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Abstract

The $rt^{\backslash }t.:c^{1}ntl_{\nu}Y’$ proposed niethod IDR(s) $[()]$ for solviiig large and sparse nonsynimct-
ric $|\backslash _{\sim}\backslash ’\iota;lel$ ns $()\}1iJlCi|_{I}1^{\cdot}$ equatioris $I_{1\dot{c}}\iota s$ proven tu be higlily efficient for important classes of
applications. $r1^{\urcorner}his$ paper presents an performance comparison of IDR$(s\grave{)}$ with $GPt\ddagger Rb^{\gamma}\lrcorner S$

[3], Bi-CGSTAB [7] and BiCGstab(t) $[\cdot Jl]$ for rcprcsentative fluid dynamics test prob-
Icins. Tlie $C^{\cdot}0IIlput_{1}atioris^{1}d$rc $\iota t_{oI1(}\backslash wit\mathfrak{l}1i$ tlic MATLAB finite clcnient program IFISS
[1]. $I_{11}$ our computations we only considcr a default value of $\backslash \cdot=4$ for the parainctcr in
IDR $(s)$ . Our experimental $res$ ults show that IDR(4) is a promising method for solving
the $typ($ of $i$ncoinpressiblc flow $P^{1}o1,1_{1^{\backslash }},\iota n\dot{b}$ that wc $\iota^{\backslash }.ousider$ iii this paper. The method
is $b_{\dot{c}b}ed$ on short recurrences alld therefore more efficient than GMRES in mcniory
consumption and coinputing time if many GMRES-iterations $hav$(1 to $\}$) $(\backslash$ performcd.
$I^{\prec^{\urcorner}}tlrt1\iota c^{1}rn\iota t1(\}$ . IDR(4) is compctitive or faster than Bi-CGSTAB and BiCGstab$(P)$ for
all physicttlly relcvant examples.

1 Introduction.
We consider the linear s,vstem

$Ax=b$

with $A\in \mathbb{R}^{NxN}$ a large, sparsc and nonsymrnctric matrix. In $1^{(}J80$ , Sonneveld propo,$\dot{s}^{\backslash }ed$

thc iterative iiicthod IDR [8] for solving such svstcms. IDR h&$\backslash \urcorner$ several favorablc fea-
$t$ urcs: it is siinple. uses short recurrences, and coinputes the exext solution in at most
$2N$ steps (uiatrix-vcctor multiplications) in exact arithinetic. Analysis of IDR revealcd
$d$ close rclation with Bi-CG [2]. It was shown in [8] that the iteration polvnoiiiial $t\dot{\cdot}O11-$

$\backslash \cdot t_{1}\cdot nct\iota^{1}d$ by IDR is the product of the Bi-CG polyiiomial with aiiother, $10C_{C}’t11y$ minimizing
$])o1_{J^{r}}nolIti_{\dot{C}}^{:}t1$ . Sonncvcld’s obscrvation that the Bi-CG polyiiomial could bc coinbincd with
anothcr polynomial without matrix-vcctor multiplications with thc transposc $A^{T}$ lccl to
$t1_{1}\iota\cdot!dc^{x}v(!.1op\iota nC^{\backslash }Ilt$ first of CGS [5], and later of Bi-CGSTAB [7].
Over the years, CGS and Bi-CGSTAB have completcly oversha$(lowed$ IDR. This was
unfortunatc sincc, alfhough there is a clear rclatioii betwecn Bi-CG-type mcthods and
the original IDR incthod, the underlying ideas arc complctely different. Tliis suggests
$that|1)y$ exploiting the $diffC^{1}1^{\cdot}\text{く^{}1}.n((,\backslash$ new $\ln(\backslash ,tho(ls$ may bo developcd. This idea ha.$s$ led to
t,he dcvclopmcnt of IDR(s) [6], which is a generalization of thc original IDR method.
Bi-CG, CGS, Bi-CGSTAB and their dcsccndants $a1^{\cdot}C$ esscntially based on the computation
of two mutuallv bi-orthogonal bases for the Krylov subspaces $\mathcal{K}^{\Upsilon l}(A,$ $ro)$ and $\mathcal{K}’{}^{t}(A^{T},$ $\cdot\tilde{r\cdot}0)$ .
Tlic IDR falnily. on the other hand. gcneratos $rt^{\backslash }\dot{\mathfrak{d}}$ idu’a$1_{\iota\backslash }t^{\sim}$’ that are forced to bc in nestcd sub-
spaccs of decreasing dimension. These subspaces are relatcd by $\mathcal{G}_{j}=(I-\omega jA)(S\cap \mathcal{G}_{j-1})$ ,
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wltere $S$ is a fixed proper sul) $sp_{\epsilon\prime}\iota(c^{\iota}$ of $\mathbb{R}^{N}$ , and the $\omega_{j}s$ axe nonzero $sc_{\dot{\overline{\mathfrak{c}}}}\iota 1ars$ . It CBJI be shown
[6] tliat in gcneral thc rcduction in diinension of $\mathcal{G}_{j}$ is the $c\mathfrak{c}\succ diinensions$ of $S$ . Hencc,
after at most $N/s$ diniension reductions $\mathcal{G}_{nl}=\{0\}$ , for soine $\gamma$ } $(\leq N/s$ .
Tlic rcmaindcr of this paper is organizcd as follows. In $t1_{1}e$ following section, wc describe
the IDR(s) algorithn$l$ . Section 3 gives a guideline of how to choosc the paramctcr $s$ , and
coinparcs thc iucmory rcquiremciits and vcctor operations of IDR$(s)$ with thc methods
wc will use in tlic perforiuancc study: GMRES [3]. Bi-CGSTAB, [7], arid BiCGstab(C)
[4]. with $\theta=2$ . Section 4 presents thc actual comparison. This study is done using
the MATLAB code IFISS [1], a finite element program for fluid dynainics computations.
Section 5 summarizes our findings.

2 IDR$(s)$

The rcsidual $r_{r\iota+1}=b-Ax_{r\iota+1}$ corrcsponding to thc iteratc $X_{?l+1}$ aftcr $77+1$ itcrations is
$i_{11}\mathcal{G}_{j+1}$ if

$r_{r\iota+1}=(I-\omega_{j+1}A)v_{\iota}$ with $v_{n}\in \mathcal{G}_{j}\cap S$ .

We mav assume, without loss of generality, that the space $Sis^{r}$ thc left null spacc of some
$Nxs$ matrix $P$, i.e.:

$P=(p_{1}p_{2}\ldots p_{s})$ , $S=\mathcal{N}(P^{T})$ .

Tbc vector $v_{n}$ is a linear couibination of the residuals in $\mathcal{G}_{j}$ . In order to be able to update
the solution with tlie residuals, wc expresg $v$ as linoar combinatioi] with residual difference
vectors $\Delta r_{j}=r_{i+1}-r_{i}$ :

$v_{n}=r_{\eta}- \sum_{=j1}^{\delta}\gamma i\Delta r_{n-i}$ (1)

The residuals arc then computed by

$r_{7l+\perp}=v_{7l}- \omega j+1Av_{n}=r_{n}-\sum_{i=1}^{it}\gamma i\Delta r_{n-i}-\omega_{j+1}Av_{n}$ .

Sincc $A\Delta x_{\iota}=-\Delta r_{t},$ $wit_{1}h\Delta x_{[}=x_{?\iota+1}-x_{7l}$ , we gct the following recursion for the
iterates:

$x_{n+1}=x_{n}- \sum_{i=1}^{9}\gamma i\Delta x_{n-i}+\omega_{J+1}v_{11}$ .

Having defined the recursion formulae for $x_{\tau}$ , and $r_{ll},$ , we $ni$)$W$ explain how to compute the
coefficients $\gamma^{_{i}}$ . Since $v$ is in $S=\mathcal{N}(P^{T})$ , we also have

$P^{I^{\tau}}v=0$ . (2)

Combiming (1) and (2) yiclds ari $s\cross t$ lincar $s\}^{r}stcm$ which can be solved for thc $\gamma j^{S}$ . so
tliat we can determine $v$ and $r_{r\{+1}$ .
Sincc $\mathcal{G}_{j+l}\subset \mathcal{G}_{j}$ , rcpeating these calculations will produce ncw rcsiduals $r_{n+2}sr_{n+\backslash l},$ $\cdots$ ,

in $\mathcal{G}_{J+1}$ . Once $s+1$ residuals in $\mathcal{G}_{j+1}$ have been computed, we can expect the next residual
to be in $\mathcal{G}_{j+2}$ . This proccss is repeated until $r_{f},,$ $\in \mathcal{G}_{n\iota}=\{0\}$ for soiiie $n,$ $rr\iota$ . This implies

that the cxact solution can bc computed in exact $ai\cdot ithmctic$ using $\frac{N}{s}(s+1)$ matrix-vectOr
products.
XVc may choose $\omega_{i+1}$ freely in the calculation of the first residual in $\mathcal{G}_{j+1}$ . Howevcr, thc
saine value inust be used ill thc calculation of the $sul$)$scqueilt$ residuals in $\mathcal{G}_{j+1}$ . A suitable
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Require: $A\in \mathbb{R}^{NxN}:x_{0},$ $b\in \mathbb{R}^{N};P\in \mathbb{R}^{Nxs}$ ; $TOL\in(O, 1)_{\}\cdot\Lambda IAXIT>0$

Ensure $:?_{r\iota}$ sucli that $\Vert b-A_{l_{71}\Vert}\leq TOL$

$\{Ir\iota?tiali\approx aiion.\}$

Calculate $r_{0}=b-Ax_{0}$ ;

{Apply $s$ minimum $no\gamma\eta i$ steps, to $f$,uild enough $ve$.ctors in $\mathcal{G}_{0}$ }
for $n=0$ to $s-1$ do

$\eta\{)=Ar_{?t}:\omega=(v^{T}r_{7l})/(v^{T}v)_{1}$.
$\Delta x_{\Gamma 1}=\omega r_{r\iota};\Delta r_{r\{}$. $=-\omega v$ ;
$r_{?\iota+1}=r_{n}+\Delta r_{71};x_{n+1}=x_{71}+\Delta x_{n}:$,

end for
A$R_{n+1}=(\Delta r_{?1}\cdots\Delta r_{0}):\Delta X_{n+1}=(\Delta x_{n}\cdots\Delta x_{0}):$,

{Bnildinq $\mathcal{G}_{j}$ spaces, for $j=1,2_{\}3,$ $\ldots$ }
$n=s$
$\{$ Loop oiier $\mathcal{G}_{j}$ spaces}
while $\Vert r_{n}$ lI $>TOL$ or $?l\cdot<AfAX$ IT do

{Loop inside $\mathcal{G}_{j}$ space}
for $k=0tos$ do

Solve $c$ from $P^{T}\Delta R_{r\downarrow}c=P^{T}r_{71}$

$v=r_{tl}-\Delta R_{\gamma},c$;
if $k=0$ then

{En tering $\mathcal{G}_{j+1}$ }
$t=Av$ ;
$\omega=(t^{T}v)/(t^{T}t)$ ;
$\Delta r_{r\iota}=-\Delta R_{r\iota}c-\omega t$ ;
$\Delta x_{\iota}=-\Delta X_{r\iota}c+\omega v$ :

else
{Subsequent vectors in $\mathcal{G}_{j+1}$ }
$\Delta x_{n}=-\Delta X_{7k}c+ivv$ ;
$\Delta r_{7l},$ $=-A\Delta x_{n\}$.

end if
$r_{r\downarrow+1}=r_{n}+\Delta r_{rt}$ ;
$x_{z\iota+1}=x_{71}+\triangle x_{n}$ ;
$n=n+1$ ;
$\Delta R_{n}=(\Delta r_{\iota-1}\cdots\Delta r_{r1.-s})$ ;
$\Delta X_{n}=(\Delta_{X_{?1}-1}\cdots\Delta x_{\iota-s})$ ;

end for
end while

Figure 1: Tllc IDR.$(s)$ Algorithm.
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$(^{\prime 11oice}$ for $\omega_{j+1}$ is the valuc that ininiinizes tlie norm of $r_{r1+1}$ . $Tlies(1$ ideas lead to tho
IDR $(\backslash \cdot)\prime c\tau lgoritlllll$ . XVe present the algorithin in Figure 1.
It $c_{\dot{\mathfrak{c}}})n$ be shown tbat the inost basic variant of our algorithm, IDR(I), is mathcinatically
$(^{)}(l$ uivalcnt to Bi-CGSTAB. $Higl_{lC1}$.-order IDR $(s)$ iiiethods are related to the Bi-CGSTAB
generalization ML(k)BiCGSTAB of Ycung and Chan [9].

3 Practical issues

In this section we cominent on a nuinber of issues and choiccs that arc of importancc in a
$1)ractical$ impleinentation.

Preconditioning

In thc algorithm we did not explicitly include thc prcconditioning operation. Prccoiidi-
tiouing can bc included by performing a preconditioned matrix-vector product. In thc
expcrimcnts wc usc right preconditioning, which mcans that wc actually solve thc systcm

$AM^{-1}y=b$ $x=M^{-1}y$ ,

in which $M$ is the preconditioner. A preconditioned inatrix-vector product $t=AM^{-1}v$

is performcd in two steps. First, the prcconditioniIlg system $Mw=v$ is solvcd, and then
tbe iiiatrix-vectOr product $t=Aw$ is performcd.

Memory requirements and vector operations

The opcration count for the main operations to perform a full cyclc of $s+1IDR(s)$
iterations yields: $(s+1)$ matrix-vector products, $s^{2}+s+2$ inner products, and $2s^{2}+\overline{\frac{l}{2}}s+\underline{\frac{5}{)}}$

vcctor updatcs. We have counted scaling of a vector and a siinple addition of two vectors
as half an update each. Apart fiom storage for the system matrix and the preconditioner,
space is needed for $5+3s$ vectors of length $N$ .

Choice of $s$ and of $P$

One can expect the number of iterations to dccrease if $s$ is chosen larger. Howevcr, the
niemorv requirenicnts and overhead due to vector operations increase and it is clear that
if $s$ is chosen too large, the incrcasc in overhead will be morc $inipoi\cdot tant$ than the reduction
in the number of itcrations. In order to make an a priori choice for $s$ , it is nccessary to
havc soine heuristic $011$ how thc nuinber of itcrations dcpends on $s$ . Wc can ba.se such au
heuristic on our knowledge of how thc termination at the exact solution dcpcnds on $s$ : in
exact arithmctic IDR$(s)$ terininatcs at thc exact solution in at most $N+N/s$ iterations
( $=$ inatrix-vcctor multiplications). This incans for $s=2$ we need $257_{(}$ less iterations to
conipute the $\iota^{\tau}xa\kappa:t$ solution thaii for $s=1$ . For $s=4$ wc nced $37.5^{0\gamma_{0}}$ less, and for large $s$ wc
need about 50% less iterations. From this it is clcar that for computing the exact solution,
it is almost ncvcr uscful to cliosc a large value for $s$ . Of coursc, this rcasoiung is based on
the exact termination behaviort in practice the algorithm will converge long beforc this
theoretical liinit. However, in many experiments we have seen a similar dependence $O118$

for the eonvergencc behaviour. Increasing $s$ froin 1 to a niodest value like 4 or 8 gives for
most problems a significant reduction, but not much can bc gained by choosing $s$ larger.
Since for $s=4$ thc rcqi.iircd number of vector operations aaid memorv requiremcnts‘are
modest, we choose this valuc as our dcfault in all thc experiments.
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An other irnportant $(1^{uestion}$ is how to choose the inatrix $P$, For reasons of robustness
wc take au ortllogonalized set of randoni $vcctoi\cdot|s$ as colunins of $P$, see [6] for a further
motivation of this choicc.

Comparison of overhead with other Krylov methods

In thc numcrical experiments we will compare thc performance of IDR$(s)$ with $s=4$ . with
the well known Krylov methods full GMRES [3], Bi-CGSTAB [7], aiid BiCGstab $(\ell^{})[4]$

with $l$
) $=2$ . The table below givcs nnmbers of inner products (DOT) and vcctor upd$(1_{1te,s}$

(AXPY) per matrix-vector product for eaclx of thc methods. Also given is thc rcquirccl
ineiiiory space for the vcctors ncc(led to carry out thc iterativo process. Thc nunibcr of

Table 1: Vector operations per matrix-vcctor product and iiieniory requireincnts

vector operations and the meniory requircnicnts for IDR(4) are slightly higher tha, $\iota$ for
Bi-CGSTAB aild BiCGstab(2). Howcver, the ovcrhcad is inodcst and fixed. The overhead
for GMRES, on the other hand. grows with the number of iterations. For this method,

the vcctor operations will eventually $d_{on1}in_{\dot{t}^{i}}tte$ the process if many itcrations need to be
pcrformcd, and also the memory requirenients may become too large.

4 Numerical experiments

4.1 IFISS

The numerical expcriments that we present in this section have been carried out with
the Finite Element software packagc IFISS. IFISS is a MATLAB open source package

associate with the book [1] by Howard Elman, David Silvestcr and Andy Wathcn. The
open source code has been developed by Alison Rammage, David Silvcstcr and Howard
Elnian, and can be downloaded froin thc webl. The program cari be uscd t,o niodel a
range of incouipressible fluid flow problems and provides an ideal testing cnvironinent for
iterative solvers and preconditioners. Thc paclage has implenientations of sonic of thc
most powerful iterativc inethods, like Bi-CGstab $(\ell)[4]$ . and GIt’ RES [3], and of m\v{c}mv

advanccd prcconditioncrs. In thc expcrimcnts we will focus $ol1$ thc coniparison of IDR(4)

with BiCGstab(2), tlie default variant of of BiCGstab(P) in IFISS, with full GMRES. and
with Bi-CGSTAB. For Bi-CGSTAB wc simply use the mathematically equivalent nicthod
BiCGstab(l).

$\overline{1}$http: $//www.manchester.ac.uk/ifiss$ and http: $//www$ . cs. umd/ elman/if iss. html
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4.2 A convection-diffusion problem

4.3 Description of the test problem

The first problcm we consider is Cxrimple 3.1.3 in [1]. This is a convoction diffusion problem
with zcro sourcc term,

$-\epsilon\nabla^{2}c\iota+w\cdot\nabla u=0$ $(x,y)\in(-1,1)\cross(-1,1)$

with constant wind $w$ at a $30^{o}$ angle to thc $1eft_{1}$ of thc vcrtical, i.c.

$w=(\begin{array}{l}-si_{11}\frac{\pi}{6}cos\frac{\pi}{6}\end{array})$

Dirichlet boundary conclitions are imposed on all sides of thc domain aild are as follows:

$u=0$ if $x=-\cdots 1$ or $y=-1,$ $.\iota:<0$ or $y=1$

and
$tl=1$ if $\prime y=-1,$ $.\downarrow:\geq 0$ or $x=1$ .

The solution solution has a bonndaiy layer neai$\cdot$ $y=1$ and an $iiitc^{1}rna1$ boundarv layer
due to the.$|uinp$ discontinuity at (0,-1). The problein is discrctized with square bi-lincar
Ql clcinents. using a mesh size of $l\iota=2^{-7}$ . which yiclds a nonsyinmctric linear system of
65025 equations.

4.4 A motivation example for the default $s=4$ .
Before we prcscnt the actual comparison of IDR(4) with the other methods, we will first
show all example that clearly illustrates why $s=4$ is a good dcfa.ult valuc. For tlris
cxample we $tal\sigma e\epsilon=0.01$ . We solvc the resulting linear systcm with IDR$(s)$ , with $s=1$ ,
$s=2,$ $s=4$, and $s=8$ . The convergence behavior of the different IDR$(s)$ variants is
shovvii in Figure 2. The results show that a coiisidcrable reduction in numbcr of $itcratio1_{b}$

is ol)tained for $s=2$ and for $s=4$ but only a modest reduction is obtained by tal\’iing
$s=8$. As a rcsults $s=4$ is thc optimal valuc with respeet to coiiiputing tinic.

4.5 Performance comparison for the convection-diffusion problem

Iu the ncxt expcrimcnts wc considcr increasingly small values of the diffusion paraineter $\epsilon$ ,
with values ranging froni 1 to $10^{-4}$ . It is well known that if $\epsilon$ is too small with rcspect to
the mcsh sizc a stabilization proccdure like Streamlinc Upwind Pctrov-Gallerkin (SUPG)
$hould be applied in order to avoid unwaiitcd numerical oscillations in the solution. We give
the numerical rcsults both for the in practice more relevant stabilized ca.sc (if neccssary),
and for the unstabilized $ca\epsilon e$ to investigate tbe pcrformance of $t1_{1}e$ iterative inethods for
$inc:rc\xi k\backslash$ingly skcw-syinmetric systems.
Figure 3 $b^{\backslash }hows$ for each of the four iterativc mcthods the rcquircd number of matrix-
vector products ( $\wedge\backslash$ IATVECS) to solve a system with a given diffusion paraineter $\epsilon$ to a
tolerance ( $=$ reduction of tbe residuals norm) of $10^{-}6$ . The solid lines show the results
if no stabilization is used, and the dashed lines for the systems with SUPG stabilization.
Note that for the largcr values of $\epsilon$ SUPG stabilization is not necessary and therefore iiot
uscd. No prcconditioncr is applied in tbe experiments.
Since full GMRES is optimal with respect to thc number of MATVECS. this method
$\epsilon\backslash lwa\backslash ys$ needs the least numiber of steps But. as wa.$s$ remarkcd before, the overhead in
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Figure 2: Convergence history of IDR$(s),$ $fo1^{\cdot}$ different values of $s$

Figurc 3: Number of matvees for GMRES, IDR(4). Bi-CGSTAB and BiCGstab(2) for
different diffusion paraineters, solid without SUPG, dashed with SUPG.

vector operations and memory requiremcnts is much larger for this $1llethod$ . IDR(4) a.nd
Bi-CGSTAB do not converge for the $st$,rongly nonsymmctric systems, i.e. for small vali.ies of
$C$ without SUPG stabilization. In these cases tlic s.ystcm matrix has complex eigcnvalues
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svith largc $i_{In_{\dot{r}1}}gi_{I1a1}\cdot y$ ]$)arts$ . For such $pi\cdot oblems$ thc linoar niiniinizatioii $ste\backslash p_{\backslash }st1_{1\lambda}t$ aro
used in }$)othIDR(s)$ and in Bi-CGSTAB do not work well2. BiCGstab(2), however. iises
$(\downarrow\iota\iota adr_{\dot{t}}\}$ tic ininiiiiization polynomials that also work well in the strongly nonsyinmetric ciise.

As a result $BiCG^{\zeta};t_{1}ab(2)$ converges $i_{I1}$ all the cases. For the physically realistic problenis
with SUPG stabilization, bovvever, IDR(4) is always faster then both Bi-CGSTAB and
Bi-CGSTAB(2), and for $\epsilon=1$ even much fastcr then Bi-CGSTAB.
The coniputing timcs arc shown in Tablc 2. Thc $rci^{\backslash }n1ts$ show that $GI\backslash$IRES, although thc

Table 2; Coinputing times $[s]$ for solving the convection-difftision problem

$t_{\dot{c}1^{1}}\backslash \cdot,test$ in ternis of MATVECS, is much slower in $coml$)$uti\iota ig$ time than the other niethods.
This is due to the fact that the niatrix-vector product (without preconditioning) is cheap
in this cxarnple, and the uumber of iterations is large. This is an unfavorable situa,tion for
GMRES. IDR(4) is always fastcr in tiiiie than Bi-CGSTAB, and for $\epsilon=1$ considerably
fastcr. In this $(-t\mathfrak{i}bC$ IDR(4) is also significantly faster thaii BiCGstab(2). $A$; wag remarked
before, BiCGstab $(\ell)$ is thc preferrcd inethod for the strongly nousviumetric problems, in
which cascs neither Bi-CGSTAB nor IDR(4) convcrgcs.

5 A Navier-Stokes problem

5.1 Description of the test problem

Tlic second example that wc consider is a Navier-Stokcs problem with zero forcing terni.
The example $de\backslash cribes$ flow over a step (see [1]. example 7.1.2). The stcacly-statc Navier-
Stokes equations are givcn by

$-,l^{\nabla^{2}u+u\cdot\nabla u+\nabla p=0}$ ,

$\nabla\cdot u=0$ ,

where $t|>0$ is a given constant called the kinematic viscosity. The domain is L-shaped.
Tlie.$\iota:-$ coordinate ranges from-l to 5. Tlie y-coordinate ranges from $0$ to 1 for $x$ between
$- 1$ and $0$ . aiid from-l to 1 elsewhcre: thcrc is a step in the domain at $x=0$ . A Poiseuillc
flow profile is imposed on the inflow boundary $x=-1,0\leq y\leq 1$ and a zcro vclocitv
condition on thc walls. The Neuiuann condition

$\eta\frac{\partial u_{x}}{\partial x}-p=U$ $\frac{\partial u_{1}/}{\partial^{l}x}=0$

is applied at the outflow boundary $\alpha,\cdot=5,$ $-1\leq y\leq 1$ . The problcm is discrctized with
bi-quadratic $Q_{2}$ clerncnts for the velocitics and bi-linear $Q_{1}$ elements for the pressures.
The resulting nonlinear system can be solved with Newton’s method, which implies that

2This problem can be overcome by $c^{\backslash }JiosingPc.or’|plex$ instead of real, ee [6].
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in $e\iota’(\backslash ry$ iteration a linear systcin lias to be $\backslash _{t}$olvcd to compute the Newton updates. This
$.\backslash ^{}ysteni$ lias the following forni:

$(\begin{array}{ll}F B^{T}B O\end{array})(\begin{array}{l}\Delta u\Delta p\end{array})=(\begin{array}{l}fg\end{array})$

Here, the submatrix $F$ is nonsymmetric, and becomcs increasingly nonsymmetric if 7’ is
decreased.
As a test problcm we consider the lineai$\cdot$ system after one Newton itcration. A block-
triangular preconditioner of thc form

$(\begin{array}{ll}F B^{T}O M_{fI}\end{array})$

is applied to speed-up the convergcnce of the iterative methods. Hcre. $A/I_{s}$ is all approxinia-
tion to thc Schur complement $S=BF^{-1}B^{T}$ . The specific preconditioner rve liave selected
for our experiments is the ideal pressure-convection diffusion preconditioncr. Each appli-
cation of this prcconditioner requircs solving tbrec subsvstems: one with $F$ and $t\backslash vo$ with
t.he approximate Schur complement $M_{s}$ . These systems arc solved with MATLAB $!s$ direct
$0\backslash pars(’$ solver.
Tlie preconditioiier described above is quite effective in reducing the numbcr of $iter_{\dot{c}}1tionii$ ,

but inakes thc prcconditioned inatrix-vector multiplication very expensivc. As a result,
the tinie per iteration is basically determined by thc preconditioncd niatrix-vector niulti-
plication, and overbcad for vector operations is negligiblc. This situation is partieularly
advaritagcs for GKIRESn since this nrcthod givcs an optimal rcduction of the residual norm
for a given number of iterations ($=pre$conditioned matrix-vector niultiplications). Tbis is
the opposite situation that we had for the convection-diffusion test problem, where many
itcrations had to bc performcd to achieve a required tolcrailce, but where thc matrix-vector
niultiplication was a cheap operation.

5.2 Performance comparison for the convection-diffusion problem

In the numcrical cxpcriments, wc havc varied two parameters in thc tost problcm: tlxe stcp
sizo $1\iota$ . and the Reynolds nuinber, which is related to tho kincmatic viscosity by $Re=2/7$ .
All $\backslash svsten\iota s$ are solved to a tolerancc ( $=$ reduction of the residuals norm) of $10^{-()^{\backslash }}$ . Tables 3-
5 give the nuiubcr of niatrix-vector niultiplications, and in between $brac^{\backslash }kets$ thc coinputiug
$ti_{lIlC^{Y}b^{}}$ .

Table 3: Matrix-vector multiplica,tions and coniputing times, $h=2^{-3_{:}}$ 1747 cquatiolis

Thc results show, as prcdictCc{, that GMRES is the best mcthod for this set of tcst prob-
lems. We remark, however, that the implementation that we used for the (action of the)
$pr^{-}econditiolier$ uses three direct solves, which is too expensive in a realistic setting. There,
approxiuiations to the dircct solves have to be used. This will result in a cheaper, but less
$effec:tive$ preconditioner. In this situation a short-recurrence mcthod likc IDR(4) may be
competitive again, or possibly cven be required becausc of thc limited mcmory consump-
tioii.
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Table 4: Matrix-vcctor multiplications and computing times, $h=2^{-4}$ , 6659 equations

Table 5: Matrix-vector inultiplications and computing times, $h=2^{-6}$ , 25987 equations

In comparison with Bi-CGSTAB and BiCGstab(2), IDR(4) is coiisiderable faster, in par-
t,icular for large Reynolds numbers. Tlie difference in solution time for $Re=200$ is about
a factor of two for all thrce grid sizcs.

6 Concluding remarks

Wc have presented a pcrformancc $\omega inparisorl$ of $IDR(s)$ with full GMRES, Bi-CGSTAB,
md BiCGstab(l) (with $p=2$) for two classes of fluid dynaniics problems. We liave
restricted our evaluation to the default value $s=4$. Restricting $t_{1}1ie$ evaluation to one
default clioice for $6^{\backslash }$ mimics the way IDR$(s)$ would be used in a practical iniplementation:
a system $wo$ulcl be solvcd once, with a pre-choscn dcfault value.
Our main findings are:

$\bullet$ IDR(4) is for all our tcst problems faster than Bi-CGSTAB, both in numbers of
MATVECS and in computing tiiiies. This difference in time is about a factor of two
for thc Navier-Stokcs problems with a high Rcynolds numbcr.

$\bullet$ IDR(4) is faster than BiCGstab(2) for all test probleiiis for whicb IDR(4) (and
Bi-CGSTAB) convcrge. However, for alluost skew-syminetric convection-diffusion
problems IDR(4) and Bi-CGSTAB did not converge. This is duc to the fact that
both IDR(4) and Bi-CGSTAB use $1inc^{1}a1^{\cdot}$ local mininiization polynomials, which do
not work wcll for matriccs with complcx eigenvalues with large imaginary parts.
BiCGstab(2) uscs quadratic minimization polynomiaLg, which also work well for
strongly nonsymmetric matrices. BiCGstab(2) is therefore rnore robust for such
probleius. We remark, however, that the strongly noiisymmetric niatrices are based
on an unstable discretization of the convection-diffusion problem, aiid the resulting
solution is non-phvsical. If a stable discretization is used, IDR(4) converges faster
than BiCGstab(2).

$\bullet$ The preconditioner for thc Navicr-Stokes problcm that we applied is powcrful. but
also vcry costly. As a result, the numbcr of GMRES iterations is limitcd and over-
head for vector operations is negligible with respect to the cost of the matrix-vcctor
multiplications. In such a situation, full GMRES is the method of choice as long as
meinory consumption is not an issue. If memory consumption becomes too high, one
has to rcsort to aiiother method. In that case IDR(4) seems to bc thc best option
of the mcthods undcr consideration. For our examples, IDR(4) is significantly fau ter
tliaJl Bi-CGSTAB and BiCGstab(2), in particular for highcr Reynolds numbers.
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We conclude that IDR$(s)$ with $s=4$ is a proinising metliod for solving the tvpc of incoiu-
pressible flow probleriis tbat we have considered in this paper. The niethod is $t$) $\dot{\iota}^{\sigma};\iota^{\backslash },d$ on
short $rc^{1}ct111^{\cdot}t^{\backslash }nc\cdot c^{t}s$ aiid tliercforc $111O1^{\cdot}t^{\backslash }(.!ffic\cdot ieultt\}_{1\dot{1}J1}$ GMRES $i11111C^{\backslash }IIlory$ consumption auid
computing time if ritany GMRES-iterations have to be pcrforined. Furtherniorc, IDR(4)
is $(\backslash ,(J\ln\})C^{\backslash titivc^{\backslash }}$ or faster ttian Bi-CGSTAB imd BiCGstab $(\ell)$ for all physically relevant
examples that we havc $considcrC^{\backslash d}$ .
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