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Abstract
This paper is a resume of [10]. We consider complex dynamics

of a holomorphic map from $P^{k}$ to $P^{k}$ , which is $S_{k+2}$-equivariant and
critically finite, for each $k\geq 1$ . Here $S_{k\dashv- 2}$ is the $k+2-$th symmetric
group. The Fatou set of each map of this family consists of attractive
basins of superattracting points. Each map of this family satisfies
Axiom A.

1 Introduction
For a finite group $G$ acting on $P^{k}$ as projective transformations, we say that
a rational map $f$ on $P^{k}$ is G-equivariant if $f$ commutes with each element of
$G$ . That is, $f\circ r=r\circ f$ for any $r\in G$ , where $\circ$ denotes the composition of
maps. P. Doyle and C. McMullen [3] introduced the notion of equivariant
maps on $P^{1}$ to solve quintic equations. See also [11] for equivariant maps
on $P^{1}$ . In the study of extending P. Doyle and C. McMullen’s result to
higher dimensions, S. Crass [2] found a good family of finite groups and
equivariant maps for which one may say something about global dynam-
ics. S. Crass [2] conjectured that the Fatou set of each map of this family
consists of attractive basins of superattracting points. Our results [10] give
affirmative answers for the conjectures in [2].

In section 2 we shall explain an action of the symmetric group $S_{k+2}$ on
$P^{k}$ and properties of our $S_{k+2}$-equivariant map. In section 3 and 4 we shall
denote our results about the Fatou sets and hyperbolicity of our maps. We
need the properties of our maps and Kobayashi metrics for the proofs.
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2 $S_{k+2}$-equivariant maps on $P^{k}$

S. Crass [2] selected the symmetric group $S_{k+2}$ as a finite group acting on
$P^{k}$ and found an $S_{k+2}$-equivariant map which is holomorphic and critically
flnite for each $k\geq 1$ . We denote by $C=C(f)$ the critical set of $f$ and say
that $f$ is criticallyfinite if each irreducible component of $C(f)$ is periodic or
preperiodic. More precisely, $S_{k+2}$ -equivariant map $g_{k+3}$ defined in section
2.2 preserves each irreducible component of $C(g_{k+3})$ , which is a projective
hyperplane. The complement of $C(g_{k+3})$ is Kobayashi hyperbolic. Fur-
thermore restrictions of $g_{k+3}$ to invariant projective subspaces have the
same properti’es as above. See section 2.3 for details.

2.1 $S_{k+2}$ acts on $P^{k}$

An action of the $(k+2)$ -th symmetric group $S_{k+2}$ on $P^{k}$ is induced by the
permutation action of $S_{k+2}$ on $C^{k+2}$ for each $k\geq 1$ . The transposition
$(i,j)$ in $S_{k+2}$ corresponds with the transposition $;r_{\mathcal{U}_{i}}rightarrow u_{j’’}$ on $C_{\iota\iota}^{k+2}$ , which
pointwise fixes the hyperplane $\{u_{i}=u_{j}\}=\{u\in C_{Ll}^{k+2}|u_{i}=u_{j}\}$ . Here
$C^{k+2}=C_{u}^{k+2}=\{u=(n_{1},u_{2},$

$\cdot\cdot,$ $u_{k+2})|u_{i}\in C$ for $i=1,$ $\cdot\cdot,k+2\}$ .
The action of $S_{k+2}$ preserves a hyperplane $H$ in $C_{u}^{k+2}$ , which is identi-

fied with $C_{x}^{k+1}$ by projection $A$ : $C_{tl}^{k+2}arrow C_{\chi}^{k+1}$ ,

$H=\{\sum_{i=1}^{k+2}u_{i}=0\}\simeq AC_{\mathfrak{r}}^{k+1}$ and $A=(001001$ $.\cdot.\cdot 001-..1-1-1$

Here $C^{k+1}=C_{\chi}^{k+1}=\{x=(x_{1},$ $x_{2},$ $\cdot\cdot,$ $x_{k+1})|x_{j}\in C$ for $i=1,$ $\cdot\cdot,k+1\}$ .
Thus the permutation action of $S_{k+2}$ on $C_{ll}^{k+2}$ induces an action of“$S_{k+2’’}$

on $C_{Y\prime}^{k+1}$ . Here $\prime\prime s_{k+2’’}$ is generated by the permutation action $S_{k+1}$ on
$ck^{+1}$ and a $(k+1,k+1)$ -matrix $T$ which corresponds to the transposition
$(1, k+2)$ in $S_{k+2}$ ,

$T=(\begin{array}{llll}-1 0 \cdots 0-1 1 \cdots 0\vdots \vdots \ddots 0-1 0 \cdots 1\end{array})$

Hence the hyperplane $\{u_{i}=n_{i}\}$ corresponds to $\{x_{i}=x_{i}\}$ for $1\leq i<j\leq$

$k+1$ . The hyperplane $\{n_{j}=u_{k+2}\}$ corresponds to $\{x;=0\}$ for $1\leq j\leq$

$k+1$ . Each element in “
$S_{k+2’’}$ which corresponds to some transposition in

$S_{k+2}$ pointwise fixes one of these hyperplanes in $ck^{+1}$ .
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The action of $\prime\prime s_{k+2’’}$ on $C^{k+1}$ projects naturally to the action of $\prime\prime s_{k+2’’}$

on $P^{k}$ . These hyperplanes on $C^{k+1}$ projects naturally to projective hyper-
planes on $P^{k}$ . Here $P^{k}=\{x=[x_{1} : Y_{2} :.. : \vee\tau_{k+1}]|(x_{1}, x_{2}, \cdot\cdot, x_{k+1})\in$

$C^{k+1}\backslash \{0\}\}$ . Each element in the action of $\prime\prime s_{k+2’’}$ on $P^{k}$ which corresponds
to some transposition in $S_{k+2}$ pointwise fixes one of these projective hy-
perplanes. We denote $\prime\prime s_{k+2’’}$ also by $S_{k+2}$ and call these projective hyper-
planes transposition hyperplanes.

2.2 Existence of our maps
One way to get $S_{k+2}$-equivariant maps on $P^{k}$ which are criticallyfinite is to
make $S_{k+2}$-equivariant maps whose critical sets coincide with the union of
the transposition hyperplanes,
Theorem 1 ([2]). For each $k\geq 1,$ $gk+3$ defined below is the unique $S_{k+2^{-}}$

equivarian $t$ holomorphic map of degree $k+3$ zvhich is doubly critical on each
$tra$nsposition hyperplane.

$g=gk+3=[gk+3,1:g_{k+3,2}:\cdot\cdot : gk+3,k+1]:P^{k}arrow P^{k}$,

zvhere $g_{k+3,i}(x)=x_{l}^{3} \sum_{s=0}^{k}(-1)^{s}\frac{s+1}{s+3}x_{l}^{s}A_{k-s},$ $A_{0}=1$ ,

and $A_{k-s}$ is the elemen tary symmetric function of degree k-s in $C^{k+1}$

Then the $\subset ritical$ set of $g$ coincides with the union of the transposition
hyperplanes. Since $g$ is $S_{k+2}$-equivarian $t$ and each transposition hyperplane
is pointwise fixed by some element in $S_{k+2},$ $g$ preserves each transposition
hyperplane. In particular $g$ is critically finite. Although Crass [2] used this
explicit formula to prove Theorem 1, we shall only use properties of the
$S_{k+2}$-equivaria $\mathfrak{s}\tau t$ maps described below.

2.3 Properties of our maps
Let us look at properties of the $S_{k+2}$-equivariant map $g$ on $P^{k}$ for a fixed
$k$, which is proved in [2] and shall be used to prove our results. Let $L^{k-1}$

denote one of the transposition hyperplanes, which is isomorphic to $P^{k-1}$ .
Let $L^{m}$ denote one of the intersections of $(k-m)$ or more distinct transpo-
sition hyperplanes which is isomorphic to $P^{m}$ for $t7t=0,1,$ $\cdot\cdot,k-1$ .

First, let us look at properties of $g$ itself. The critical set of $g$ consists
of the union of the transposition hyperplanes. By $S_{k+2}$-equivariance, $g$ pre-
serves each transposition hyperplane. Furthermore the complement of the
critical set of $g$ is Kobayashi hyperbolic.
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Next, let us look $at$ properties of $g$ restricted to $L^{\prime\dagger l}$ for $m=1,2,$ $\cdot\cdot,k-1$ .
Let us fix any $m$ . Since $g$ preserves each $L^{\prime n}$ , we can also $\subset$onsider the dy-
namics of $g$ restricted to any $L^{n\iota}$ . Each restricted map has the same prop-
erties as above. Let us fix any $L^{\prime 7l}$ and denote by $g|_{L^{lll}}$ the restricted map
of $g$ to the $L^{m}$ . The critical set of $g|_{L’’}$ , consists of the union of intersections
of the $L^{m}$ and another $L^{k-1}$ which does not include the $L^{m}$ . We denote it
by $L^{llI-1}$ , which is an irreducible component of the critical set of $g|_{L^{n\iota}}$ . By
$S_{k+2}$-equivariance, $g|_{L^{\prime\prime l}}$ preserves each irreducible component of the critical
set of $g|_{L^{l’ l}}$ . Furthermore the complement of the critical set of $g|_{L^{l’ t}}$ in $L^{m}$ is
Kobayashi hyperbolic.

Finally, let us look at a property of superattracting fixed points of $g$ .
The set of superattracting points, where the derivative of $g$ vanishes for all
directions, coincides with the set of $L^{0\prime}s$ .

Remark 1. For every $k\geq 1$ and every $m,$ $1\leq m\leq k$ , a restricfed map of $g_{k+3}$

to any $L^{m}$ is not conjugate to $g_{m+3}$ .

3 The Fatou sets of the $S_{k+2}$-equivariant maps
Let us recall theorems about critically finite holomorphic maps. Let $f$ be a
holomorphic map from $P^{k}$ to $P^{k}$ . The Fatou set of $f$ is defined to be the
maximal open subset where the iterates $\{f^{l1}\}_{\iota\geq 0}$ is a normal family. The
Julia set of $f$ is defined to be the complement of the Fatou set of $f$ . Each
connected component of the Fatou set is called a Fatou component. Let $U$

be a Fatou component of $f$ . A holomorphic map $h$ is said to be a limit map
on $U$ if there is a subsequence $\{f^{\mathfrak{l}1_{\vee\backslash }}|_{U}\}_{s\geq 0}$ which locally converges to $h$ on
$U$ . We say that a point $q$ is a Fatou limit point if there is a limit map $h$ on
a Fatou component $U$ such that $q\in h(U)$ . The set of all Fatou limit points
is called the Fatou limit set. We define the $\omega$-limit set $E(f)$ of the critical
points by

$E(f)= \bigcap_{j=1}^{\infty}\bigcup_{n=j}^{\infty}f^{\iota}(C)$ .

Theorem 2. ($f9$, Proposition 5. 11) If$f$ is a criticallyflnite holomorp hic mapfrom
$P^{k}$ to $P^{k}$ , then the Fatou limit set is contained in the $\omega$-limit set $E(f)$ .

Let us recall the notion of Kobayashi metrics. Let $M$ be a complex man-
ifold and $K_{M}(x, v)$ the Kobayashi quasimetric on $M$,

$\inf\{|a||\varphi$ : $Darrow M$ : holomorphic, $\varphi(0)=x,$ $D \varphi(a(\frac{\partial}{\partial z})_{0})=v,a\in C\}$
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for $\chi\in M,$ $\tilde{c}’\in T_{1}M,$ $\approx\in D$ , where $D$ is the unit disk in C. We say that $M$

is Kobayashi hyperbolic if $K_{NI}$ becomes $a$ metric.
Let us recall theorems about dynamics of critically flnite holomorphic

maps in low dimensions. Theorem 5 is a corollary of Theorem 3 and The-
orem 4 for $k=1$ and 2.

Theorem 3. ([7, Corollary $I4.5l$) If $f$ is a critically flnite holomorphic map
from $P^{1}$ to $P^{1}$ , then the only $Fatou$ components of $f$ are attractive componen $ts$

of superattracting points. Moreover if the Fatou set is not empty, then the Fatou
set has full measure in $P^{1}$ .

Theorem 4. ($f4$, Theorem 7. $7J$) If $f$ is a critically finite holomorphic map.poni
$P^{2}$ to $P^{2}$ and the complement of $C(f)$ is Kobajashi $hy$perbolic, then the only Fatou
componen $ts$ of $f$ are attractive components of superattracting points.

We get our first result by using Theorem 2, Kobayashi metrics and the
properties of our maps.

Theorem 5. For each $k\geq 1$ , the Fatou set of the $S_{k+2}$-equivariant map $g$ consists
of attractive basins of superattracting fixed points $u$)$hich$ are in tersections of $k$ or
more distinct transposition hyperp lanes.

4 The $S_{k+2}$-equivariant maps satisfy Axiom A

Let us define hyperbolicity of non-invertible maps and the notion of Ax-
iom A. See [5] for details. Let $f$ be a holomorphic map from $P^{k}$ to $P^{k}$ and
$K$ a compact subset such that $f(K)=K$. Let $\hat{K}$ be the set of histories in $K$

and $\hat{f}$ the induced homeomorphism on $\hat{K}$ . We say that $f$ is hyperbolic on
$K$ if there exists a continuous decomposition $T_{\hat{K}}=E^{u}+E^{\sigma}\llcorner$ of the tangent
bundle such that $D\hat{f}(E_{\hat{Y}}^{u/S})\subset E_{\hat{f}(\hat{\mathfrak{i}})}^{ll/.5}$ and if there exists constants $c>0$ and
$\lambda>1$ such that for every $n\geq 1$ ,

$|Df^{\hat{l}1}(v)|\geq c\lambda^{n}|v|$ for all $v\in E^{tl}$ and

$|Df^{\hat{l}l}(v)|\leq c^{-1}\lambda^{-l1}|v|$ for all $v\in E^{S}$

Here $|\cdot|$ denotes the Fubini-Study metric on $P^{k}$ . If a decomposition and
inequalities above hold for $f$ and $K$, then it also holds for $\hat{f}$ and $\hat{K}$ . In
particular we say that $f$ is expanding on $K$ if $f$ is hyperbolic on $K$ with
unstable dimension $k$ . Let $\Omega$ be the non-wandering set of $f$ , i.e., the set of
points for any neighborhood $U$ of which there exists an integer $n$ such that
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$f^{ll}(U)$ intersects with $U$ . By definition, $\Omega$ is compact and $f(\Omega)=\Omega$ . We
say that $f$ satisfies Axiom A if $f$ is hyperbolic on $\Omega$ and periodic points are
dense in $\Omega$ .

Let us introduce $a$ theorem which deals with repelling part of dynam-
ics. Let $f$ be a holomorphic map from $P^{k}$ to $P^{k}$ . We define th$e$ k-th Julia set
$J_{k}$ of $f$ to be the support of the measure with maximal entropy, in which
repelling periodic points are dense. It is a fundamental fact that in dimen-
sion 1 the lst Julia set $I_{1}$ coincides with the Julia set $f$ . Let $K$ be a compact
subset such that $f(K)=K$. We say that $K$ is $a$ repeller if $f$ is expanding on
$K$ .

Theorem 6. $(I61)$ Let $f$ be a holomorphic map on $P^{k}$ ofdegree at least 2 such that
the $\omega$-limit set $E(f)$ is pluripolar. Then any repeller for $f$ is contained in $f_{k}$ . In
particular,

$J_{k}=\overline{\{repelling}$periodic points of $f$}

If $f$ is critically flnite, then $E(f)$ is pluripolar. Hence our maps satisfies
the condition in the theorem above.

We get our second result by using Theorem 3, Kobayashi metrics and
the properties of our maps.

Theorem 7. For each $k\geq 1$ , the $S_{k+2}$ -equivariant map $g$ satisfies Axiom $A$ .

Since $g$ satisfies Axiom $A,$ [ $1$ , Theorem 4.11] and [8] induces the follow-
ing corollary.

Corollary 1. The Fatou set of the $S_{k+2}$-equivarianf map $g$ has fitll measure in
$P^{k}$ for each $k\geq 1$ .

Acknowledgments. I would like to thank Professor S. Ushiki and Doctor
K. Maegawa for their useful advice. Particularly in order to obtain our
second result, K. Maegawa’s suggestion to use Theorem 6 was helpful.

References
[1] R. BOWEN, “Equilibrium states and the ergodic theory of Anosov dif-

feomorphisms”, Lecture Notes in Mathematics 470, Springer-Verlag,
Berlin-New York, 1975.

[2] S. CRASS, A family of critically finite maps with symmetry, Publ. Mat.
49(1) (2005), 127-157.

19



[3] P. DOYLE AND C. McMULLEN, Solving the quintic by iteration, Acta
Math. 16313-4) (1989), 151-180.

[4] J. E. FORNIESS AND N. SIBONY, Complex dynamics in higher di-
mension. I. Complex analytic methods in dynamical systems (Rio de
Janeiro, 1992), As t\’erisque 222(5) (1994), 201-231.

[5] M. JONSSON, Hyperbolic dynamics of endomorphisms, preprint.

[6] K. MAEGAWA, Holomorphic maps on $P^{k}$ with sparse critical orbits,
submitted

[7] J. MILNOR, ”Dynamics in one complex variable “, Introductory Lectures,
Friedr. Vieweg and Sohn, Braunschweig, 1999.

[8] M. QIAN AND Z. ZHANG, Ergodic theory for Axiom A endomor-
phisms, Ergodic Theory Dynam. Sys tems 15(1) (1995), 161-174

[9] T. UEDA, Critical orbits of holomorphic maps on projective spaces, f.
Geom. Anal. 8(2) (1998), 319-334.

[10] K. UENO, Dynamics of symmetric holomorphic maps on projective
spaces, Publ. Mat. 51 (2) (2007), 333-344.

[11] S. USHIKI, Julia set with polyhedral symmetry, in ”Dynantical systems
and related topics’ (Nagoya, 1990), Adv. Ser. Dynam. Systems 9, World
Sci. Publ., River Edge, NJ, 1991, pp. 515-538.

20


