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1. INTRODUCTION

Partial abelian monoid is a topological space equipped with a partial sum. In [5]
and [3], partial abelian monoid is used as a recipe for generalized homology thories. It
suggests that the category of partial abelian monoid (denoted by PAM) has a structure
rich enough for describing stable homotopy theory. On the other hand, PAM contains
the category Top

$*$ of pointed topological spaces as a full sub-category as well as the
category AM of topological abelian monoids. This shows that every phenomena of
unstable homotopy theory occurs in PAM. With these facts as a back ground, it should
be valuable if suitable homotopy theory of partial abelian monoid is established. In
this paper, we start algebraic topology of partial abelian monoids by showing that some
adjointness holds for appropriate product and mapping space construction in PAM. In
the case of abelian monoids, a very successful theory is developed by M. C. McCord [2].
It is also notable that N. J. Kuhn investigates[l] various facts in homotopy theory in a
unified way being based on the McCord model.

2. PARTIAL ABELIAN MONOID

A pointed topological space $M$ is a partial abelian monoid if there exists a subspace
$\Lambda I_{2}\subset M\cross M$ and a map $\mu$ : $M_{2}arrow M$ satisfying following conditions:

(1) $M\vee M\subset M_{2}$ and $\mu$ coincides with the folding map on $M\vee M$ ;
$\mu(m, *)=m=\mu(*, m)$ for any $m\in M$ .

(2) If $(m_{1}, m_{2})\in M_{2}$ then $(m_{2}, m_{1})\in M_{2}$ and
$\mu(m_{1}, m_{2})=\mu(m_{2}, m_{1})$ .

(3) $(m_{1}, m_{2})\in M_{2}$ and $(\mu(m_{1}, m_{2}), m_{3})\in\Lambda’I_{2}$ iff $(m_{2}, m_{3})\in\Lambda f_{2}$ and $(m_{1},$ $\mu(m_{2}, m_{3})\in$

$\Lambda f_{2}$ and
$\mu(\mu(m_{1}, m_{2}), m_{3})=\mu(m_{1}, \mu(m_{2}, m_{3}))$ .

When $M$ and $N$ are partial abelian monoids, a map $f$ : $Marrow N$ is called a homomor-
phism if $(f\cross f)(M_{2})\subset N_{2}$ and $f(m_{1}+m_{2})=f(m_{1})+f(m_{2})$ for any $(m_{1}, m_{2})\in M_{2}$ . We
denote the space of homomorphisms from $M$ to $N$ by $Hom(M, N)$ . We give $Hom(M, N)$
a PAM structure by letting $Hom(M, N)_{2}=\{(f,$ $g)|(f(m),$ $g(m))\in N_{2}$ for any $m\in\Lambda I\}$

and $f+g$ be the pointwise sum of $f$ and $g$ for $(f, g)\in Hom(\Lambda i, N)_{2}$ . We denote by PAM
the category with partial abelian monoids as objects and homomorphisms between them
as morphisms.

Examples 1. (1) Any based space $X$ can be considered as a PAM by letting $X_{2}=$

$X\vee X$ and $\mu$ be the folding map. This PAM is called a trivial PAM. Moreover,
a homomorphism from a trivial PAM to another PAM is just a based map.
Especially, we observe that Top$*$ is a full sub-category of PAM.
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(2) Any abelian nionoid $G$ can be considered as a $PAI\backslash I$ in an obvious way. The
category of topological abelian monoids, denoted by AINI, is also a full sub-
category of PAM.

(3) Configuration spacc $C(V, M)$ is a space of configuration of finite nuniber of points
in $V$ labelled by $i\backslash I$ . where $V$ is a space and $\Lambda I$ is a PAM. An element of $C(V, l|;I)$

can be represented by a pair $(S, m)$ , where $S$ is a finite subset of $V$ and $m$ is a
map $Sarrow M$. It can be viewed as a PAM by superimposition: two configurations
represented by $(S, v)$ and $(T, w)$ are suinmable if $(v(x), w(x))$ is summable in $M$

for any $x\in S\cap T$. We keep these examples in our mind when we speak of PAM
as well as the following one, which is relevant with connective K-homology ([4]).

(4) Let $Gr^{\infty}$ denote the inifinite Grassmannian manifold, the space of finite dimen-
sional subspaces of $\mathbb{R}^{\infty}$ . Two subvector spaces $V$ and $W$ in $\mathbb{R}^{\infty}$ are summable if
$V$ and $W$ are orthogonal.

3. PRODUCT

Before giving a definition of the product, we observe the classifying space construction,
which indicates our choice of product in PAM.

We can associate a simplicial space to a partial abelian monoid in a natural way.
Given a partial abelian monoid $M$ , let $M_{k}$ denote the summable k-tuples in $M$. Then a
simplicial space is given by a sequence $M_{0},$ $M_{1},$

$\ldots$ of spaces and the degeneracy maps
given by insertion of the unit and the face maps given by taking a sum. The classifying
space $BM$ is defined by the geometric realization of this simplicial space. As the name
shows, $BM$ coincides with the usual classifying space when $M$ is an abelian monoid.
On the other hand, $BM$ has a homotopy type of $\Sigma X$ when $M=X$ is a space.

Now we define a product in PAM so that it is a generalization of $BM$. Recall that
the infinite symmetric product SP$\infty x$ of a space $X$ is a free abelian monoid generated
by $X$ with appropriate topology. We denote the formal sum in SP$\infty x$ by $+$ , thus any
element of SP$\infty x$ can be written as a formal sum $x_{1}+\cdots+x_{k}$ for some $x_{1},$ $\ldots,$ $x_{k}\in X$ .
We have a monoid, denoted $M^{mon}$ associated to a partial abelian monoid $M$ and a PAM
map $\iota$ : $Marrow M^{mon}$ which satisfies the following universality : for any abelian monoid
$G$ and a PAM map $f$ : $Marrow G$ , there exists a unique homomorphism $f^{mon}$ : $M^{mon}arrow G$

such that $f^{mon}\circ\iota=f$ .
We set up some terminologies on summability. By the associativity, it makes sense

to say that a finite multiset in a partial abelian monoid $M$ is summable or not, where
a finite multiset in $M$ is a function $Marrow \mathbb{N}$ with finite support. Note that a finite
multiset in $M$ can be identified with an element of SP$\infty(M)$ . When we have a map
$f$ : $Xarrow M$ with finite support, we can speak of a multiset ${\rm Im} f$ in $M$ given by a
function $m\mapsto\neq\{x\in X|f(x)=m\}$ . It also makes sense to say that an element
of $M^{mon}$ is summable or not, since the summability is independent of the choice of
representative in $SP^{\infty}(M)$ . For an element $\alpha\in M^{mon}$ , we denote by $|\alpha|$ the minimum
length of the representative in SP$\infty(M)$ .

Let $M\otimes N$ be a monoid defined by taking the quotient of SP$\infty(MxN)$ by an equiv-
alence relation generated by $(m_{1}, n)+(m_{2}, n)\sim(m_{1}+m_{2}, n)$ and $(m, n_{1})+(m, n_{2})\sim$

$(m, n_{1}+n_{2})$ . Note that $M\otimes N$ is canonically isomorphic to $M^{mon}\otimes N^{mon}$ . We de-
note by $\pi$ : SP$\infty(MxN)arrow M\otimes N$ the projection. Let $M\ltimes N\sim$ be a subspace
of SP$\infty(MxN)$ consisting of elements with summable $\Lambda’l$-coordinates : $M\ltimes N\sim=$

$\{(m_{1}, n_{1})+\cdots+(m_{k}, n_{k})|(m_{1}, \ldots mk)\in\Lambda l_{k}, n_{i}\in N\}$ . We define $M\ltimes N$ be the
image of $M\overline{\ltimes}N$ in $M\otimes N$ under the projection $\pi$ .
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A subspace $(\Lambda l\ltimes N)_{2}$ of $(\lrcorner\backslash I\ltimes N)^{2}$ is defined as the subspace consisting of pairs whose
sum in M&N is in $\lrcorner\eta I\ltimes N$ :

$(i\backslash I\ltimes N)_{2}=\{(\alpha, \beta)|\alpha+\beta\in\lambda I\ltimes N\}$ .

We can define $\mu$ : $(\Lambda I\ltimes N)_{2}arrow\Lambda’I\ltimes N$ by $\mu(\alpha\rangle\beta)=\alpha+\beta$. Now $\mu$ is unital and
commutative, but we need some condition on $M$ or $N$ to show that it is associative.

A partial abelian monoid is said to have the unique factorization property (UF for
short) if any element have unique decomposition into a sum of irreducible elements. It
is said to be non-invertible if it has no invertible elements.

Theorem 1. Assume one of the following conditions :
(Cl) $M$ is UF,
(C2) $M$ is a monoid, or
(C3) $N$ is trivial (a space).

Assume also that $N$ is non-invertible. Then the product $\mu$ is associative, so that $M\ltimes N$

is a partial abelian monoid with this multiplication.

To prove the above theorem, we introduce the following Lemma which shows that
under a suitable condition, a subspace $X$ of an abelian monoid $G$ has a structure of
partial abelian monoid. For any (based) subspace $X\subset G$ , we can define a subspace
$X_{2}\subset X^{2}$ by $X_{2}=\{(x_{1}, x_{2})|x_{1}+x_{2}\in X\}$ and a partial sum by $\mu(x_{1,2}x)=x_{1}+x_{2}$ .
Then $\mu$ is unital and commutative, thus associativity is only the problem.

Lemma 2. Let $X$ be a subspace of an abelian monoid $G$ . Assume for any $x$ and $y\in G$ ,
$x$ and $x+y\in X$ implies $y\in X$ . Then $\mu$ is associative so that $X$ is a sub-partial abelian
monoid of $G$ .

A proof of the above theorem and lemma is give in the next section.
Note that this choice of the ‘tensor product’ can be justified by the the following

examples :

Examples 2. (1) When $M=G$ is an abelian monoid, $G\ltimes N=G\otimes N^{mon}$ .
(2) When $M=X$ is a space, $X\ltimes N=X\wedge N$ .
(3) When $N=X$ is a space, $M\ltimes X\subset C(X, \Lambda I)$ is a configuration space of finite

number of points in $X$ which has a totally summable labels in $M$ . Thus giving
an element of $M\ltimes X$ amounts to giving a pair $(S, rn)$ with $S$ a finite subset of
$X$ and $m:Sarrow M$ is a map such that ${\rm Im}(m)$ considered as a multiset in $M$ is
summable. Especially, $M\ltimes S^{1}$ coincides with the classifying space $BM$ .

In the following, when we speak of $M\ltimes N$ (or x-product of other PAMs), we assume
that one of the conditions $(C1)\sim$ (C3) in Theorem 1 holds. Note that if $M$ and $N$ both
satisfy one of (Cl) $\sim$ (C3) simultaneously, then $M\ltimes N$ satisfy the same condition.

Unfortunately, we should change the PAM structure of the function space to have an
adjointness. If $(a, b),$ $(b, c),$ $(c, a)\in\Lambda I_{2}$ implies $(a. b, c)\in M_{3}$ , we say that $M$ is pairwise
determined. Let $hom(M, N)=Hom(M, N)$ as a space and

$hom(M, N)_{2}=$ { $(f,$ $g)|(f(m_{1}),$ $f(m2))\in N_{2}$ for any $(m_{1},$ $m_{2})\in$ Af2}.
Then we can define a partial sum on $hom(A\prime I, N)$ by the pointwise sum. This partial
sum is unital and commutative. It is associative if $N$ is pairwise determined. Thus
$hom(M, N)$ is in PAM if $N$ is pairwise determined.

Then we have the following adjointness in the category of partial abelian monoids.
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Theorem 3. Assume one of $(C1)\sim(C3)$ in Theorem 1. Assume also that $N$ is non-
invertible and $K$ is pairwise determined. Then we have an isomorphism in PAM:

honi $(A’I\ltimes N, K)\cong hom(il’I$ , hoin $(N,$ $K))$ .

4. PROOF OF LEMMAS AND THEOREMS

Proof of Lemma 2. The problem is only to show that $(y,\tilde{4})\in X_{2}$ when $(x, y)\in X_{2}$ and
$(x+y, z)\in X_{2}$ . But $(x+y_{\dot{l}}z)\in X_{2}$ is equivalent to $x+y+z\in X$ . Thus we have
$y+z\in X_{2}$ by the assumption. $\square$

Proof of Theorem 1. It is clear that $M\ltimes N$ satisfies the assumption of Lemma 2 if $M$ is a
monoid or $N$ is a space(see Examples). Assume that $M$ is UF. Suppose $\alpha,$ $\alpha+\beta\in M\ltimes N$

for $\alpha,$ $\beta\in M\otimes N$. Since $M$ is UF, we can write uniquely as
$\alpha=m_{1}\otimes\alpha_{1}+\cdots+m_{k}\otimes\alpha_{k}$

and
$\beta=m_{1}\otimes\beta_{1}+\cdots+m_{k}\otimes\beta_{k}$

as elements in $M\otimes N=M\otimes N^{mon}$ , where $m_{i}$ are irredicible for each $i$ and mutually
distinct. Since $\alpha\in M\ltimes N,$ $|\alpha_{1}|m_{1}+\cdots+|\alpha_{k}|m_{k}\in M^{mon}$ is summable. (For any
$a\in N^{mon}$ and $m\in M$ , we mean by $|a|m$ the $+$-sum in $M^{mon}$ of $|a|$ copies of $m.$ )
Similarly, $|\alpha_{1}+\beta_{1}|m_{1}+\cdots+|\alpha_{k}+\beta_{k}|m_{k}\in M^{mon}$ is also summable. Since $N$ is non-
invertible, $|\beta_{i}|\leq|\alpha_{i}+\beta_{i}|$ for each $i,$ $|\beta_{i}|m_{1}+\cdots+|\beta_{k}|m_{k}$ is also summable and we have
$\beta\in M\ltimes N$ . $\square$

Proof of Theorem $S$. We define
$\Phi$ : $Hom(M\ltimes N, K)arrow Hom(M, hom(N, K))$

by letting
$\Phi(\alpha)(m):Narrow K$

be a map $n\mapsto\alpha(m\ltimes n)$ , where $\alpha$ : $M\ltimes Narrow K$ is a homomorphism and $m\in M,$ $n\in N$ .
Also, we define

$\Psi$ : $Hom(M, hom(N, K))arrow Hom(M\ltimes N, K)$

by letting

$\Psi(\beta)([m_{1}\ltimes n_{1}+\cdots+m_{k}\ltimes n_{k}|)=\sum_{i}\beta(m_{i})(n_{i})$

where $\beta$ : $Marrow hom(N, K)$ is a homomorphism and $m_{i}\in M,$ $n_{i}\in N$ . It is straightfor-
ward to check that $\Phi$ and $\Psi$ are well-defined maps, which are inverse to each other. $\square$
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