goooboooogn
0 16140 2008 O 53-63 53

The IDR(s) method for solving nonsymmetric systems:
| a performance study for CFD problems.

Martin B. van Gijzen and Peter Sonneveld*

Abstract

The recently proposed method IDR(s) [6] for solving large and sparse nonsymmect-
ric systems of linear equations has proven to be highly efficient for important classes of
applications. This paper presents an performance comparison of IDR(s) with GMRES
[3], Bi-CGSTAB [7] and BiCGstab(£) [4] for representative fluid dynamics test prob-
lems.. The computations are doune with the MATLAB finite elanent program IFISS
(1]. In our computations we only consider a default value of s = 4 for the parameter in
IDR(s). Our experimental results show that IDR(4) is a promising method for solving
the type of incompressible flow problems that we consider in this paper. The mothod
is based on short recurrences and therefore more efficient than GMRES in memory
consumption and computing time if many GMRES-iterations have to be performed.
Furthermore. IDR(4) is competitive or faster than Bi-CGSTAB and BiCGstab(¢) for
all physically relevant examples. '

1 Introduction.

We consider the linear syvstem
Az =b

with A € RV*Y 3 large, sparse and nonsyminetric matrix. In 1980, Sonneveld proposed
the iterative method IDR [8] for solving such systems. IDR has several favorablc fea-
tures: it is simple, uses short recurrences, and computes the exact solution in at most
2N steps (matrix-vector multiplications) in exact arithmetic. Analysis of IDR revealed
a close relation with Bi-CG [2]. It was shown in [8] that the iteration polynomial con-
structed by IDR is the product of the Bi-CG polynomial with another, locally minimizing
polynomial. Sonncveld’s obscrvation that the Bi-CG polynomial could be combined with
another polynomial without matrix-vector multiplications with the transpose AT led to
the development first of CGS [5], and later of Bi-CGSTAB [7].

Over the years, CGS and Bi-CGSTAB have completely overshadowed IDR. This was
unfortunate since, although therc is a clear relation between Bi-CG-type methods and
the original IDR method, the underlying ideas are completely different. This suggests
that by exploiting the differences new methods may be developed. This idea has led to
the development of IDR(s) [6], which is a generalization of the original IDR method.
Bi-CG, CGS, Bi-CGSTAB and their descendants are essentially based on the computation
of two mutually bi-orthogonal bases for the Krylov subspaces K™ (A, ro) and K*(AT, 7).
The IDR family, on the other hand, gencrates residuals that are forced to be in nested sub-
spaces of decreasing dimension. These subspaces are related by G; = (I —w; A} (S NGj-1),

*Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft, »
The Netherlands. E-mail: M.B.vanGijzen, P.SonneveldQtudelft.nl

54

where S is a fixed proper subspace of RY | and the wj;'s are nonzero scalars. It can be shown
[6] that in general the reduction in dimension of G; is the co-dimension s of S. Hence,
after at most N/s dimension reductions G, = {0}, for some m < N/s.

The remainder of this paper is organized as follows. In the following scction, we describe
the IDR(s) algorithm. Section 3 gives a guideline of how to choose the parameter s, and
comparcs the memory requirements and vector operations of IDR(s) with the methods
we will use in the performance study: GMRES [3], Bi-CGSTAB, [7], and BiCGstab(¢)
(4], with € = 2. Section 4 presents the actual comparison. This study is done using
the MATLAB code IFISS [1], a finite element program for fluid dynamics computations.
Section 5 summarizes our findings. '

2 IDR(s)

The residual 7,41 = b — Az, 41 corresponding to the iterate @, after n + 1 iterations is
in Gj4q if _

Tne1 = (I —wjp1A)v, withv, €G;NS.
We may assume, without loss of generality, that the space S ig the left null space of some
N X s matrix P, i.c.:

P=(p,p2 ... Py S=N(FT).

The vector v, is a linear combination of the residuals in G;. In order to be able to update
the solution with the residuals, we express v as linear combination with residual difference
vectors Ar; = 141 — Tt

8
Vp =Ty — Z VAT (1)

The residuals are then computed by

8
Tnt4l = Up — Wj+1A'Un =Tn — E YVilAry—; — wj+1A'Un.-
i=1

Since AAx, = —Ar,, with Az, = Ty41 — Ty, we get the following recursion for the
iterates:

3
Tp+1 = Tp — E YiATp i + Wjt1Vn.
i=1
Having defined the recursion formulae for x,, and r,,, we now explain how to compute the
cocfficients ;. Since v is in S = N (PT), we also have

Py =0. (2)

Combining (1) and (2) yields an s x s linear system which can be solved for the v;’s, so
that we can determine v and r41.

Since G;4+1 C Gj, repeating these calculations will produce new residuals r'ni2, Tn43.- o,
in Gj4+1. Once s+ 1 residuals in Gj43 have heen computed, we can expect the next residual
to be in G_H.g. This process is repeated until 7y, € Gp, = {0} for some n,m. This implics
that the exact solution can be computed in exact arithmetic using _{(3 +1) matrix-vector

<

products. ‘
We may choosc wj4; freely in the calculation of the first residual in G;41. However, the
same value must be used in the calculation of the subsequent residuals in G;41. A suitable

Require: A € RV*N: 24 b e RY; Pe RV**; TOL € (0,1); MAXIT > 0
Ensure: r;, such that ||b — Ax,|| < TOL

{Initialization.}

Calculate rg = b — Axop:

{Apply s minimum norm steps, to build enough vectors in Go}
forn=0tos—1 do ‘
v=Ar, w= (vTr,,,)/(vTv);

Az, = wry,; Ar, = —wv;
Tu+l = Tn + A‘T‘"} Tn+1 = Ty + Am'n;
end for

ARyniy = (Ary--- Arg); AXyi = (Ay - - Axp);

{Building G; spaces, for j =1,2,3,...}
n=s
{Loop over G; spaces}
while ||r,,|| > TOL or n < MAXIT do
{Loop inside G; space}
for k =0to sdo
Solve ¢ from PTAR,c = P'r,
v=r,— AR,c;
if £k =0 then
{ Entering Gj+1}
t= Av; .
w = (tTv)/(tTt);
Ar, = -AR,c — wt;
Az, = ~AX,,c+ wv;
else '
{Subsequent vectors in Gj41}
Az, = —AX,c+ wv,;
Ar, = —AAxy,;
end if
Tn4l =T+ Ary;
Trt1 = Ty + Ay
n=n++1,
ARn = (A"'n—l to Arn—-s);
AX, =(Azp_y--- AZy_g);
end for
Jnd while

Figure 1: The IDR(s) Algorithm.

95

56

choice for wj4y is the value that minimizes the norm of r,43. These ideas lecad to the
IDR(s) algorithm. We present the algorithm in Figure 1.
It can be shown that the most basic variant of our algorithm, IDR(1), is mathematically
cquivalent to Bi-CGSTAB. Higher-order IDR(s) methods are related to the Bi-CGSTAB
genceralization ML(E)BiCGSTAB of Yeung and Chan [9].

3 Practical issues

In this scction we comment on a number of issues and choices that arc of importance in a
practical implementation.

Preconditioning

In the algorithm we did not explicitly include the preconditioning operation. Precondi-
tioning can be included by performing a preconditioned matrix-vector product. In the
cxperiments we use right preconditioning, which means that we actually solve the system

AM 'y =b =M1y,

in which M is the preconditioner. A preconditioned matrix-vector product ¢t = AM™ ‘v
is performed in two steps. First, the preconditioning system Mw = v is solved, and then
the matrix-vector product t = Aw is performed.

Memory requirements and vector operations

The operation count for the main operations to perform a full eycle of s + 1 IDR(s)
itcrations yiclds: (s+ 1) matrix-vector products, $% 4+ s+ 2 inncr products, and 252 + %s +%
veetor updates. We have counted scaling of a vector and a simple addition of two vectors
as half an update each. Apart from storage for the system matrix and the preconditioner,
space is needed for 5 + 3s vectors of length V.

Choice of s and of P

One can expect the number of iterations to decrease if s is chosen larger. However, the
memory requirements and overhead due to vector operations increase and it is clear that
if 5 is chosen too large, the increase in overhead will be morc important than the reduction
in the number of iterations. In order to make an a priori choice for s, it is necessary to
have some heuristic onn how the number of iterations depends on s. We can base such an
heuristic on our knowledge of how the termination at the ezact solution depends on s: in
cxact arithmetic IDR(s) terminates at the exact solution in at most N + N/s iterations
(= matrix-vector multiplications). This means for s = 2 we nced 25% less iterations to
compute the exact solution than for s = 1. For s = 4 we nced 37.5% less, and for large s we
nced about 50% less iterations. From this it is clear that for computing the ezact solution,
it is almost never uscful to chosc a large valuce for s. Of course, this rcasoning is based on
the cxact termination bchavior, in practice the algorithm will converge long before this
theoretical limit. However, in many experiments we have seen a similar dependence on s
for the convergence behaviour. Increasing s from 1 to a modest value like 4 or 8 gives for
most problems a significant reduction, but not much can be gained by choosing s larger.
Since for s = 4 the required number of vector operations and memory requirements ‘are
modest, we choose this value as our default in all the experiments.

57

An other important question is how to choose the matrix P. For reasons of robustness
we take an orthogonalized set of random vectors as columns of P, see [6] for a further
motivation of this choice.

Comparison of overhead with other Krylov methods

In the numerical experiments we will compare the performance of IDR(s) with s = 4, with
the well known Krylov methods full GMRES (3], Bi-CGSTAB (7], and BiCGstab(¢) [4]
with ¢ = 2. The table below gives numbers of inner products (DOT) and vector updates
(AXPY) per matrix-vector product for cach of the methods. Also given is the required
memory space for the vectors needed to carry out the iterative process. The number of

Method DOT AXPY | Memory Requirements

IDR(4) 42 gﬁ 17
Full GMRES | 24t ntl n+3
Bi-CGSTAB | 2 3 7
BiCGstab(2) | 21 32 9

Table 1: Vector operations per matrix-vector product and memory requirements

vector operations and the memory requirements for IDR(4) arc slightly higher than for
Bi-CGSTAB and BiCGstab(2). However, the overhead is modest and fixed. The overhead
for GMRES, on the other hand, grows with the number of iterations. For this method,
the vector operations will eventually dominate the process if many iterations need to be
performed, and also the memory requirements may become too large.

4 Numerical experiments

4.1 IFISS

The numerical experiments that we present in this section have been carried out with
the Finite Element software package IFISS. IFISS is a MATLAB open source package
associate with the book [1] by Howard Elman, David Silvester and Andy Wathen. The
open source code has been developed by Alison Rammage, David Silvester and Howard
Elman, and can be downloaded from the web!. The program can be used to model a
range of incompressible fluid flow problems and provides an ideal testing environment for
iterative solvers and preconditioners. The package has implementations of some of the
most powerful iterative methods, like Bi-CGstab(¢) [4], and GMRES (3], and of many
advanced preconditioners. In the experiments we will focus on the comparison of IDR(4)
with BiCGstab(2), the default variant of of BiCGstab(€) in IFISS, with full GMRES, and
with Bi-CQSTAB. For Bi-CGSTAB we simply usc the mathematically equivalent method
BiCGstab(1).

'http://www.manchester.ac.uk/ifiss and http://www.cs.umd/ elman/ifiss.html

58

4.2 A convection-diffusion problem
4.3 Description of the test problem

The first problem we consider is example 3. 1 3in [1]. Thisis a convection diffusion problem
with zero source term,

—-eViu+w-Vu=0 (2,9) € (-1,1) x (-1,1)

with constant wind w at a 30° angle to the left of the vertical, i.c.

—sing
w = o .
cos g
Dirichlet boundary conditions are imposed on all sides of the domain and are as follows:

u=0 ifr=-1lory=-l,a<0ory=1

and
u=1ify=~1l,2>0o0rxz=1.

The solution solution has a boundary layer near y = 1 and an internal boundary layer
duc to the jump discontinuity at (0,-1). The problem is discretized with squarc bi-lincar
Q1 clements, using a moesh size of h = 277, which yiclds a nonsymmetric lincar system of
65025 equations.

4.4 A motivation example for the default s = 4.

Before we present the actual comparison of IDR(4) with the other methods, we will first
show an example that clearly illustrates why s = 4 is a good default valuc. For this
example we take e = 0.01. We solve the resulting linear systemn with IDR(s), with s = 1,
s = 2,58 =4, and s = 8 The convergence behavior of the different IDR(s) variants is
shown in Figurc 2. The results show that a considerable reduction in number of iterations
is obtained for s = 2 and for s = 4 but only a modest reduction is obtained by taking
s = 8. As a rcsults s = 4 is the optimal valuc with respect to computing time.

4.5 Performance comparison for the convection-diffusion problem

In the next experiments we consider increasingly small values of the diffusion paraineter e,
with values ranging from 1 to 10~*. It is well known that if € is too small with respect to
the mesh size a stabilization procedure like Streamline Upwind Petrov-Gallerkin (SUPQG)
should be applied in order to avoid unwanted numerical oscillations in the solution. We give
the numerical results both for the in practice more relevant stabilized case (if necessary),
and for the unstabilized case to investigate the performance of the iterative methods for
increasingly skew-symmetric systems.

Figurc 3 shows for cach of the four itcrative methods the required number of matrix-
vector products (MATVECS) to solve a system with a given diffusion paramcter € to a
tolerance (= reduction of the residuals norm) of 1076. The solid lines show the results
if no stabilization is used, and the dashed lines for the systems with SUPG stabilization.
Note that for the larger values of ¢ SUPG stabilization is not necessary and therefore not
uscd. No preconditioner is applied in the cxperiments.

Since full GMRES is optimal with respect to the number of MATVECS, this method
always needs the least number of steps. But, as was remarked before, the overhcad in”

59

R Convection—-diffusion problem
10 T T T T L
—IDR()
10° —— IDR(2)
3 —- IDR(4) H
—— IDR(8)

o
=
[~]
2 1
g -qx ,, f,
107} ’J i ?
-3 J\'M'J ' { !
10 °F ¥ 'i i 1
J
107k Uﬁ‘tﬂ 4
j
10°F 3
10‘° n 1 { - 1 1]
0 100 200 300 400 500 600
Number of MATVECS

Figure 2: Convergence history of IDR(s), for different values of s

Convection diffusion problemn

1100 T T T
-O- GMRES
) -0~ BI-CGSTAB
-O- BICGstab(2)
1000 ~O- IDR(4) 1.

700

MATVECS

300 N . 1 A N . ATl o e g e =S T

10° 10" 10

Figure 3: Number of matveecs for GMRES, IDR(4), Bi-CGSTAB and BiCGstah(2) for
different diffusion parameters, solid without SUPG, dashed with SUPG.

vector operations and memory requirements is much larger for this method. IDR(4) and
Bi-CGSTAB do not converge for the strongly nonsymmetric systems, i.e. for small values of
¢ without SUPG stabilization. In these cases the system matrix has complex eigenvalues

60

with large imaginary parts. For such problems the linear minimization steps that arc
used in both IDR(s) and in Bi-CGSTAB do not work well2. BiCGstab(2), however, uscs
(uadratic minimization polynomials that also work well in the strongly nonsymmetric case.
As a result BiCGstab(2) converges in all the cascs. For the physically realistic problems
with SUPG stabilization, however, IDR(4) is always faster then both Bi-CGSTAB and
Bi-CGSTAB(2), and for ¢ = 1 cven much faster then Bi-CGSTAB.

The computing times arc shown in Table 2. The results show that GMRES, although the

Diffusion € GMRES | Bi-CGSTAB | BiCGstab(2) | IDR(4)

1 TT218 47 40 30
0.1 186 30 26 27
0.01 176 27 26 23
0.001 154 n.c. 30 1n.c.
0.0001 473 n.c. 33 n.c.
0.001 (SUPG) 138 28 27 23
0.0001 (SUPG) 137 29 26 23

Table 2: Computing times [s] for solving the convection-diffusion problem

fastest in terms of MATVECS, is much slower in computing time than the other methods.
This is due to the fact that the matrix-vector product (without preconditioning) is cheap
- in this example, and the number of iterations is large. This is an unfavorable situation for
GMRES. IDR(4) is always faster in time than Bi-CGSTAB, and for ¢ = 1 considerably
faster. In this case IDR(4) is also significantly faster than BiCGstab(2). As was remarked
before, BiCGstab(€) is the preferred method for the strongly nonsymmetric problems, in
which cascs neither Bi-CGSTAB nor IDR(4) converges.

5 A Navier-Stokes problem

5.1 Description of the test problem

The sccond example that we consider is a Navier-Stokes problem with zero forcing term.
The example describes flow over a step (see [1], example 7.1.2). The steady-statc Navicr-
Stokes cquations arc given by

~nV2u+u-Vu+ Vp =0,
V-u=0,

where 77 > 0 is a given constant called the kinematic viscosity. The domain is L-shaped.
The - coordinate ranges from -1 to 5. The y-coordinate ranges from 0 to 1 for = between
-1 and 0, and from —1 to 1 clsewhere: there is a step in the domain at z = 0. A Poiscuille
flow profile is imposed on the inflow boundary @ = —1,0 < y < 1 and a zcro velocity
condition on the walls. The Neumann condition

Tor “PT7 oz T

is applied at the outflow boundary # = 5,—1 < y < 1. The problem is discretized with
bi-quadratic Q2 clements for the velocities and bi-linear @ elements for the pressurcs.
The resulting nonlinear system can be solved with Newton’s method, which implies that

} 8’“41: _ v u‘U

2This problem can be overcome by chosing P complez instead of real, see [6].

61

in every iteration a linear system hias to be solved to compute the Newton updates. This
system has the following form:

F BT Au ([f

B O Ap g
Here, the submatrix F is nonsymmetric, and becomes increcasingly nonsymmetric if 7 is
decreased.

As a test problem we consider the lincar system after one Newton iteration. A block-
triangular preconditioner of the form

F BT

O M,

is applied to speed-up the convergence of the iterative methods. Here, M, is an approxima-
tion to the Schur complement § = BF-1BT. The specific preconditioner we have selected
for our experiments is the ideal pressure-convection diffusion preconditioner. Each appli-
cation of this preconditioner requires solving three subsystems: one with F' and two with
the approximate Schur complement M. These systems arc solved with MATLAB’s dircct
sparse solver. ’

The preconditioner described above is quite effective in reducing the number of iterations,
but makes the preconditioned matrix-vector multiplication very expensive. As a result,
the time per iteration is basically determined by the preconditioned matrix-vector multi-
plication, and overhead for vector operations is negligible. This situation is particularly
a.dva.ntagcs for GMRES, since this method gives an optimal reduction of the residual norm
for a given number of iterations (= preconditioned matrix-vector multiplications). This is
the opposite situation that we had for the convection-diffusion test problem, where many
iterations had to be performed to achieve a required tolerance, but where the matrix-vector
niltiplication was a cheap operation.

5.2 Performance comparison for the convection-diffusion problem

In the numerical experiments, we have varied two parameters in the test problem: the step
size h, and the Reynolds number, which is related to the kinematic viscosity by Re = 2/7.
All systems arc solved to a tolerance (= reduction of the residuals norm) of 107%. Tables 3 -
5 give the number of matrix-vector multiplications, and in between brackets the computing
times.

Reynolds number Re || GMRES | Bi-CGSTAB | BiCGstab(2) IDR(4)
10 23 (2.1s) 34 (3.0s) 36 (3.1s) 28 (2.4s)
100 47 (4.25) | 106 (8.9s) 116 (9.7s) | 72 (6.25)
200 76 (6.9s) | 242 (20.9s) | 236 (20.3s) | 120 (10.4s)

Table 3: Matrix-vector multiplications and computing times, h = 273, 1747 equations

The results show, as predicted, that GMRES is the best method for this set of test prob-
lems. We remark, however, that the implementation that we used for the (action of the)
preconditioner uses three direct solves, which is too expensive in a realistic setting. There,
approximations to the direct solves have to be used. This will result in a cheaper, but less
effective preconditioner. In this situation a short-recurrence method like IDR(4) may be
compectitive again, or possibly even be required because of the limited memory consump-
tion.

62

Reynolds number Re || GMRES | Bi-CGSTAB | BiCGstab(2) IDR(4)
10 27 (14.85) | 36 (19.6s) 36 (19.65) | 28 (18.85)
100 50 (26.7s) | 146 (76.7s) | 128 (67.5s) | 87 (45.8s)
200 72 (38.4s) | 365 (196s) 276 (150s) | 140 (73.4s)

Tablc 4: Matrix-vector multiplications and computing times, h = 274, 6659 cquations

Reynolds number Re

GMRES | Bi-CGSTAB | BiCGstab(2) | IDR(4)
10 31 (112s) | 44 (167s) 41 (163s) | 37 (134s)
100 59 (204s) | 214 (736s) | 208 (715s) | 115 (398s)
200 81 (292s) | 398 (1399s) | 420 (1429s) | 209 (705s)

Table 5: Matrix-vector multiplications and computing times, h = 273, 25987 cquations

In comparison with Bi-CGSTAB and BiCGstab(2), IDR(4) is considerable faster, in par-
- ticular for large Reynolds numbers. The difference in solution time for Re = 200 is about
a factor of two for all threc grid sizes.

6 Concluding remarks

We have presented a performance comparison of IDR(s) with full GMRES, Bi-CGSTAB,
and BiCGstab(¢) (with £ = 2) for two classes of fluid dynamics problems. We have
restricted our evaluation to the default value s = 4. Restricting the evaluation to one
default choice for s mimics the way IDR(s) would be used in a practical implementation:
a systcm would be solved once, with a pre-chosen default value.

Our main findings are:

e IDR(4) is for all our test problems faster than Bi-CGSTAB, both in numbers of
MATVECS and in computing times. This difference in time is about a factor of two
for the Navier-Stokes problems with a high Reynolds number.

e IDR(4) is faster than BiCGstab(2) for all test problems for which IDR(4) (and
Bi-CGSTAB) converge. However, for alimost skew-symmetric convection-diffusion
problems IDR(4) and Bi-CGSTAB did not converge. This is due to the fact that
both IDR(4) and Bi-CGSTAB use lincar local minimization polynomials, which do
not work well for matrices with complex cigenvalues with large imaginary parts.
BiCGstab(2) uscs quadratic minimization polynomials, which also work well for
strongly nonsymimnetric matrices. BiCGstab(2) is therefore more robust for such
problems. We remark, however, that the strongly nonsymietric matrices are based
on an unstable discretization of the convection-diffusion problem, and the resulting
solution is non-physical. If a stable discretization is used, IDR{4) converges faster
than BiCGstab(2).

e The preconditioner for the Navier-Stokes problem that we applied is powerful, but
also very costly. As a result, the number of GMRES iterations is limited and over-
head for vector operations is negligible with respect to the cost of the matrix-vector
multiplications. In such a situation, full GMRES is the method of choice as long as
memory consumption is not an issue. If memory consumption becomes too high, one
has to resort to another method. In that case IDR(4) scems to be the best option
of the methods under consideration. For our examples, IDR(4) is significantly faster
than Bi-CGSTAB and BiCGstah(2), in particular for higher Reynolds numbers.

63

We conclude that IDR(s) with s = 4 is a promising method for solving the type of incom-
pressible flow problems that we have considered in this paper. The method is based on
short recurrences and therefore more efficient than GMRES in mernory consumption and
computing time if many GMRES-iterations have to be performed. Furthermore, IDR(4)
is competitive or faster than Bi-CGSTAB and BiCGstab(#) for all physically relevant
cxamples that we have considered.

Acknowledgménts

The authors thank the developers of IFISS for making this code available. Part of this
research has been funded by the Dutch BSIK/BRICKS project.

References

[1] H. ELMAN, D. SILVESTER and A. WATHEN. Finite Elements and Fast Iterative
Solvers with application in incompressible fluid dynamics. Ozford Science Publica-
tions, Oxford University Press, 2005. ‘

[2] R. FLETCHER. Conjugate gradient methods for indefinite systems. Lecture notes in
Mathematics 506, Springer-Verlag, Berlin, Heidelberg, New York, pp. 73-89, 1976.

(3] Y. SaAD and M.H. ScHULTZ. GMRES: A generalized minimum residual algorithm
for solving nonsymmetric linear systems SIAM J. Sci. Statist. Comput., T:856-869,
1986.

[4] G.L.G. SLEuUPEN and D.R. FOKKEMA. BiCGstab(¢) for lincar equations involving
matrices with complex spectrum. ETNA, 1:11-32, 1994.

(5] P. SONNEVELD. CGS: a fast Lanczos-type solver for nonsymmetric lincar systems.
SIAM J. Sci. and Statist. Comput., 10:36-52, 1989.

[6] P. SONNEVELD and M.B. VAN GIJZEN. IDR(s): a family of simple and fast algorithms
for solving large nonsymmetric lincar systems. Technical Report 07-07, Department
of Applied Mathematical Analysis, Delft University of Technology, Delft, The Nether-
lands, 2007.

[7] H.A. vaN DER VORsT. Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of nonsymimetric lincar systems. STAM J. Sci. Comp., 13:631-644,
1992.

(8] P. WESSELING and P. SONNEVELD. Numerical Experiments with a Multiple Grid-
and a Preconditioned Lanczos Typce Method. Lecture Notes in Mathematics 771,
Springer-Verlag, Berlin, Heidelberg, New York, pp. 543-562, 1980.

[9] M-C. YEUNG and T.F. CHAN. ML(k)BiCGSTAB: A BiCGSTAB variant based on
multiple Lanczos starting vectors. SIAM J. Sci. Comput., 21(4):1263-1290, 1999.

