
REMARKS ON THE EXTENSION OF TWISTED HODGE METRICS

CHRISTOPHE MOUROUGANE AND SHIGEHARU TAKAYAMA

1. INTRODUCTION

The aims of this text are to announce the result in a paper [MT3], to give proofs of
some special cases of it, and to make comments and remarks for the proof given there.
Because the full proof in [MT3] is much more involved and technical, we shall give a
technical introduction and proofs for weaker statements in this text (see Theorem 1.5 and
1.6). This text is basically independent from [MT3].

1.1. Result in [MT3]. Our main concern is the positivity of direct image sheaves of
adjoint bundles $R^{q}f_{*}(K_{X/Y}\otimes E)$ , for a K\"ahler morphism $f$ : $Xarrow Y$ endowed with
a Nakano semi-positive holomorphic vector bundle $(E, h)$ on $X$ . In our previous paper
[MT2], generalizing a result [B] in case $q=0$ , we obtained the Nakano semi-positivity of
$R^{q}f_{*}(K_{X/Y}\otimes E)$ with respect to the Hodge metric, under the assumption that $f$ : $Xarrow$

$Y$ is smooth. However the smoothness assumption on $f$ is rather restrictive, and it is
desirable to remove it.

To state our result precisely, let us fix notations and recall basic facts. Let $f$ : $Xarrow$

$Y$ be a holomorphic map of complex manifolds. A real d-closed (1, 1)-form $\omega$ on $X$

is said to be a relative Kahler form for $f$ , if for every point $y\in Y$ , there exists an
open neighbourhood $W$ of $y$ and a smooth plurisubharmonic function $\psi$ on $W$ such that
$\omega+f^{*}(\sqrt{-1}\partial\overline{\partial}\psi)$ is a K\"ahler form on $f^{-- 1}(\mathcal{W}^{r})$ . A morphism $f$ is said to be Kahler, if
there exists a relative K\"ahler form for $f$ ([Tk, 6.1]), and $f$ : $Xarrow Y$ is said to be a
Kahler fiber space, if $f$ is proper, K\"ahler, and surjective with connected fibers,

Set up 1.1. (1) Let $X$ and $Y$ be complex manifolds of $\dim X=n+m$ and $\dim Y=m$ ,
and let $f$ : $Xarrow Y$ be a K\"ahler fiber space. We do not fix a relative K\"ahler form for $f$ ,

unless otherwise stated. The discriminant locus of $f$ : $Xarrow Y$ is the minimum closed
analytic subset $\Delta\subset Y$ such that $f$ is smooth over $Y\backslash \Delta$ .

(2) Let $(E, h)$ be a Nakano semi-positive holomorphic vector bundle on $X$ . Let $q$ be
an integer with $0\leq q\leq n$ . By Koll\’ar [Kol] and Takegoshi [Tk], $R^{q}f_{*}(K_{X/Y}\otimes E)$ is
torsion free on $Y$ , and moreover it is locally free on $Y\backslash \Delta$ ([MT2, 4.9]). In particular
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we can let $S_{q}\subset\Delta$ be the minimum closed analytic subset of $co\dim_{Y}S_{q}\geq 2$ such that
$R^{q}f_{*}(K_{X/Y}\otimes E)$ is locally free on $Y\backslash S_{q}$ . Let $\pi$ : $\mathbb{P}(R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash S_{q}})arrow Y\backslash S_{q}$ be
the projective space bundle, and let $\pi^{*}(R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash S_{q}})arrow \mathcal{O}(1)$ be the universal
quotient line bundle.

(3) Let $\omega_{f}$ be a relative K\"ahler form for $f$ . Then we have the Hodge metric $g$ on
the vector bundle $R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash \Delta}$ with respect to $\omega_{f}$ and $h$ ([MT2, \S 5.1]). By the
quotient $\pi^{*}(R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash \Delta})arrow \mathcal{O}(1)|_{\pi^{-1}(Y\backslash \Delta)}$ , the metric $\pi^{*}g$ gives the quotient
metric $g_{\mathring{\mathcal{O}}(1)}$ on $\mathcal{O}(1)|_{\pi^{-1}(Y\backslash \Delta)}$ . The Nakano, even weaker Griffiths, semi-positivity of $g$ (by
$[B, 1.2]$ for $q=0$ , and by [MT2, 1.1] for $q$ general) implies that $g_{\mathring{\mathcal{O}}(1)}$ has a semi-positive
curvature. $\square$

In these notations, the main result in [MT3] is as follows.

Theorem 1.2. Let $f$ : $Xarrow Y,$ $(E, h)$ and $0\leq q\leq n$ be as in Set up 1.1.
(1) Unpolarized case. Then, for every relatively compact open subset $Y_{0}\subset Y$ , the line

bundle $\mathcal{O}(1)|_{\pi^{-1}(Y_{0}\backslash S_{q})}$ on $\mathbb{P}(R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y_{0}\backslash S_{q}})$ has a singular Hermitian metric with
semi-positive curvature, and which is smooth on $\pi^{-1}(Y_{0}\backslash \Delta)$ .

(2) Polanzed case. Let $\omega_{f}$ be a relative Kahler form for $f$ . Assume that there enists
a closed analytic set $Z\subset\Delta$ of $co\dim_{Y}Z\geq 2$ such that $f^{-1}(\Delta)|_{X\backslash f^{-1}(Z)}$ is a divisor and
has a simple normal crossing support (or empty). Then the Hermitian metric $g_{\mathring{\mathcal{O}}(1)}$ on
$\mathcal{O}(1)|_{\pi^{-1}(Y\backslash \Delta)}$ can be extended as a singular Hermitian metric go(1) with semi-positive
curvature of $\mathcal{O}(1)$ on $\mathbb{P}(R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash S_{q}})$ .

Theorem 1.2 (1) is reduced to Theorem 1.2 (2) for $f’=fo\mu$ : $X’arrow Y$ after a
modification $\mu$ : $X’arrow X$ . Then however the induced map $f’$ : $X^{l}arrow Y$ is only locally
K\"ahler in general. Hence we need to restrict everything on relatively compact subsets of
$Y$ in Theorem 1.2 (1).

If in particular in Theorem 1.2, $R^{q}f_{*}(K_{X/Y}\otimes E)$ is locally free and $Y$ is a smooth
projective variety, then the vector bundle $R^{q}f_{*}(K_{X/Y}\otimes E)$ is pseudo-effective in the sense
of [DPS, \S 6]. This notion [DPS, \S 6] is a natural generalization of the fact that on a smooth
projective variety, a divisor $D$ is pseudo-effective (i.e., a limit of effective divisors) if and
only if the associated line bundle $\mathcal{O}(D)$ admits a singular Hermitian metric with semi-
positive curvature. The above curvature property of $\mathcal{O}(1)$ leads to the following algebraic
positivity of $R^{q}f_{*}(K_{X/Y}\otimes E)$ .

Theorem 1.3. Let $f$ : $Xarrow Y$ be a surjective morphism with connected fibers between
smooth projective varieties, and let $(E, h)$ be a Nakano semi-positive holomorphic vector
bundle on X. Then the torsion free sheaf $R^{q}f_{*}(K_{X/Y}\otimes E)$ is weakly positive over $Y\backslash \Delta$

(the smooth locus of $f$), in the sense of Viehweg [Vi2, 2.13].
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See [MT3, \S 1] for further introduction.

1.2. Statement in this text. We would like to explain the proofs of the following two

theorems in this text. Because there is no essential limitations of the number of pages,
we may repeat some arguments and make comments repetitiously.

Set up 1.4. (General set up.) Let $f$ : $Xarrow Y$ be a holomorphic map of complex
manifolds, which is proper, K\"ahler, surjective with connected fibers, and $f$ is smooth over
the complement $Y\backslash \Delta$ of a closed analytic subset $\Delta\subset Y$ . Let $\omega_{f}$ be a relative K\"ahler

form for $f$ , and let $(E, h)$ be a Nakano semi-positive holomorphic vector bundle on $X$ .
Let $q$ be a non-negative integer.

It is known by Kollar [Kol] and Takegoshi [Tk] that $R^{q}f_{*}(K_{X/Y}\otimes E)$ is torsion free, and
moreover it is locally free where $f$ is smooth ([MT2, 4.9]). In particular we can let $S_{q}\subset\Delta$

be the minimum closed analytic subset of $co\dim_{Y}S_{q}\geq 2$ such that $R^{q}f_{*}(K_{X/Y}\otimes E)$ is
locally free on $Y\backslash S_{q}$ . Once we take a relative K\"ahler form $\omega_{f}$ for $f$ , we then have the
Hodge metric $g$ on the vector bundle $R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash \Delta}$ with respect to $\omega_{f}$ and $h$ ([MT2,

\S 5.1] or Remark 2.6). $\square$

Theorem 1.5. In Set up 1.4, assume further that $\dim Y=1$ . Let $L$ be a quotient

holomorphic line bundle of $R^{q}f_{*}(K_{X/Y}\otimes E)$ . Then $L$ has a singular Hermitian metric

with semi-positive $cun$)$ature$ , whose restriction on $Y\backslash \Delta$ is the quotient $met_{7^{v}}\iota c$ of the
Hodge metrnc $g$ on $R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash \triangle}$ .

Theorem 1.6. In Set up 1.4, assume further that $f$ has reduced fibers in codimension
1 on $Y$ , i. e., there exists a closed analytic set $Z\subset\Delta$ of $co\dim_{Y}Z\geq 2$ such that every

fiber of $y\in Y\backslash Z$ is reduced. Let $L$ be a holomorphic line bundle on $Y$ with a surjection
$R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash Z}arrow L|_{Y\backslash Z}$ . Then $L$ has a singular Hermitian metric with semi-
positive curvature, whose $rest\uparrow\dot{n}ction$ on $Y\backslash \Delta$ is the quotient metnc of the Hodge metrtc
$g$ on $R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash \Delta}$ .

The above assumptions: $\dim Y=1$ . and$/or$ with reduced fibers, or even fibers are semi-
stable, are quite usual in algebraic geometry. In this sense, the assumptions in Theorem
1.5 and 1.6 are not so artificial.

1.3. Complement. Here is a comment on the relation between the statements in \S 1.1
and those in \S 1.2. Although we will not give proofs, we can pursue the method of proof
of Theorem 1.5 and 1.6 to show the following two statements, as we show Theorem 1.2 in
[MT3].

Theorem 1.7. In Set up 1.4, assume further that $\dim Y=1$ . Then the line bundle $\mathcal{O}(1)$

for $\pi$ : $\mathbb{P}(R^{q}f_{*}(K_{X/Y}\otimes E))arrow Y$ has a singular Hermitian metric $g_{O(1)}$ with semi-positive
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curvature, and whose restriction on $\pi^{-1}(Y\backslash \Delta)$ is the quotient metric $g_{\mathring{\mathcal{O}}(1)}$ of $\pi^{*}g$ , where
$g$ is the Hodge metric with respect to $\omega_{f}$ and $h$ .

Theorem 1.8. In Set up 1.4, assume further that $f$ has reduced fibers in codimension
1 on Y. Then the line bundle $\mathcal{O}(1)$ for $\pi$ : $\mathbb{P}(R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash S_{q}})arrow Y\backslash S_{q}$ has a
singular Hermitian metric $g_{O(1)}$ with semi-positive curvature, and whose restriction on
$\pi^{-1}(Y\backslash \Delta)$ is the quotient metnc $g_{\mathring{\mathcal{O}}(1)}$ of $\pi^{*}g$ , where $g$ is the Hodge metric with respect
to $\omega_{f}$ and $h$ .

One clear difference between \S 1.1 and \S 1.2 is geometric conditions on $f$ : $Xarrow Y$ .
Another is about line bundles to be considered, namely $\mathcal{O}(1)$ or $L$ . For example, Theorem
1.7 (or 1.2) concerns all rank 1 quotient of $R^{q}f_{*}(K_{X/Y}\otimes E)$ , while Theorem 1.5 concems
a rank 1 quotient of $R^{q}f_{*}(K_{X/Y}\otimes E)$ , hence Theorem 1.7 is naturally stronger than
Theorem 1.5. In fact Theorem 1.7 implies Theorem 1.5 by a standard argument ([MT3,
\S 6.2] $)$ . The proof of Theorem 1.7 (as well as Theorem 1.2) requires another uniform
estimate which does not depend on rank 1 quotients $L$ of $R^{q}f_{*}(K_{X/Y}\otimes E)$ , other than
the uniform estimate given in Lemma 3.3 of the proof of Theorem 1.5.

2. PRELIMINARY ARGUMENTS

2.1. Localization. As the next lemma shows, to see our theorems, we can neglect codi-
mension 2 analytic subsets of $Y$ .

Lemma 2.1. Let $Y$ be a complex manifold, and $Z$ a closed analytic subset of $Y$ with
codim$YZ\geq 2$ . Let $L$ be a holomo$\tau phic$ line bundle on $Y$ with a singular Hermitian metric
$h$ on $L|_{Y\backslash Z}$ with semi-positive curvature. Then $h$ extends as a singular Hermitian metric
on $L$ with semi-positive curvature.

Proof. Let $W$ be a small open subset of $Y$ with a nowhere vanishing section $e\in H^{0}(W, L)$ .
Then a function $h(e, e)$ on $W\backslash Z$ can be written as $h(e, e)=e^{-\varphi}$ with a plurisubharmonic
function $\varphi$ on $W\backslash Z$ . By Hartogs type extension for plurisubharmonic functions, $\varphi$ can
be extended uniquely as a plurisubhamonic function $\tilde{\varphi}$ on $W$ . Then $e^{-\tilde{\varphi}}$ gives the desired
extension of $h$ on W. $\square$

In particular, we can neglect the set $S_{q}$ (resp. $Z$ ) in Set up 1.4 (resp. in Theorem 1.6),
and only consider codimension 1 part of the discriminant locus $\Delta$ . Once we obtain the
Hodge metric $g$ of $R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash \Delta}$ or the quotient metric $g_{L}^{o}$ of $L|_{Y\backslash \Delta}$ , the extension
property of $g_{\mathring{L}}$ is a local question. Hence we can further reduce our situation to the
following
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Set up 2.2. (Generic local set up.) Let $Y$ be (a complex manifold which is biholomorphic
to) a unit ball in $\mathbb{C}^{m}$ with coordinates $t=(t_{1}, \ldots, t_{m}),$ $X$ a complex manifold of $\dim X=$

$n+m$ with a K\"ahler form $\omega$ . Let $f$ : $Xarrow Y$ be a proper surjective holomorphic map

with connected fibers. Let $(E, h)$ be a Nakano semi-positive holomorphic vector bundle
on $X$ , and let $q$ be an integer with $0\leq q\leq n$ . Let $K_{Y}\cong \mathcal{O}_{Y}$ be a trivialization by a
nowhere vanishing section $dt=dt_{1}\wedge\ldots\wedge dt_{m}\in H^{0}(Y, K_{Y})$ . Let $g$ be the Hodge metric
on $R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash \Delta}$ with respect to $\omega$ and $h$ . Let us assume the following:

(1) $f$ is flat, and the discriminant locus $\Delta\subset Y$ is $\Delta=\{t_{m}=0\}$ .
(2) $R^{q}f_{*}(K_{X/Y}\otimes E)\cong \mathcal{O}_{Y}^{\oplus r}$ . i.e., globally free and trivialized of rank $r$ .
(3) Let $f^{*} \Delta=\sum b_{i}B_{i}$ be the prime decomposition. For every $B_{i}$ , the induced morphism

$f$ : Reg $B_{i}arrow\Delta$ is surjective and smooth. Here Reg $B_{i}$ is the smooth locus of $B_{i}$ . If
$B_{i}\neq B_{j}$ , the intersection $B_{i}\cap B_{j}$ does not contain any fiber of $f$ .

We may replace $Y$ by slightly smaller balls, or may assume everything is defined over
a slightly larger ball. $\square$

Remark 2.3. (1) For this moment, in Set up 2.2, we do not assume that $\dim Y=1$ , nor
that $f$ has reduced fibers.

(2) Set up 2.2 (3) is automatically satisfied in case $\dim Y=1$ .
(3) Refer [MT2, 5.2] for the replacement of a relative K\"ahler form $\omega_{f}$ by a K\"ahler form

$\omega$ . $\square$

Notation 2.4. (1) For a non-negative integer $d$ , we set $c_{d}= \prod-1^{2}$ .
(2) Let $f$ : $Xarrow Y$ be as in Set up 2.2. We set $\Omega_{x/Y}^{p}=\wedge^{p}\Omega_{X/Y}^{1}$ rather formally,

because we will only deal $\Omega_{x/Y}^{p}$ on which $f$ is smooth. For an open subset $U\subset X$ where $f$

is smooth, and for a differentiable form $\sigma\in A^{p,0}(U, E)$ , we say $\sigma$ is relatively holomorphic
and write $[\sigma]\in H^{0}(U.\Omega_{X/Y}^{p}\otimes E)$ , if $\sigma\wedge f^{*}dt\in H^{0}(U, \Omega_{X}^{p+m}\otimes E)$ . $\square$

2.2. Relative hard Lefschetz type theorem. We discuss in Set up 2.2.
One fundamental ingredient, even in the definition of Hodge metrics, is the following

proposition. In case $q=0$ , this is quite elementary.

Proposition 2.5. [Tk, 5.2]. There enist $H^{0}(Y, \mathcal{O}_{Y})$ -module homomorphisms

$*\circ \mathcal{H}$ : $H^{0}(Y, R^{q}f_{*}(K_{X/Y}\otimes E))arrow H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ ,

$L^{q}:H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)arrow H^{0}(Y, R^{q}f_{*}(K_{X/Y}\otimes E))$

such that (1) $(c_{n+m-q}/q!)L^{q}o(*\circ \mathcal{H})=id$ , and (2) for every $u\in H^{0}(Y, R^{q}f_{*}(K_{X/Y}\otimes E))$ ,
there $e$ vists a relative holomorphic $fom\iota[\sigma_{u}]\in H^{0}(X\backslash f^{-1}(\Delta), \Omega_{X/Y}^{n-q}\otimes E)$ such that

$(*\circ \mathcal{H}(u))|_{X\backslash f^{-1}(\Delta)}=\sigma_{u}\wedge f^{*}dt$ .
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Proof. We take a smooth strictly plurisubhamonic exhaustion function $\psi$ on $Y$ , for ex-
ample $\Vert t\Vert^{2}$ . Recalling $R^{q}f_{*}(K_{X/Y}\otimes E)=K_{Y}^{\otimes(-1)}\otimes R^{q}f_{*}(K_{X}\otimes E)$, the trivialization
$K_{Y}\cong \mathcal{O}_{Y}$ by $dt$ gives an isomorphism $R^{q}f_{*}(K_{X/Y}\otimes E)\cong R^{q}f_{*}(K_{X}\otimes E)$ . Since $Y$ is
Stein, we have also a natural isomorphism $H^{0}(Y, R^{q}f_{*}(K_{X}\otimes E))\cong H^{q}(X, K_{X}\otimes E)$ . We
denote by $\alpha^{q}$ the composed isomorphism

$\alpha^{q}$ : $H^{0}(Y, R^{q}f_{*}(K_{X/Y}\otimes E))\overline{arrow};H^{q}(X, K_{X}\otimes E)$ .

With respect to the K\"ahler form $\omega$ on $X$ , we denote by $*$ the Hodge $*$-operator, and by

$L^{q}:H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)arrow H^{q}(X, K_{X}\otimes E)$

the Lefschetz homomorphism induced from $\omega^{q}\wedge\bullet$ . Also with respect to $\omega$ and $h$ , we set
$\mathcal{H}^{n+m,q}(X, E, f^{*}\psi)=\{u\in A^{n+m_{\neq}q}(X, E);\overline{\partial}u=\theta_{h}u=0, e(\overline{\partial}(f^{*}\psi))^{*}u=0\}$. (We do not
explain what this space of harmonic forms is, because the definition is not important in
this text.) By [Tk, 5. $2.i$], $\mathcal{H}^{n+m,q}(X, E, f^{*}\psi)$ represents $H^{q}(X, K_{X}\otimes E)$ as an $H^{0}(Y, \mathcal{O}_{Y})-$

module, and hence there exists a natural isomorphism

$\iota$ : $\mathcal{H}^{n+m_{r}q}(X, E, f^{*}\psi)\overline{arrow}H^{q}(X, K_{X}\otimes E)$

given by taking the Dolbeault cohomology class. We have an isomorphism

$\mathcal{H}=\iota^{-1}\circ\alpha^{q}:H^{0}(Y, R^{q}f_{*}(K_{X/Y}\otimes E))\overline{arrow};\mathcal{H}^{n+m,q}(X, E, f^{*}\psi)$.

Also by [Tk, 5. $2.i$], the Hodge $*$-operator gives an injective homomorphism

$*:\mathcal{H}^{n+m,q}(X, E, f^{*}\psi)arrow H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ ,

and induces a splitting $*0\iota^{-1}$ : $H^{q}(X, K_{X}\otimes E)arrow H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ for the Lefschetz
homomorphism $L^{q}$ such that $(c_{n+m-q}/q!)L^{q}o*0\iota^{-1}=id$ . (The homomorphism $\delta^{q}$ in $[$Tk,
5. $2.i]$ with respect to $\omega$ and $h$ is $*\circ\iota^{-1}$ times a universal constant.) In particular

$(c_{n+m-q}/q!)((\alpha^{q})^{-1}\circ L^{q})\circ(*\circ \mathcal{H})=id$ .

All homomorphisms $\alpha^{q},$ $*,$ $L^{q},$
$\iota,$

$\mathcal{H}$ are as $H^{0}(Y, \mathcal{O}_{Y})$-modules.
Let $u\in H^{0}(Y, R^{q}f_{*}(K_{X/Y}\otimes E))$ . Then we have $*\circ \mathcal{H}(u)\in H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ , and

then by [Tk, $5.2.ii|$

$(*\circ \mathcal{H}(u))|_{X\backslash f^{-1}(\Delta)}=\sigma_{u}\wedge f^{*}dt$

for some $[\sigma_{u}]\in H^{0}(X\backslash f^{-1}(\Delta), \Omega_{x/Y}^{n-q}\otimes E)$ . It is not difficult to see $[\sigma_{u}]\in H^{0}(X\backslash$

$f^{-1}(\Delta),$ $\Omega_{X/Y}^{n-q}\otimes E)$ does not depend on the particular choice of a global frame $dt$ of
$K_{Y}$ . $\square$

Remark 2.6. We recall the definition of the Hodge metric $g$ of $R^{q}f_{*}(K_{X/Y}\otimes E)|_{Y\backslash \Delta}$

with respect to $\omega$ and $h$ [MT2, 5.1]. We only mention it for a global section $u\in$
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$H^{0}(Y, R^{q}f_{*}(K_{X/Y}\otimes E))$ . It is given by

$g(u, u)(t)= \int_{X_{t}}(c_{n-q}/q!)(\omega^{q}\wedge\sigma_{u} A h\overline{\sigma_{u}})|_{X_{t}}$

at $t\in Y\backslash \Delta$ . In the relation

$(*\circ \mathcal{H}(u))|_{X\backslash f^{-1}(\Delta)}=\sigma_{u}\wedge f^{*}dt$ ,

the left hand side is holomorphically extendable across $f^{-1}(\Delta)$ , and is non-vanishing if
$u$ is, in an appropriate sense. In the right hand side, $f^{*}dt$ may only have zero along
$f^{-1}(\Delta)$ , that is “Jacobian” of $f$ , and hence $\sigma_{u}$ may only have “pole” along $f^{-1}(\Delta)$ . This
is the main reason why $g(u, u)(t)$ has a positive lower bound on $Y\backslash \Delta$ , and which is
fundamental for the extension of positivity (see (5) of the proof of Proposition 2.7 below).

The importance of the role of the Jacobian of $f$ is already observed by Fujita [Ft]. $\square$

2.3. Non-uniform estimate. Here we state a weak extension property. This is a basic
reason for all extension of positivity of direct image sheaves of relative canonical bundles,

for example in [Ft], [Kal], [Vil], and so on. However this is not enough to conclude the
results in \S 1.

Proposition 2.7. In Set up 1.4, let $W\subset Y$ be an open subset, and let $u\in H^{0}(W\backslash$

$S_{q},$ $R^{q}f_{*}(K_{X/Y}\otimes E))$ which is nowhere vanishing on $W\backslash S_{q}$ . Then the smooth plurisub-
harmonic $function-\log g(u, u)$ on $W\backslash \Delta$ can be extended as a plurisubharmonic function
on $W$ .

Proof. We may assume $W=Y$ . Moreover it is enough to consider in Set up 2.2 as before.
In particular $S_{q}=\emptyset$ and $\Delta=\{t_{m}=0\}$ . We shall discuss the extension property at the
origin $t=0\in Y$ , and hence we replace $Y$ by a small ball centered at $t=0$ .

(1) By Proposition 2.5, we have $*\circ \mathcal{H}(u)\in H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ . This $*\circ \mathcal{H}(u)$ does
not vanish identically along $\Delta=\{t_{m}=0\}\subset Y$ as an element of $H^{0}(Y, \mathcal{O}_{Y})$-module
$H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ . This is saying that there exists at least one component $B_{j}$ in $f^{*}\Delta=$

$\sum b_{i}B_{i}$ such that $*\circ \mathcal{H}(u)$ does not vanish of order greater than or equal to $b_{j}$ along $B_{j}$ .
We take one such $B_{j}$ and denote by

$B=B_{j}$ and $b=b_{j}$ .

(2) We take a general point $x_{0}\in B\cap f^{-1}(0)$ so that $x_{0}$ is a smooth point on $(f^{*}\Delta)_{red}$ ,

and take local coordinates $(U;z=(z_{1}, \ldots, z_{n+m}))$ centered at $x_{0}\in X$ . We may assume
$f(U)=Y$ and $t=f(z)=(z_{n+1}, \ldots, z_{n+m-1}, z_{n+m}^{b})$ on $U$ .

Over $U$ , the bundle $E$ is also trivialized, i.e., $E|_{U}\cong Ux\mathbb{C}^{r(E)}$ , where $r(E)$ is the
rank of $E$ . Using the local trivializations on $U$ , we have a constant $a>0$ such that (i)
$\omega\geq a\omega_{eu}$ on $U$ , where $\omega_{eu}=\sqrt{-1}/2\sum_{i=1}^{n+m}dz_{i}\wedge(\ulcorner z_{i}$ is the standard complex euclidean
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K\"ahler form, and (ii) $h\geq aId$ on $U$ as Hemitian matrixes. Here we regard $h|_{U}(x)$ as a
positive definite Hermitian matrix at each $x\in U$ in terms of $E|_{U}\cong U\cross \mathbb{C}^{r(E)}$ , and here
Id is the $r(E)\cross r(E)$ identity matrix.

(3) By Proposition 2.5, we can write as $(*\circ \mathcal{H}(u))|_{X\backslash f^{-1}(\Delta)}=\sigma_{u}\wedge f^{*}dt$ for some
$\sigma_{u}\in A^{n-q,0}(X\backslash f^{-1}(\Delta), E)$ . We write $\sigma_{u}=\sum_{I\in I_{n-q}}\sigma_{I}dz_{I}+R$ on $U\backslash B$ . Here $I_{n-q}$

is the set of all multi-indexes $1\leq i_{1}<\ldots<i_{n-q}\leq n$ of length $n-q$ (not including
$n+1,$ $\ldots$ , $n+m),$ $\sigma_{I}={}^{t}(\sigma_{I,1},$

$\ldots$ , $\sigma_{I,r(E)})$ is a vector valued holomorphic function with
$\sigma_{I,i}\in H^{0}(U\backslash B, \mathcal{O}_{X})$ , and here $R= \sum_{k=1}^{m}R_{k}\wedge dz_{n+k}\in A^{n-q,0}(U\backslash B, E)$ . Now

$\sigma_{u}\wedge f^{*}dt=bz_{n+m}^{b-1}(\sum_{I\in I_{n-q}}\sigma_{I}dz_{I})\wedge dz_{n+1}\wedge\ldots\wedge dz_{n+m}$

on $U\backslash B$ . Since $\sigma_{u}$ A $f^{*}dt=(*\circ \mathcal{H}(u))|_{X\backslash f^{-1}(\Delta)}$ and $*\circ \mathcal{H}(u)\in H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ , all
$z_{n+m}^{b-1}\sigma_{I}$ can be extended holomorphically on $U$ . By the non-vanishing property of $*\circ \mathcal{H}(u)$

along $bB$ , we have at least one $\sigma_{J_{0},i_{0}}\in H^{0}(U\backslash B, \mathcal{O}_{X})$ whose divisor is

$div(\sigma_{J_{0},i_{0}})=-pB|_{U}+D$

with some integer $0\leq p\leq b-1$ , and an effective divisor $D$ on $U$ not containing $B|_{U}$ . We
take such

$J_{0}\in I_{n-q}$ and $i_{0}\in\{1, \ldots, r(E)\}$ .

$($ Now $div(\sigma_{J_{0},i_{0}})=-pB|_{U}+D$ is fixed. $)$ We set

$Z_{u}=\{y\in\Delta;D$ contains $B|_{U}\cap f^{-1}(y)\}$ .

We can see that $Z_{u}$ is not Zariski dense in $\Delta$ , because otherwise $D$ contains $B|_{U}$ , and also
that $Z_{u}$ is Zariski closed of $co\dim_{Y}Z_{u}\geq 2$ (particularly using $f$ is flat).

(4) We take any point $y_{1}\in\Delta\backslash Z_{u}$ , and a point $x_{1}\in B|_{U}\cap f^{-1}(y_{1})$ such that $x_{1}\not\in D$ .
Let $0<\epsilon\ll 1$ be a sufficiently small number so that, on the $\epsilon$-polydisc neighbourhood
$U(x_{1}, \epsilon)=\{z=(z_{1},$

$\ldots,$
$z_{n+m})\in U;|z_{i}-z_{i}(x_{1})|<\epsilon$ for any $1\leq i\leq n+m\}$ , we have

$A:= \inf\{|\sigma_{J_{0},i_{0}}(z)|;z\in U(x_{1}, \epsilon)\backslash B\}>0$ .

We should note that $\sigma_{J_{0},io}$ may have a pole along $B$ , but no zeros on $U(x_{1}, \epsilon)$ . We set
$Y’$ $:=f(U(x_{1}, \epsilon))$ which is an open neighbourhood of $y_{1}\in Y$ , since $f$ is flat (in particular

57



it is an open mapping). Then for any $t\in Y^{l}\backslash \Delta$ , we have

$\int_{X_{t}}(c_{n-q}/q!)(\omega^{q}\wedge\sigma_{u}\wedge h\overline{\sigma_{u}})|_{X_{t}}\geq a\int_{X_{t}\cap U}(c_{n-q}/q!)(\omega^{q}\wedge\sigma_{u}\wedge\overline{\sigma_{u}})|_{X_{t}\cap U}$

$=a^{q+1}/z \in X_{t}\cap U\sum_{I\in I_{n-q}}\sum_{i=1}^{r}|\sigma_{I,i}(z)|^{2}dV_{n}$

$\geq a^{q+1}/z\in X_{1}\cap U(x_{1},\epsilon)^{A^{2}dV_{n}}$

$=a^{q+1}A^{2}(\pi\epsilon^{2})^{n}$ .
Here $dV_{n}=( \sqrt{-1}/2)^{n}\bigwedge_{i=1}^{n}dz_{i}\wedge d\overline{z_{i}}$ is the standard euclidean volume form in $\mathbb{C}^{n}$ . Namely
we have $g(u, u)(t)\geq a^{q+1}A^{2}(\pi\epsilon^{2})^{n}$ for any $t\in Y‘\backslash \Delta$ .

(5) We proved that $-\log g(u, u)$ is bounded from above around every point of $\Delta\backslash Z_{u}$ .
This means that a plurisubharmonic function $-\log g(u, u)$ on $Y\backslash \Delta$ can be extended
as a plurisubharmonic function on $Y\backslash Z_{u}$ by Riemann type extension, and hence as a
plurisubharmonic function on $Y$ by Hartogs type extension. $\square$

Remark 2.8. Here are some remarks when we try to generalize the proof above to obtain
Theorem 1.5 and 1.6. The point is the set $Z_{u}$ above depends on $u$ . This is the main
difficulty when we consider an extension property of quotient metrics. In that case, we
need to obtain a uniform estimate of $g(u_{s}, u_{s})$ for a family $\{u_{s}\}$ . If $s$ moves, then $Z_{u_{\epsilon}}$ also
may move and cover a larger subset of $\Delta$ , which may not be negligible for the extension
of plurisubharmonic functions.

The intersection $B|_{U}\cap D$ is a set of indeterminacies. If (a part of) a fiber $f^{-1}(y)$ is
contained in $B|_{U}\cap D$ , the analysis of the behavior of $g(u, u)$ around such $y$ is quite hard
and in fact indeterminate. This is why we do not want to touch $Z_{u}$ . In some geometric
setting as below, we can avoid such phenomena. We can delete one of two in the right
hand side of $div(\sigma_{I,i})=-pB|_{U}+D$ .

(i) In case $\dim Y=1$ , we can take $D=0$ . This is because, if a prime divisor $\Gamma$ on
$U$ contains $B|_{U}\cap f^{-1}(y)$ , then $\Gamma=B|_{U}$ . In case when $\dim Y=1,$ $q=0$ and $E=\mathcal{O}_{X}$ ,
a uniform estimate is cleared by Fujita [Ft, 1.11] (as we will see below). This will lead
Theorem 1.5.

(ii) In case the fibers of $f$ are reduced, we can take $p=0$ (cf. $0\leq p\leq b-1$ in (3) of
the proof above). This will lead Theorem 1.6.

To deal with a general case in [MT3], we use a semi-stable reduction for $f$ . A compu-
tation of Hodge metrics is a kind of an estimation of integrals, which usually can be done
only after a good choice of local coordinates. A semi-stable reduction can be$\cdot$ seen as a
resolution of singularities of a map $f$ : $Xarrow Y$ . Then the crucial point is to compair
two Hodge metrics: the original one and the one after taking a semi-stable reduction. $\square$
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3. PROOF OF THEOREMS

3.1. Quotient metric. We discuss in Set up 2.2.
We denote by $F=R^{q}f_{*}(K_{X/Y}\otimes E)$ which is locally free on $Y$ , and by $r$ the rank of

$F$ . We have a smooth Hermitian metric $g$ defined on $Y\backslash \Delta$ (not on $Y$). Let $Farrow L$

be a quotient line bundle with the kernel $M:0arrow Marrow Farrow Larrow 0$ (exact). We
first describe the quotient metric on $L|_{Y\backslash \Delta}$ . We take a frame $e_{1},$

$\ldots,$
$e_{r}\in H^{0}(Y, F)$ over

$Y$ such that $e_{1},$ $\ldots,$ $e_{r-1}$ generate $M$ . Then the image

$\hat{e}_{r}\in H^{0}(Y, L)$

of $e_{r}$ under $Farrow L$ generates $L$ . We represent the Hodge metric $g$ on $Y\backslash \Delta$ in terms of
this frame as $g_{i\overline{j}}=g(e_{i}, e_{j})\in \mathcal{A}^{0}(Y\backslash \Delta, \mathbb{C})$ . At eacli point $t\in Y\backslash \Delta,$ $(g_{i\overline{j}}(t))_{t\leq ij\leq r})$ is a
positive definite Hermitian matrix, in particular, $(g_{i\overline{j}}(t))_{1\leq i,j\leq r-1}$ is also positive definite.
We let $(g^{\overline{i}j}(t))_{1\leq i,j\leq 7’-1}$ be the inverse matrix. Then the pointwise orthogonal projection
of $e_{r}$ to $(M|_{Y\backslash \Delta})^{\perp}$ with respect to $g$ is given by

$P(e_{r})=e_{r}- \sum_{i=1}^{r-1}\sum_{j=1}^{r-1}e_{i}g^{\overline{i}j}g_{j\overline{r}}\in A^{0}(Y\backslash \Delta, F)$ .

, We have in fact $P(e_{r})-e_{r}\in A^{0}(Y\backslash \Delta, M)$ and $g(P(e_{r}), s)=0$ for any $s\in A^{0}(Y\backslash \Delta, M)$ .
Then the quotient metric on $L|_{Y\backslash \Delta}$ is defined by

$g_{L}^{O}(\hat{e}_{r}, \hat{e}_{r})=g(P(e_{r}), P(e_{r}))$

on $Y\backslash \Delta$ .
It is well-known after Griffiths that the curvature does not decrease by a quotient.

In our setting, the Nakano semi-positivity of $(F|_{Y\backslash \triangle}, g)$ [MT2, 1.1], or even weaker the
Griffiths semi-positivity implies that $(L|_{Y\backslash \Delta}, g_{L}^{o})$ is semi-positive. In particular if we write
$g_{L}^{o}(\hat{e_{r}},\hat{e_{r}})=e^{-\varphi}$ with $\varphi\in A^{0}(Y\backslash \Delta, \mathbb{R})$ , this $\varphi$ is plurisubharmonic on $Y\backslash \Delta$ . If we can
show $\varphi$ is extended as a plurisubharmonic function on $Y$ , then $g_{L}^{o}$ extends as a singular
Hermitian metric on $L$ over $Y$ with semi-positive curvature. By virtue of Riemann type
extension for plurisubharmonic functions, it is enough to show that $\varphi$ is bounded from
above (i.e., $g_{L}^{O}(\hat{e}_{r},\hat{e}_{r})$ is bounded from below by a positive constant) around every point
$y\in\Delta$ . In the next two subsections, we shall prove the following

Lemma 3.1. In Set up 2.2 and the notations above, assume further that $\dim Y=1$ , or
that $f$ has reduced fibers. Let $y\in\Delta$ . Then there exists a neighbourhood $Y’$ of $y\in Y$ and
a positive number $N$ such that $g_{L}^{o}(\hat{e}_{r}, \hat{e}_{r})(t)\geq N$ for any $t\in Y^{l}\backslash \Delta$ .

Corollary 3.2. Theorem 1.5 and Theorem 1.6 hold true.
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We introduce the following notations for the following arguments. For $s=(s_{1}, \ldots, s_{r})\in$

$\mathbb{C}^{r}$ . we let $u_{s}= \sum_{\iota=1}^{r}s_{i}e_{i}\in H^{0}(Y, F)$ . We note that $u_{s}$ is nowhere vanishing on $Y$ as
soon as $s\neq 0$ . We also note that, with respect to the standard topology of $\mathbb{C}^{r}$ and
the topology of uniform convergence on compact sets for $H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ , the map
$\mathbb{C}^{r}arrow H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ given by $s- \rangle u_{s}\mapsto*\circ \mathcal{H}(u_{s})=\sum_{i=1}^{r}s_{i}(*\circ \mathcal{H}(e_{i}))$, is
continuous. Let $S^{2r-1}= \{s\in \mathbb{C}^{r};|s|=(\sum|s_{i}|^{2})^{1/2}=1\}$ .

3.2. Over curves. We shall prove Theorem 1.5 by showing Lemma 3.1 in this case. It
is enough to consider in Set up 2.2 with $\dim Y=1$ . In particular $Y=\{t\in \mathbb{C};|t|<1\}$ a
unit disc, and $\Delta=0\in Y$ the origin. We will use both $\Delta\subset Y$ and $t=0\in Y$ to compair
our argument here with a general case. Let $F=R^{q}f_{*}(K_{X/Y}\otimes E)arrow L$ be a quotient
line bundle, and use the same notation in \S 3.1, in particular we have a frame $e_{1},$ $\ldots,$

$e_{r}\in$

$H^{0}(Y, F),$ $\hat{e}_{r}\in H^{0}(Y, L)$ generates $L$ and so on. We use $u_{s}= \sum_{i=1}^{r}s_{i}e_{i}\in H^{0}(Y, F)$ for
$s=(s_{1}, \ldots, s_{r})\in \mathbb{C}^{r}$ . The key is to obtain the following uniform bound.

Lemma 3.3. (cf. [Ft, 1.11].) In Set up 2.2 with $\dim Y=1$ and the notation above, let
$s_{0}\in S^{2r-1}$ . Then there $e$ czst a neighbourhood $S(s_{0})$ of $s_{0}$ in $S^{2r-1}$ , a neighbourhood $Y’$

of $0\in Y$ and a positive number $N$ such that $g(u_{S}, u_{8})(t)\geq N$ for any $s\in S(s_{0})$ and any
$t\in Y’\backslash \Delta$ .

Proof. We denote by $f^{*} \Delta=\sum b_{i}B_{i}$ .
(1) By Proposition 2.5, we have $*\circ \mathcal{H}(u_{s_{0}})\in H^{0}(X, \Omega_{X}^{n+1-q}\otimes E)$. This $*\circ \mathcal{H}(u_{s_{0}})$ does not

vanish at $t=0$ as an element of $H^{0}(Y, \mathcal{O}_{Y})$-module $H^{0}(X, \Omega_{X}^{n+1-q}\otimes E)$ . Then there exists
a component $B_{j}$ in $f^{*} \Delta=\sum b_{i}B_{i}$ such that $(*\circ \mathcal{H})(u_{so})$ does not vanish of order greater
than or equal to $b_{j}$ along $B_{j}$ . We take one such $B_{j}$ and denote by $B=B_{j}$ and $b=b_{j}$ .

(2) We take a general point $x_{0}\in B$ so that $x_{0}$ is a smooth point on $(f^{*}\Delta)_{red}=f^{-1}(0)$ ,

and take local coordinates $(U;z=(z_{1}, \ldots, z_{n+1}))$ centered at $x_{0}\in X$ such that $t=f(z)=$
$z_{n+1}^{b}$ on $U$ . Over $U$ , the bundle $E$ is also trivialized. Using the local trivializations on $U$ ,
we have a constant $a>0$ such that (i) $\omega\geq a\omega_{eu}$ on $U$ , where $\omega_{eu}=\sqrt{-1}/2\sum_{i=1}^{n+1}dz_{i}\wedge(\ulcorner z_{i}$,
and (ii) $h\geq aId$ on $U$ as Hemitian matrixes, as in the proof of Proposition 2.7.

(3) Let $s\in S^{2r-1}$ . By Proposition 2.5, we can write as $(*\circ \mathcal{H}(u_{s}))|_{X\backslash f^{-1}(\Delta)}=\sigma_{8}\wedge f^{*}dt$

for some $\sigma_{s}\in \mathcal{A}^{n-q.0}(X\backslash f^{-1}(\Delta), E)$ . We write $\sigma_{s}=\sum_{I\in I_{n-q}}\sigma_{sI}dz_{I}+R_{s}\wedge dz_{n+1}$ on $U\backslash B$ .
Here $I_{n-q}$ is the set of all multi-indexes $1\leq i_{1}<\ldots<i_{n-q}\leq n$ of length $n-q,$ $\sigma_{sI}=$

${}^{t}(\sigma_{sJ,1},$
$\ldots,$

$\sigma_{sI.r(E)})$ with $\sigma_{sI,i}\in H^{0}(U\backslash B, \mathcal{O}_{X})$ , and here $R_{s}\wedge dz_{n+1}\in A^{n-q,0}(U\backslash B, E)$ .
Now

$\sigma_{s}\wedge f^{*}dt=bz_{n+1}^{b-1}(\sum_{I\in I_{n-q}}\sigma_{sI}dz_{I})\wedge dz_{n+1}$

on $U\backslash B$ . Since $\sigma_{s}\wedge f^{*}dt=(*\circ \mathcal{H}(u_{8}))|_{x\backslash f^{-1}}(\Delta)$ and $*\circ \mathcal{H}(u_{s})\in H^{0}(X, \Omega_{X}^{n+1-q}\otimes E)$ , all
$z_{n+1}^{b-1}\sigma_{sI}$ can be extended holomorphically on $U$ .
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At the point $s_{0}\in S^{2r-1}$ , by the non-vanishing property of $*\circ \mathcal{H}(u_{s0})$ along $bB$ , we
have at least one $\sigma_{s_{0}J_{0},i_{0}}\in H^{0}(U\backslash B.\mathcal{O}_{X})$ whose divisor is $div(\sigma_{s0J_{0},i_{0}})=-p_{0}B|_{U}$ with
some integer $0\leq p_{0}\leq b-1$ (being $x_{0}\in B|_{U}$ general, and $U$ sufficiently small). Here
we us$ed\dim Y=1$ . We take such $J_{0}\in I_{n-q}$ and $i_{0}\in\{1, \ldots, r(E)\}$ . By the continuity
of $s\mapsto u_{s}\mapsto*\circ \mathcal{H}(u_{s})$ , we can take the same $J_{0}$ and $i_{0}$ for any $s\in S^{2r-1}$ near $s_{0}$ , so
that $div(\sigma_{sJ_{0},i_{0}})=-p(s)B|_{U}$ with the order $p(s)$ satisfies $0\leq p(s)\leq p_{0}=p(s_{0})$ for any
$s\in S^{2r-1}$ near $s_{0}$ .

(4) By the continuity of $s\mapsto u_{s}\mapsto*\circ \mathcal{H}(u_{s})$ , we can take an $\epsilon$-polydisc neighbourhood
$U(x_{0}, \epsilon)=\{z=(z_{1},$

$\ldots,$
$z_{n+1})\in U;|z_{i}-z_{i}(x_{0})|<\epsilon$ for any $1\leq i\leq n+1\}$ for some $\epsilon>0$ ,

and a neighbourhood $S(s_{0})$ of $s_{0}$ in $S^{2r-1}$ such that $A$ $:= \inf\{|\sigma_{sJ_{0},i_{0}}(z)|;s\in S(s_{0}),$ $z\in$

$U(x_{0}, \epsilon)\backslash B\}>0$ . We should note that $\sigma_{sJ_{0},i_{0}}$ may have a pole along $B$ , but no zeros on
$U(x_{0_{\}}\epsilon)$ . We set $Y’$ $:=f(U(x_{0}, \epsilon))$ which is an open neighbourhood of $0\in Y$ , since $f$ is
flat. Then for any $s\in S(s_{0})$ and any $t\in Y’\backslash \Delta$ , we have $g(u_{s}, u_{s})(t)\geq a^{q+1}A^{2}(\pi\epsilon^{2})^{n}$ as
in Proposition 2.7. $\square$

Lemma 3.4. (cf. [Ft, 1.12].) There exist a neighbourhood $Y’$ of $0\in Y$ and a positive
number $N$ such that $g(u_{s}, u_{s})(t)\geq N$ for any $s\in S^{2r-1}$ and any $t\in Y’\backslash \Delta$ .

Proof. Since $S^{2r-1}$ is compact, this is clear from Lemma 3.3. $\square$

Lemma 3.5. (cf. [Ft, 1.13].) There exists a neighbourhood $Y’$ of $0\in Y$ and a positive
number $N$ such that $g_{L}^{o}(\hat{e}_{r},\hat{e}_{r})(t)\geq N$ for any $t\in Y^{l}\backslash \Delta$ .

Proof. We take a neighbourhood $Y’$ of $0\in Y$ and a positive number $N$ in Lemma 3.4.
We may assume $Y’$ is relatively compact in $Y$ . We put $s_{i}=- \sum_{j=1}^{r-1}g^{\overline{i}j}g_{j\overline{r}}\in A^{0}(Y\backslash \Delta, \mathbb{C})$

for $1\leq i\leq r-1$ , and $s_{r}=1$ . Then $P(e_{r})= \sum_{i=1}^{r}s_{i}e_{i}$ on $Y\backslash \Delta$ . For every $t\in Y‘\backslash \Delta$ , we
have $s=(s_{1}, s_{2}, \ldots, s_{r})\in \mathbb{C}^{r}\backslash \{0\}$ , and $s(t)/|s(t)|\in S^{2r-1}$ . Then for any $t\in Y‘\backslash \Delta$ , we
have $g_{\mathring{L}}(\hat{e}_{r}, \hat{e}_{r})(t)=g(u_{s(t)}, u_{s(t)})(t)=|s(t)|^{2}g(u_{s(t)/|s(t)|}, u_{s(t)/|s(t)|})(t)\geq N$ , since $s/|s|\in$

$S^{2r-1}$ . $\square$

3.3. Fiber reduced. We shall prove Theorem 1.6 by the same strategy in the previous
subsection. By Lemma 2.1 we may assume the set $Z$ in Theorem 1.6 is empty. It is
enough to consider in Set up 2.2 with $f^{*} \Delta=\sum B_{i}$ . Let $F=R^{q}f_{*}(K_{X/Y}\otimes E)arrow L$ be
a quotient line bundle, and use the same notation in \S 3.1, in particular we have a frame
$e_{1},$ $\ldots,$

$e_{r}\in H^{0}(Y, F),$ $\hat{e}_{r}\in H^{0}(Y, L)$ generates $L$ and so on. We use $u_{s}= \sum_{i=1}^{r}s_{i}e_{i}\in$

$H^{0}(Y, F)$ for $s=(s_{1}, \ldots , s_{r})\in \mathbb{C}^{r}$ . As we observed in the previous subsection, it is
enough to show the following
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Lemma 3.6. (cf. [Ft. 1.11].) In Set up 2.2 and the notation above, let $s_{0}\in S^{2r-1}$ .
Then there exist a neighbourhood $S(s_{0})$ of $s_{0}$ in $S^{2r-1}$ , a neighbourhood $Y$‘ of $0\in Y$ and
a positive number $N$ such that $g(u_{s\rangle}u_{S})(t)\geq N$ for any $s\in S(s_{0})$ and any $t\in Y’\backslash \Delta$ .

Proof. (1) By Proposition 2.5, we have $*\circ \mathcal{H}(u_{so})\in H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$. This $*\circ \mathcal{H}(u_{so})$

does not vanish at $t=0$ as an element of $H^{0}(Y, \mathcal{O}_{Y})$-module $H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ . There
exists a component $B_{j}$ in $f^{*} \Delta=\sum B_{i}$ such that $*\circ \mathcal{H}(u_{s_{0}})$ does not vanish identically

along $B_{j}\cap f^{-1}(0)$ . Here we used our assumption in Theorem 1.6 that $f$ has reduced fibers.
In fact, if $*\circ \mathcal{H}(u_{s_{0}})$ does vanish identically along all $B_{i}\cap f^{-1}(0)$ in $f^{*} \Delta=\sum B_{i}$ , then
$*\circ \mathcal{H}(u_{s_{0}})$ vanishes at $t=0$ as an element of $H^{0}(Y, \mathcal{O}_{Y})$-module $H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ , and
leads a contradiction. We take one such $B_{j}$ and denote by $B=B_{j}$ $($with $b=b_{j}=1)$ .

(2) We take a point $x_{0}\in B\cap f^{-1}(0)$ such that $*\circ \mathcal{H}(u_{s_{0}})$ does not vanish at $x_{0}$ , and that
$f^{*}\Delta$ is smooth at $x_{0}$ . We then take local coordinates $(U;z=(z_{1}, \ldots, z_{n+m}))$ centered
at $x_{0}\in X$ such that $t=f(z)=(z_{n+1}, \ldots, z_{n+m-1}, z_{n+m})$ on $U$ . Over $U$ , the bundle $E$

is also trivialized. Using the local trivializations on $U$ , we have a constant $a>0$ such
that (i) $\omega\geq a\omega_{eu}$ on $U$ , where $\omega_{eu}=\sqrt{-1}/2\sum_{i=1}^{n+m}dz_{i}\wedge d\overline{z_{i}}$ , and (ii) $h\geq aId$ on $U$ as
Hemitian matrixes, as in the proof of Proposition 2.7.

(3) Let $s\in S^{2r-1}$ . By Proposition 2.5, we can write as $(*\circ \mathcal{H}(u_{\epsilon}))|_{X\backslash f^{-1}(\Delta)}=\sigma_{s}\wedge f^{*}dt$

for some $\sigma_{s}\in A^{n-q,0}(X\backslash f^{-1}(\Delta), E)$ . We write $\sigma_{s}=\sum_{I\in I_{n-q}}\sigma_{s}’ dz_{I}+R_{s}$ on $U\backslash B$ .
Here $I_{n-q}$ is the set of all multi-indexes 1 $\leq i_{1}<$ . . . $<i_{n-q}\leq n$ of length $n-q$ ,
$\sigma_{sl}={}^{t}(\sigma_{sI,1},$

$\ldots,$
$\sigma_{sI.r(E)})$ with $\sigma_{\epsilon I,i}\in H^{0}(U\backslash B, \mathcal{O}_{X})$ , and here $R_{s}= \sum_{k=1}^{m}R_{sk}\wedge dz_{n+k}\in$

$A^{n-q.0}(U\backslash B, E)$ . Now

$\sigma_{s}\wedge f^{*}dt=(\sum_{I\in I_{n-q}}\sigma_{sI}dz_{I})\wedge dz_{n+1}\wedge\ldots\wedge dz_{n+m}$

on $U\backslash B$ . Since $\sigma_{s}\wedge f^{*}dt=(*\circ \mathcal{H}(u_{s}))|_{X\backslash f^{-1}(\Delta)}$ and $*\circ \mathcal{H}(u_{s})\in H^{0}(X, \Omega_{X}^{n+m-q}\otimes E)$ , all
$\sigma_{sI}$ can be extended holomorphically on $U$ .

At the point $s_{0}\in S^{2r-1}$ , by the non-vanishing property of $*\circ \mathcal{H}(u_{s_{0}})$ at $x_{0}$ , we have at
least one $\sigma_{s_{0}J_{0},i_{0}}\in H^{0}(U\backslash B, \mathcal{O}_{X})$ whose divisor is $div(\sigma_{s_{0}J_{0},i_{0}})=D_{0}$ with some effective
divisor $D_{0}$ on $U$ not containing $x_{0}$ . This is because, if all $\sigma_{s0l,i}$ vanish at $x_{0}$ , we see
$*\circ \mathcal{H}(u_{s_{0}})=\sigma_{s_{0}}\wedge f^{*}dt$ (now on $U$) vanishes at $x_{0}$ , and we have a contradiction. We take
such $J_{0}\in I_{n-q}$ and $i_{0}\in\{1\ldots., r(E)\}$ . By the continuity of $s\mapsto u_{s}\mapsto*\circ \mathcal{H}(u_{s})$ , we
can take the same $J_{0}$ and $i_{0}$ for any $s\in S^{2r-1}$ near $s_{0}$ . By the same token, the divisor
$D(s)$ may depend on $s\in S^{2r-1}$ , but we can keep the condition that $D(s)$ does not contain
$B|_{U}\cap f^{-1}(0)$ if $s\in S^{2r-1}$ is close to $s_{0}$ .

(4) Then by the continuity of $s\mapsto u_{s}\mapsto*\circ \mathcal{H}(u_{\delta})$ , we can take an $\epsilon$-polydisc neighbour-
hood $U(x_{0}, \epsilon)=\{z=(z_{1},$

$\ldots,$
$z_{n+m})\in U;|z_{i}-z_{i}(x_{0})|<\epsilon$ for any $1\leq i\leq n+m\}$ for

some $\epsilon>0$ . and a neighbourhood $S(s_{0})$ of $s_{0}$ in $S^{2r-1}$ such that $A$ $:= \inf\{|\sigma_{sJ_{0},i_{0}}(z)|)s\in$
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$S(s_{0}),$ $z\in U(x_{0}, \epsilon)\backslash B\}>0$ . We set $Y’$ $:=f(U(x_{0}, \epsilon))$ which is an open neighbour-
hood of $0\in Y_{\}}$ since $f$ is flat. Then for any $s\in S(s_{0})$ and any $t\in Y’\backslash \Delta$ , we have
$g(u_{s}, u_{s})(t)\geq a^{q+1}A^{2}(\pi\epsilon^{2})^{n}$ as in Proposition 2.7. $\square$

4. EXAMPLES

Here are some related examples and counter-examples of the positivity of direct image
sheaves, including cases the total space $X$ can be singular. These are due to Wi\’{s}niewski

and H\"oring, and taken from [H\"o].

Our general set up is as follows. We take a vector bundle $E$ of rank $n+2$ over a smooth
projective variety $Y$ . Denote by $p:\mathbb{P}(E)arrow Y$ the natural (smooth) projection. We
take a hypersurface $X$ in $\mathbb{P}(E)$ cut out by a section of $N$ $:=\mathcal{O}_{E}(d)\otimes p^{*}\lambda$ for $d>0$ and
some line bundle $\lambda$ on $Y$ . Denote by $f$ : $Xarrow Y$ the induced (non necessary smooth)
map of relative dimension $n$ . Because $X$ is a divisor, the sheaf $\omega_{P(E)/Y}\otimes N\otimes \mathcal{O}_{X}$ equals
$\omega_{X/Y}$ . We choose a line bundle $L$ $:=\mathcal{O}_{E}(k)\otimes p^{*}\mu$ with $k>0$ and with a line bundle $\mu$ on
$Y$ , and set $L_{X}$ $:=L|_{X}$ the resrtiction on $X$ . We then consider the exact sequence

$0arrow\omega_{\mathbb{P}(E)/Y}\otimes Larrow\omega_{\mathbb{P}(E)/Y}\otimes N\otimes Larrow\omega_{X/Y}\otimes L_{X}arrow 0$.

Note that since $L$ is p-ample, we have $R^{1}p_{*}(\omega_{p(E)/Y}\otimes L)=0$ . We push the sequence
forward by $p$ to get the following exact sequence of sheaves on $Y$ :

$0arrow p_{*}(\omega_{\mathbb{P}(E)/Y}\otimes L)arrow p_{*}(\omega_{\mathbb{P}(E)/Y}\otimes N\otimes L)arrow f_{*}(\omega_{X/Y}\otimes L_{X})arrow 0$ .

Remember that $\omega_{\mathbb{P}(E)/Y}=\mathcal{O}_{E}(-n-2)\otimes p^{*}\det E$ , so that $p_{*}(\omega_{\mathbb{P}(E)/Y}\otimes \mathcal{O}_{E}(k))=0$ for
$k<n+2$ , and that $p_{*}(\omega_{\mathbb{P}(E)/Y}\otimes \mathcal{O}_{E}(k))=S^{k-n-2}E\otimes\det E$ for $k\geq n+2$ .

Example 4.1. ([H\"o, 2. $C].$ ) Choose $Y=\mathbb{P}^{1},$ $E=O_{p}1(-1)^{\oplus 2}\oplus \mathcal{O}_{\mathbb{P}^{1}},$ $N=\mathcal{O}_{E}(2)$ that is
effective and defines $X$ , and $L=\mathcal{O}_{E}(1)\otimes p^{*}\mathcal{O}_{\mathbb{P}^{1}}(1)$ that is semi-positive. The push-forward
sequence reads

$0arrow 0arrow \mathcal{O}_{\mathbb{P}^{1}}(-1)arrow f_{*}(\omega_{X/Y}\otimes L_{X})arrow 0$ .

Hence $f_{*}(\omega_{X/Y}\otimes L_{X})$ is negative. The point is that here, $X$ is not reduced. $\square$

Example 4.2. ([H\"o, 2. $D].$ ) Choose $Y=\mathbb{P}^{1}$ and $E=\mathcal{O}_{\mathbb{P}^{1}}(-1)\oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus 3}$ . Take $N=\mathcal{O}_{E}(4)$

whose generic section defines $X$ . This scheme is a 3-fold smooth outside the l-dimensional
base locus $\mathbb{P}(\mathcal{O}_{\mathbb{P}^{1}}(-1))\subset \mathbb{P}(E)$ , Gorenstein $as$ a divisor, and normal since smooth in
codimension 1. Choose $L=\mathcal{O}_{E}(k)\otimes p^{*0lP^{1}}(k)$ that is semi-positive. The push-forward
sequence shows that for $1\leq k<4,$ $S^{k}E\otimes \mathcal{O}_{p}1(k-1)=f_{*}(\omega_{X/Y}\otimes L_{X})$ is not nef. For
$k\geq 4$ , the push-forward sequence reads

$0arrow S^{k-4}E\otimes \mathcal{O}_{\mathbb{P}^{1}}(k-1)arrow^{\sigma}S^{k}E\otimes \mathcal{O}_{\mathbb{P}^{1}}(k-1)arrow f_{*}(\omega_{X/Y}\otimes L_{X})arrow 0$.

63



Here the rnap $\sigma$ is given by the contraction with the section $s\in H^{0}(\mathbb{P}(E), N)=H^{0}(Y, S^{4}E)$

$=H^{0}(Y_{\backslash }S^{4}\mathcal{O}_{\mathbb{P}^{1}}^{\oplus 3})$ , whereas the quotient $S^{k}E/{\rm Im}(S^{4}\mathcal{O}_{\mathbb{P}^{1}}^{\oplus 3}\otimes S^{k-4}E)$ contains the factor
$\mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus k}$ . Hence $f_{*}(\omega_{X/Y}\otimes L_{X})$ is not weakly positive. The point here is that the
locus of non-rational singularities of $X$ projects onto $Y$ by $f$ : $Xarrow Y$ . 口

Example 4.3. ([H\"o, 2. $A].$ ) Choose $Y$ to be $\pi$ : $Y=\mathbb{P}(F)arrow \mathbb{P}^{3}$ , where $F:=\mathcal{O}_{P^{3}}(2)^{\oplus 2}\oplus$

$\mathcal{O}_{\mathbb{P}^{3}}$ is semi-ample but not ample. Choose $E$ to be $\mathcal{O}_{F}(1)^{\oplus 2}\oplus(\mathcal{O}_{F}(1)\otimes\pi^{*}\mathcal{O}_{\mathbb{P}^{3}}(1))$ .
Wi\’{s}niewski showed that the linear system $|N|$ $:=|\mathcal{O}_{E}(2)\otimes p^{*}\pi^{*}\mathcal{O}_{\mathbb{P}^{3}}(-2)|$ has $a$ smooth
member, that we denote by $X$ . Remark that $L:=\mathcal{O}_{E}(1)$ is semi-positive, but the push-
forward sequence shows that

$\mathcal{O}_{F}(3)\otimes\pi^{*}\mathcal{O}_{\mathbb{P}^{3}}(-1)=f_{*}(\omega_{X/Y}\otimes L_{X})$

is not nef. The point here is that the conic bundle $f$ : $Xarrow Y$ has some non-reduced
fibers. that make the direct image only weakly positive. 口
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