ON THE NEW WEAK HERZ SPACES AND THE BOUNDEDNESS OF SOME SUBLINEAR OPERATOR

日本大学・経済学部 松 岡 勝 男* (KATSUO MATSUOKA)

COLLEGE OF ECONOMICS

NIHON UNIVERSITY

AND

JAVIER SORIA DEPARTAMENT DE MATEMÀTICA APLICADA I ANÀLISI UNIVERSITAT DE BARCELONA

First, we state the definitions of the non-homogeneous Herz space $K_{p,r}^{\alpha}(\mathbb{R}^n)$ and the non-homogeneous weak Herz space $WK_p^{\alpha,r}(\mathbb{R}^n)$.

Now, for a measurable set $E \subset \mathbb{R}^n$, we denote the Lebesgue measure of E by |E| and the characteristic function of the set E by χ_E . Also, let for $k \in \mathbb{Z}$, $B_k = \{x \in \mathbb{R}^n : |x| \leq 2^k\}$, $C_k = B_k \setminus B_{k-1}$ and $\tilde{\chi}_k = \chi_{C_k}$. And let for $k \in \mathbb{N}$, $P_k = C_k$, $\chi_k = \chi_{P_k}$ and $P_0 = B_0$, $\chi_0 = \chi_{P_0}$.

Definition 1. For $\alpha \in \mathbb{R}$, $0 , <math>0 < r < \infty$,

$$K_{p,r}^{\alpha}(\mathbb{R}^n) = \left\{ f \in L_{loc}^p(\mathbb{R}^n) : ||f||_{K_{p,r}^{\alpha}} = \left(\sum_{k=0}^{\infty} 2^{k\alpha r} ||f\chi_k||_{L^p}^r \right)^{1/r} < \infty \right\};$$

For $\alpha \in \mathbb{R}$, 0 ,

$$K_{p,\infty}^{\alpha}(\mathbb{R}^n) = \left\{ f \in L_{loc}^p(\mathbb{R}^n) : ||f||_{K_{p,\infty}^{\alpha}} = \sup_{k \ge 0} 2^{k\alpha} ||f\chi_k||_{L^p} < \infty \right\}.$$

Definition 2. For $\alpha \in \mathbb{R}$, $0 , <math>0 < r < \infty$,

$$WK_{p,r}^{\alpha}(\mathbb{R}^n) = \left\{ f \in L_{loc}^p(\mathbb{R}^n) : ||f||_{WK_{p,r}^{\alpha}} < \infty \right\},\,$$

where

$$||f||_{WK_{p,r}^{\alpha}} = \sup_{\lambda>0} \lambda \left(\sum_{k=0}^{\infty} 2^{k\alpha r} |\{x \in P_k : |f(x)| > \lambda\}|^{r/p} \right)^{1/r};$$

²⁰⁰⁰ Mathematics Subject Classification. 42B20, 42B35.

Key words and phrases. Herz space, weak Herz space, sublinear operator, real interpolation.

^{*}The author has been partially supported by grant 2007/2008 Overseas Research of the College of Economics, Nihon University, Japan.

For $\alpha \in \mathbb{R}$, 0 ,

$$WK_{p,\infty}^{\alpha}(\mathbb{R}^n) = \left\{ f \in L_{loc}^p(\mathbb{R}^n) : ||f||_{WK_{p,\infty}^{\alpha}} < \infty \right\},\,$$

where

$$||f||_{WK_{p,\infty}^{\alpha}} = \sup_{\lambda>0} \lambda \sup_{k>0} 2^{k\alpha} |\{x \in P_k : |f(x)| > \lambda\}|^{1/p}.$$

Next, let T be a sublinear operator satisfying that for any integrable function f with a compact support,

$$|Tf(x)| \le c \int_{\mathbb{R}^n} \frac{|f(y)|}{|x-y|^n} dy, \quad x \notin \operatorname{supp} f,$$

where c > 0 is independent of f and x.

Then, for the boundedness of T on the non-homogeneous Herz space $K_{p,r}^{\alpha}(\mathbb{R}^n)$, the following theorems were proved.

Theorem A (X. Li and D. Yang [LY]). Let $1 , <math>0 < r \le \infty$ and $-n/p < \alpha < n/p'$, and let T be a sublinear operator satisfying (*). If T is bounded on $L^p(\mathbb{R}^n)$, then

$$T: K_{p,r}^{\alpha}(\mathbb{R}^n) \to K_{p,r}^{\alpha}(\mathbb{R}^n).$$

Theorem B (Y. Komori [K]). Let $0 < r \le \infty$ and $-n < \alpha < 0$, and let T be a sublinear operator satisfying (*). If T is bounded from $L^1(\mathbb{R}^n)$ to $L^{1,\infty}(\mathbb{R}^n)$, then

$$T: K_{1,r}^{\alpha}(\mathbb{R}^n) \to WK_{1,r}^{\alpha}(\mathbb{R}^n).$$

Furthermore, we introduce the new definition of the non-homogeneous weak Herz space $\widetilde{W}K_{p,r}^{\alpha}(\mathbb{R}^n)$.

Definition 3. For $\alpha \in \mathbb{R}$, $1 \le p < \infty$ and $0 < r < \infty$,

$$\widetilde{W}K_{p,r}^{\alpha}(\mathbb{R}^n) = \left\{ f \in L_{loc}^p(\mathbb{R}^n) : \|f\|_{\widetilde{W}K_{p,r}^{\alpha}} = \left(\sum_{k=0}^{\infty} 2^{k\alpha r} \|f\chi_k\|_{L^{p,\infty}}^r \right)^{1/r} < \infty \right\};$$

For $\alpha \in \mathbb{R}$, $1 \le p < \infty$,

$$\widetilde{W}K_{p,\infty}^{\alpha}(\mathbb{R}^n) = \left\{ f \in L_{loc}^p(\mathbb{R}^n) : \|f\|_{\widetilde{W}K_{p,\infty}^{\alpha}} = \sup_{k>0} 2^{k\alpha} \|f\chi_k\|_{L^{p,\infty}} < \infty \right\}.$$

Then, note that the following result holds.

Proposition 4 (with J. Soria). Let $\alpha \in \mathbb{R}$, $1 \leq p < \infty$ and $0 < r \leq \infty$. If $\alpha \neq -n/p$, then $\widetilde{W}K_{p,r}^{\alpha}(\mathbb{R}^n)$ is proper subset of $WK_{p,r}^{\alpha}(\mathbb{R}^n)$.

Sketch of proof. Clearly,

$$\widetilde{W}K_{p,r}^{\alpha}(\mathbb{R}^n) \subseteq WK_{p,r}^{\alpha}(\mathbb{R}^n).$$

Now, for $\beta \in \mathbb{R}$, we put

$$f = \sum_{k=0}^{\infty} 2^{\beta k} \chi_k.$$

Then, under the conditions $\alpha + \beta + n/p = 0$ and $\alpha \neq -n/p$,

$$\|f\|_{\widetilde{W}K^{\alpha}_{p,r}} = \infty$$
 and $\|f\|_{WK^{\alpha}_{p,r}} < \infty$.

Hence,

$$f \in WK_{p,r}^{\alpha}(\mathbb{R}^n)$$
 and $f \notin \widetilde{W}K_{p,r}^{\alpha}(\mathbb{R}^n)$,

i.e.

$$WK_{p,r}^{\alpha}(\mathbb{R}^n)\setminus \widetilde{W}K_{p,r}^{\alpha}(\mathbb{R}^n)\neq \phi.$$

Then, for the boundedness of T on the new non-homogeneous weak Herz space $K_{1,r}^{\alpha}(\mathbb{R}^n)$, we can show the following weak-type estimate.

Theorem 5 (with J. Soria). Let $0 < r \le \infty$ and $-n < \alpha < 0$, and let T be a sublinear operator satisfying (*). If T is bounded from $L^1(\mathbb{R}^n)$ to $L^{1,\infty}(\mathbb{R}^n)$, then

$$T: K_{1,r}^{\alpha}(\mathbb{R}^n) \to \widetilde{W}K_{1,r}^{\alpha}(\mathbb{R}^n).$$

Before proving this theorem, we observe the interpolation theorem for a quasi-Banach space (see [P]).

Definition 6. Let A be any quasi-Banach space. Then, we define for $\alpha \in \mathbb{R}$ and $0 < r < \infty$,

$$\ell_r^{\alpha}(A) = \left\{ (a_k)_{-\infty}^{\infty} : a_k \in A, \|(a_k)_{-\infty}^{\infty}\|_{\dot{\ell}_r^{\alpha}(A)} = \left(\sum_{k=-\infty}^{\infty} 2^{k\alpha r} \|a_k\|_A^r \right)^{1/r} < \infty \right\};$$

for $\alpha \in \mathbb{R}$,

$$\ell_{\infty}^{\alpha}(A) = \left\{ (a_k)_{-\infty}^{\infty} : a_k \in A, \|(a_k)_{-\infty}^{\infty}\|_{\dot{\ell}_{\infty}^{\alpha}(A)} = \sup_{k \in \mathbb{Z}} 2^{k\alpha} \|a_k\|_A < \infty \right\}.$$

Then, the following theorem for the real interpolation method holds.

Theorem C. Let A be any quasi-Banach space, and let $\alpha \in \mathbb{R}$ and $0 < r_0, r_1 \leq \infty$. Then

$$\left(\ell_{r_0}^{\alpha}(A), \ell_{r_1}^{\alpha}(A)\right)_{\theta, r} = \ell_r^{\alpha}(A),$$

where $1/r = (1 - \theta)/r_0 + \theta/r_1$ $(0 < \theta < 1)$.

Sketch of proof of Theorem 5. First, we prove that when $0 < r \le 1$,

$$||Tf||_{\widetilde{W}K_{1,r}^{\alpha}} \le C||f||_{K_{1,r}^{\alpha}},$$

i.e. T is bounded from $K_{1,r}^{\alpha}(\mathbb{R}^n)$ to $\widetilde{W}K_{1,r}^{\alpha}(\mathbb{R}^n)$.

Next, we prove the case of $r = \infty$, i.e. T is bounded from $K_{1,\infty}^{\alpha}(\mathbb{R}^n)$ to $\widetilde{W}K_{1,\infty}^{\alpha}(\mathbb{R}^n)$. This case is clear by Theorem B, Definitions 2 and 3.

Finally, we prove the case of $1 < r < \infty$. From the cases of $0 < r \le 1$ and $r = \infty$,

$$T: K_{1,1}^{\alpha}(\mathbb{R}^n) \to \widetilde{W}K_{1,1}^{\alpha}(\mathbb{R}^n)$$

and

$$T: K_{1,\infty}^{\alpha}(\mathbb{R}^n) \to \widetilde{W} K_{1,\infty}^{\alpha}(\mathbb{R}^n),$$

respectively. Furthermore, by applying Theorem C,

$$\left(K_{1,1}^\alpha(\mathbb{R}^n),K_{1,\infty}^\alpha(\mathbb{R}^n)\right)_{\theta,r}=\ell_r^\alpha(L^1(\mathbb{R}^n))=K_{1,r}^\alpha(\mathbb{R}^n)$$

and

$$\left(\widetilde{W}K_{1,1}^{\alpha}(\mathbb{R}^n),\widetilde{W}K_{1,\infty}^{\alpha}(\mathbb{R}^n)\right)_{\theta,r}=\ell_r^{\alpha}(L^{1,\infty}(\mathbb{R}^n))=\widetilde{W}K_{1,r}^{\alpha}(\mathbb{R}^n),$$

where

$$\frac{1}{r} = 1 - \theta$$
, i.e. $r = \frac{1}{1 - \theta}$ $(0 < \theta < 1)$.

Thus, when $1 < r < \infty$.

$$T: K_{1,r}^{\alpha}(\mathbb{R}^n) \to \widetilde{W}K_{1,r}^{\alpha}(\mathbb{R}^n),$$

i.e. T is bounded from $K_{1,r}^{\alpha}(\mathbb{R}^n)$ to $\widetilde{W}K_{1,r}^{\alpha}(\mathbb{R}^n)$.

REFERENCES

- [K] Y. Komori, Weak type estimates for Calderon-Zygmund operators on Herz spaces at critical indexes, Math. Nachr., 259 (2003), 42-50.
- [LY] X. W. Li and D. C. Yang, Boundedness of some sublinear operators on Herz spaces, Illinois J. Math., 40 (1996), 484–501.
- [P] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Ser. I, Durham, N.C., 1976.

MISAKI-CHO, CHIYODA-KU, TOKYO 101-8360, JAPAN, E-mail: katsu.m@nihon-u.ac.jp

GRAN VIA 585, 08007 BARCELONA, SPAIN, E-mail: soria@ub.edu