in the weak* topology of E* whenever {z,} is a sequence of E such that
z, — z. We know the following; see, for instance, [10, 32]:

(1) If E is smooth, then J is single-valued,;
(2) if E is reflexive, then J is onto;
(3) if E is strictly convex, then J is one-to-one.

Let E be a Banach space and let A be a subset of ' x E*. We always identify the
set A with the mapping A : E — 2E" defined by Az = {z* € E* : (z,z*) € A} for all
z € E. Then the domain and the range of A are defined by D(A) = {z € E : Az #
0} and R(A) = U,cp(a) A%, respectively. The operator A is said to be monotone if
(z —y,z* —y*) > 0 whenever (z,z*),(y,y*) € A. A monotone operator A is also said
to be mazimal monotone if there is no other monotone operator B C E x E* such that
ACBand A#B.

Let E be a smooth Banach space and let C be a nonempty closed convex subset of E.
Then an element u of C is said to be an asymptotic fired point [23] of T if there exists a
sequence {r,} of C such that z, — v and ||z, — Tz,|| — 0. The set of asymptotic fixed
points of T is denoted by F(T). The mapping T is said to be relatively nonexpansive
(20, 21] if the following conditions are satisfied:

(1) F(T) is nonempty;

(2) F(T) = F(T);

(3) ¢(u,Tz) < ¢(u,z) for all (u,z) € F(T) x C;
see also [6, 7, 8, 9, 23] for similar classes of nonlinear operators. A relatively nonexpansive
mapping T from C into itself is also said to be strongly relatively nonezpansive [23] if
&(T zn, 2,) — 0 whenever {z,} is a bounded sequence of C such that ¢(p, 2,) —¢(p, T2n) —
0 for some p € F(T).

Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty
closed convex subset of E. Then for all z € E, there exists a unique zo € C (denoted by
Icx) such that ¢(zo, ) = minyec ¢(y, ). The mapping Il¢ is said to be the generalized
projection from E onto C; see [1, 15].

We know the following lemma:

Lemma 2.1 ([17]). Let E be a smooth Banach space, let C be a nonempty closed convex

subset of E and let T be a mapping from C into itself. Then the following are equivalent:
(1) The mapping T is firmly nonezpansive type;

(2) (T, Ty)+¢(Ty, Tz)+¢(Tz,2)+¢(Ty,y) < ¢(Tx,y)+¢(Ty,z) for allz,y € C.

By Lemma 2.1, we know that every firmly nonexpansive type mapping is nonspreading:

Corollary 2.2 ([16]). Let E be a smooth Banach space and let C be a nonempty closed
convex subset of E. Then every firmly nonexpansive type mapping from C into itself is
nonspreading.

We also know the following lemma, which shows that the class of firmly nonexpansive
type mappings coincides with that of resolvents of monotone operators in Banach spaces:
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Lemma 2.3 ([16]). Let E be a smooth, strictly convezx and reflexive Banach space, let C
be a nonempty closed convez subset of E and let T be a mapping from C' into itself. Then
the following are equivalent:
(1) The mapping T is firmly nonexpansive type;
(2) there exists a monotone operator A C E x E* such that D(A) C C C J'R(J+ A)
and Tz = (J+ A) YJz for allz € C.

As direct consequences of Lemmas 2.1 and 2.3, we obtain the following corollaries:

Corollary 2.4 ([17]). Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed convexr subset of E. Letr > 0 and let A C E x E* be a
monotone operator such that D(A) C C C J'R(J + rA). Then the resolvent Q, of A
defined by Q,x = (J+1rA)"YJz for all z € C is a firmly nonezpansive type mapping, that
is,

(2-2) ¢(Qrm, er) + ¢(er, Qr-’v) + ¢(Qr$’ T) + ¢(era y) < ¢(Qrz, y) + ¢(Q'ryv :I))
forallz,y € C.

Corollary 2.5 ([17]). Let C be a nonempty closed convex subset of a smooth, strictly
convez and reflexive Banach space E. Then the generalized projection Ilc from E onto C
is a firmly nonexpansive type mapping, that is,

(23) ¢(ch) Hcy) + ¢(H0y1 ch) + ¢(HCCB, fB) + ¢(HC?J, y) < ¢(HC$’ y) + ¢(HC'y7 CC)
forallx,y € E.

3. THE EXISTENCE OF FIXED POINTS OF NONSPREADING MAPPINGS

In this section, we study the existence of fixed points of nonspreading mappings in
Banach spaces. Using the technique developed by Takahashi [30], we can first show the
following fixed point theorem for a single nonspreading mapping in Banach spaces:

Theorem 3.1 ([16]). Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty closed convezr subset of E and let T be a nonspreading mapping from C
into itself. Then there erists £ € C such that {T"z} is bounded if and only if T has a
fized point.

As direct consequences of Theorem 3.1, we obtain the following corollaries:

Corollary 3.2 ([16]). Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty bounded closed convex subset of E and let T be a nonspreading mapping
from C into itself. Then T has a fized point.

Corollary 3.3 ([16]). Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let T be a mapping from C into itself such that

(3.1) 20Tz — Tyl* < |Tz - y|* + Ty — =||?

for all z,y € C. Then there exists ¢ € C such that {T"z} is bounded if and only if T has
a fized point.

By Corollary 2.2 and Theorem 3.1, we obtain the following:
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Corollary 3.4 ([17]). Let E be a smooth, strictly convezr and reflexive Banach space,
let C be a nonempty closed conver subset of E and let T be a firmly nonezpansive type
mapping from C into itself. Then there erists x € C such that {T"z} is bounded if and
only if T has a fized point.

We can also show the following common fixed point theorem for a commutative family
of nonspreading mappings in Banach spaces:

Theorem 3.5 ([16]). Let E be a smooth, strictly convez and reflexive Banach space, let
C be a nonempty bounded closed convez subset of E and let {T,} be a commutative family
of nonspreading mappings from C into itself. Then {T,} has a common fized point.

4. THE ASYMPTOTIC BEHAVIOR OF FIRMLY NONEXPANSIVE TYPE MAPPINGS

In this section, we obtain a convergence theorem for a single firmly nonexpansive type
mapping in Banach spaces (Theorem 4.4). To prove the result, we need the following
crucial lemma:

Lemma 4.1 ([16]). Let E be a strictly conver Banach space whose norm is uniformly
Gateauz differentiable, let C be a nonempty closed conver subset of E and let T be a
nonspreading mapping from C into itself. Then F(T) = F(T).

Using Lemma 4.1, we can show the following theorems:

Theorem 4.2 ([16]). Let E be a strictly convex Banach space whose norm is uniformly
Gateaur differentiable, let C be a nonempty closed convex subset of E and let T be a
nonspreading mapping from C into itself such that F(T) is nonempty. Then T is a
relatively nonezpansive mapping.

Theorem 4.3 ([17]). Let E be a strictly convex Banach space whose norm is uniformly
Giteauz differentiable, let C be a nonempty closed convex subset of E and let T be a firmly
nonezpansive type mapping from C into itself such that F(T) is nonempty. Then T is a
strongly relatively nonexrpansive mapping.

Using Theorem 4.3, we can prove the following convergence theorem:

Theorem 4.4 ([17]). Let E be a uniformly conver Banach space whose norm is uniformly
Gateaur differentiable, let C be a nonempty closed convez subset of E and let T be a firmly
nonezrpansive type mapping from C into itself such that F(T) is nonempty. If J is weakly
sequentially continuous, then for all x € C, the sequence {T"z} converges weakly to an
element of F(T).

As a direct consequence of Theorem 4.4, we have the following result due to Martinet
[19]:

Corollary 4.5 ([19]). Let C be a nonempty closed convez subset of a Hilbert space H and
let T : C — C be a firmly nonexpansive mapping such that F(T) is nonempty. Then for
all z € C, the sequence {T"z} converges weakly to an element of F(T).

5. APPLICATIONS TO A PROXIMAL POINT ALGORITHM

In the final section, we apply our results to a proximal point algorithm for a monotone
operator satisfying a range condition in Banach spaces. The prozimal point algorithm was
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originally proposed by Martinet [18] and generally studied by Rockafellar [28]. Let H be
a Hilbert space and let A C H x H be a maximal monotone operator. The proximal point
algorithm generates a sequence {z,} by z; = ¢ € H and z,41 = J. .z, for all n € N,
where {r,} is a sequence of positive real numbers and J, is the resolvent of A defined by
Jo=(I+r1A)"! for all r > 0.

By Corollaries 2.4, 3.4 and Theorem 4.4, we can show the following weak convergence
theorem for a proximal point algorithm in Banach spaces; see [13, 14, 22] on similar results
for mazimal monotone operators in Banach spaces:

Theorem 5.1 ([17]). Let E be a smooth, strictly convezr and reflerive Banach space and
let. C be a nonempty closed convex subset of E. Letr > 0 and let A C E x E* be a
monotone operator such that D(A) C C C J'R(J +rA). Let Q, be the resolvent of
A defined by Q,z = (J +rA) Y Jz for all z € C and let {z,} be a sequence defined by
z1 =z € C and

(5.1) Tny1 = QrTn
for all n € N. Then the following hold:

(1) The sequence {z,} is bounded if and only if the set A~10 is nonempty;

(2) if A0 is nonempty, E is uniformly convez, the norm of E is uniformly Géteauz
differentiable and J is weakly sequentially continuous, then the sequence {r,} con-
verges weakly to an element of A~10.

Proof. By Corollary 2.4, @, is a firmly nonexpansive type mapping from C into itself.
We also know that F(Q,) = A~'0. Indeed, if u € F(Q,), then we have Ju € Ju + rAu
and hence 0 € Au. On the other hand, if u € A70, then it follows from D(A) C C that
u € C. Since 0 € Au, we have Ju € Ju + rAu. Hence we obtain Q,u = u. Thus, by
Corollary 3.4, if {z,} is bounded, then A~10 is nonempty; see [13, 14] for the converse
implication. Thus the part (1) holds. By Theorem 4.4, the part (2) holds. O

In the particular case that the operator A is assumed to be maximal monotone, Theorem
5.1 is reduced to the following:

Corollary 5.2. Let E be a smooth, strictly convexr and reflerive Banach space and let
A C E x E* be a mazimal monotone operator. Let r > 0, let Q. = (J + rA)~1J and let
{zn} be a sequence defined by x; = x € E and (5.1). Then the following hold:

(1) The sequence {z,} is bounded if and only if the set A~'0 is nonempty;

(2) if A0 is nonempty, E is uniformly convez, the norm of E is uniformly Géteauz
differentiable and J is weakly sequentially continuous, then the sequence {z,} con-
verges weakly to an element of A~'0.

Proof. Since A is maximal monotone, by [3, 27], the equality R(J + rA) = E* holds; see
also [2, 31]. Thus the resolvent @, is a mapping from E into itself. By Theorem 5.1, we
have the desired result. O

Let E be a Banach space and let f : E — (—o00,00] be a function. Then f is said
to be proper if {x € E : f(x) € R} is nonempty. The function f is said to be lower
semicontinuous if {x € E : f(z) < r} is closed in E for all » € R. The function f is
also said to be conver if f(tz + (1 —t)y) < tf(z) + (1 — t)f(y) whenever z,y € E and
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t € (0,1). For a proper lower semicontinous convex function, the subdifferential Of of f
is defined by

(5.2) of(z) ={z* € E*: f(z) + (y — z,2") < f(y), Vy € E}

for all z € E. It is known that if f : E — (—o0, 00] is proper, lower semicontinuous and
convex and g : E — R is continuous and convex, then

(5.3) o(f +g9)=0f + 0g.

We denote the set of minimizers of f : £ — (—00,00] by arg minyeg f(y).
Using Corollary 5.2, we can study the problem of finding minimizers of proper lower
semicontinuous convex functions in Banach spaces:

Corollary 5.3. Let E be a smooth, strictly convex and reflexive Banach space and let
f: E — (—00,00] be a proper lower semicontinuous conver function. Let r > 0 and let
{z,} be a sequence defined by r, =z € E and

(5.4) Tn+1 = BIE DD {f (y) + 2—1T¢(y, wn)}

for all n € N. Then the following hold:

(1) The sequence {z,} is bounded if and only if the set arg minyecg f(y) is nonempty;

(2) if argmingeg f(y) is nonempty, E is uniformly convez, the norm of E is uniformly
Gateauz differentiable and J is weakly sequentially continuous, then the sequence
{z,} converges weakly to an element of arg minycg f(y).

Proof. By Rockafellar’s theorem [25, 26], the subdifferantial mapping 8f of f is maximal
monotone. It is also known that (8f)1(0) = arg minycg f(y)-
Let Q, = (J +r0f)1J. For each z € E, it follows from (5.3) that

(55) z=Q<0€d (f + —21;¢(-,z>) (2) += z = argmin {f(y) + §;¢(y,x)}

Thus we obtain z,,; = Q,z, for all n € N. Hence, by Corollary 5.2, we have the desired
result. O
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