Base change lift type spinor L-function of $GSp_2(\mathbb{Q})$

京都大学·理学部 岡崎武生 (Takeo Okazaki)* Department of Mathematics, Kyoto University

In [4], we happened to consturct Siegel modular cuspform F and non-cuspform E of degree 2 having the same spinor L-function: $L^{spin}(s, E) = L^{spin}(s, F)$, which is equal to the Hasse-Weil zeta function of hyper-elliptic curve $y^2 = x^5 - x$. The CAP representation has a L-function of a non-cuspidal one, but, our phenomenon is not the case. In this article, we consider the problem 'What type of spinor L-function is related to cuspform and non-cuspform, simultaneously?'. To do it, we will classify the spinor L-functions of non-cuspforms. The classical 'Zharkovskaya relation' describes L-function of Siegel non-cuspform by that of the elliptic modular form obtained by the Siegel operator, as follows. If $E \in M_{\kappa}(Sp_2(\mathbb{Z}))$ is an eigenform, then it holds

$$L^{spin}(s,F) = L(s,\Phi(E))L(s-\kappa+2,\Phi(E)).$$

where the elliptic modular eigenform $\Phi(E) \in M_{\kappa}(SL_2(\mathbb{Z}))$ is

$$\Phi(E)(z) = \lim_{t \to \infty} E(\begin{bmatrix} z & 0 \\ 0 & it \end{bmatrix}), z \in \mathfrak{H}.$$
 (1)

We will generalize her relation for non-holomorphic and non-full modular cases. Let N_1, N_2 be the unipotent radicals of the two parabolic subgroups, such as

$$N_1(\mathbb{Q}) = \left\{ \left[egin{array}{cccc} 1 & * & * & * \ & 1 & * & * \ & & 1 & & \ & & & 1 \end{array}
ight]
ight\}, \ \ N_2(\mathbb{A}) = \left\{ \left[egin{array}{ccccc} 1 & & * & * \ * & 1 & * & * \ & & 1 & * \ & & & 1 \end{array}
ight]
ight\} \subset Sp_2(\mathbb{Q}).$$

If E is not cuspidal, then

$$\int_{U_i(\mathbf{Q})\setminus U_i(\mathbf{A})} E(ug) du \neq 0$$

for i=1 or 2 where dh is a suitable Haar measure du. We label the former case as (CASE 1), and the latter as (CASE 2). In the both cases, we obtain automorphic forms on $GL_2(\mathbb{A})$ by

$$\int_{U_i(\mathbb{Q})\setminus U_i(\mathbb{A})} E(ue_i(g)h) du,$$

for some $h \in Sp_2(\mathbb{A})$. Here we write

^{*}This work was supported by Grant-in-Aid for JSPS Fellows.

for $g=\left[egin{array}{cc} a & b \\ c & d \end{array}\right] \in GL_2(\mathbb{A}).$ So, after the original Siegel operator (1),

DEFINITION 1 We define 'Siegel operator along N_i ' at $h \in Sp_2(\mathbb{A})$

$$\Phi_{i}(E)(g;h) = \int_{N_{i}(\mathbf{Q})\backslash N_{i}(\mathbf{A})} E(ue_{i}(g)h)du,$$

where du is the Haar measure so that $vol(N_i(\mathbb{Q})\backslash N_i(\mathbb{A}))=1$.

Remark that the Siegel operator (1) is equal to Φ_2 at h=1, and that holomorphic E is cuspidal iff $\Phi_2(E)=0$. Let ψ be the standard additive character on $\mathbb{Q}\setminus \mathbb{A}$ so that $\psi_\infty(x)=\exp(2\pi i x), x\in\mathbb{R}$. For automorphic form F and $T={}^tT\in M_2(\mathbb{Q}), F_T$ denote the fourier coefficient;

$$F_T(g) = \int_{U_1(\mathbf{Q}) \setminus U_1(\mathbf{A})} \psi(-tr(S \cdot T)) F(\begin{bmatrix} 1 & S \\ 1 & \end{bmatrix} g) dS.$$

(CASE 1) Suppose that irrducible $\pi \in \widehat{Sp_2(\mathbb{A})}$ is in the (CASE.1). Take $E \in \pi$, so that $f = \Phi_1(E)(*;1) \neq 0$. If an eigenform $\widetilde{E} \in \mathcal{A}(GSp_2(\mathbb{A}))$ is an extension of E, then there exists $\delta \in (\mathbb{Q}\backslash \mathbb{A})^{\times}$ such as

$$F_0(e_1(g)[\begin{array}{cc} 1_2 & & \\ & t \cdot 1_2 \end{array}]) = \delta(t)F_0(e_1(g)).$$
 (2)

Since E_0 , $\widetilde{E_0}$ and f have the informations of L-parameters of themselves, by comparing the action of Hecke operator on them, we can obtain the following.

PROPOSITION 1 Let S be the collection of bad primes of E. With the assumption as above, f is an eigenform at every $p \notin S$, and the stnadard L-function $L_S^{st}(s, E)$ is written as

$$L_S^{st}(s, E) = \zeta_S(s) L_S(s-1, f) L_S(s+2, f, w_f). \tag{3}$$

If an eigenform $\widetilde{E} \in \mathcal{A}(GSp_2(\mathbb{A}))$ is an extension of E, then

$$L_S^{spin}(s, \tilde{E}, \delta^{-1}) = \zeta_S(s) L_S(s - 3, w_f^{-1}) L_S(s - 1, f). \tag{4}$$

Here $L(s, f, w_f)$ means the w_f -twist of $L(s, f, w_f)$, and so on.

(CASE 2) Suppose that irreducible $\pi \in \Pi(Sp_2(\mathbb{A}))$ is in the (CASE.2) and take $E \in \pi$ so that $\Phi_2(E)(*;1) \neq 0$. Let (κ_1, κ_2) with $\kappa_1 \geq \kappa_2$ be the highest weight of E, and E is an eigenvector with respect to $\mathcal{Z}(\mathfrak{sp}(2,\mathbb{R}))$, the center of the Lie algebra $\mathfrak{sp}(2,\mathbb{R})$. Then, for a certain $T_a = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \in M_2(\mathbb{Q})$, E_{T_a} is not zero. E_{T_a} has the property

$$E_{T_a}\left(\begin{bmatrix} 1 & x & * \\ * & 1 & * & * \\ & & 1 & * \\ & & & 1 \end{bmatrix} e_2(g)\right) = \psi(ax)E_{T_a}(e_2(g)), \ x \in \mathbb{A}. \tag{5}$$

There exists a unique $\xi \in \mathcal{Z}(\widehat{\mathfrak{sl}(2,\mathbb{R})})$ such as $E_{T_a}(e_2(z*g)) = \xi(z)E_{T_a}(e_2(g))$ for $z \in \mathcal{Z}(\mathfrak{sl}(2,\mathbb{R}))$. Indeed, $\mathcal{Z}(\mathfrak{sp}(2,\mathbb{R}))$ is generated by two elements L_1, L_2 as in [3].

In particular, since L_1 acts on E_{T_a} as an element of $\mathcal{Z}(\mathfrak{sl}(2,\mathbb{R}))$, E_{T_a} is an eigenvector with respect to $\mathcal{Z}(\mathfrak{sl}(2,\mathbb{R}))$. Thus $f(g) = \Phi_2(E)(g;1) = \sum_{b \in \mathbb{Q}} E_{T_b}(e_2(g)) \in \mathcal{A}(SL_2(K_{\mathbb{A}}))$ is of weight κ_1 and corresponds to ξ . From E_{T_a} , for some $\chi \in \mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}$, cut out a nonzero χ -section, that is,

$$E_{T_a}^{(\chi)}(e_2(g)\begin{bmatrix} & & & & \\ & & y & & \\ & & & 1 & \\ & & & & y^{-1} \end{bmatrix}) = E_{T_a}^{(\chi)}(\begin{bmatrix} & & & & \\ & & y & & \\ & & & 1 & \\ & & & & y^{-1} \end{bmatrix}]e_2(g)) = \chi(y)E_{T_a}^{(\chi)}(e_2(g)).$$

Further, if an eigenform $\widetilde{E} \in \mathcal{A}(GSp_2(K_A))$ is an extension of E, we cut out a nonzero ω -section

$$\widetilde{E}_{T_a}^{(\chi,\omega)}(e_2(zg)) = \omega(z)\widetilde{E}_{T_a}^{(\chi,\omega)}(e_2(g)) \ z \in \mathbb{A}^{\times}.$$

Remark that $f^{(\chi)}(g) = \sum_{b \in \mathbb{Q}} E_{T_b}^{(\chi)}(e_2(g))$ belongs to $\mathcal{A}(SL_2(K_{\mathbb{A}}))$, and that $f^{(\chi,\omega)}(g) = \sum_{b \in \mathbb{Q}} E_{T_b}^{(\chi,\omega)}(e_2(g))$ to $\mathcal{A}(GL_2(\mathbb{A}))$.

PROPOSITION 2 With the assumptions as above, at $p \notin S$, $f^{(\chi)}$ is an eigenform such as

$$L_S^{st}(s,E) = L_S(s-2,\chi)L_S(s+2,\chi^{-1})L_S^{st}(s,f^{(\chi)}).$$
 (6)

If an eigenform $\widetilde{E} \in \mathcal{A}(GSp_2(\mathbb{A}))$ is an extension of E, then $f^{(\chi,\omega)}$ has the following properties:

- i) the central character of $f^{(\chi,\omega)}$ is $|\cdot|^2 \chi \omega$.
- ii) If $\chi_p(p) \neq -p^{-2}$, then $f^{(\chi,\omega)}$ is also an eigenform at p, such as

$$L^{spin}(s, \widetilde{E})_{p} = L(s, f^{(\chi, \omega)})_{p} L(s - 2, f^{(\chi, \omega)}, \chi)_{p}; \tag{7}$$

iii) Otherwise, $f^{(\chi,\omega)}$ is not an eigenform in general.

However, in the case iii), instead of $f^{(\chi,\omega)}$, we can take an eigenform $\tilde{f}' \in \mathcal{A}_{\kappa_1}(GL_2(\mathbb{A}))$ having the same central character and satisfies (7) at every $p \notin S$.

REMARK 1 The above χ is determined uniquely by π , and ω is by extended $\widetilde{\pi}$ which contains \widetilde{E} , indeed.

Summing up the above results, we can give the following answer to the first problem.

THEOREM 1 Suppose that a non CAP-type spinor L-function of $\Pi(GSp_2(\mathbb{A}))$ is related to a cuspform and a non-cuspform, simultaneously. Then it is a Base change lift type, i.e., $L(s,\sigma)L(s,\sigma,\chi_{E/\mathbb{Q}})$ for $\sigma\in\Pi(GL_2(\mathbb{A}))$ and quadratic character $\chi_{E/\mathbb{Q}}$ associated to an extention E/\mathbb{Q} .

PROOF. Suppose that cuspidal π and non-cuspidal τ have an identical spinor L-function up to finitely many primes. We can assume π and τ are unitalized. In the (CASE.1) of τ , by Proposition 1, we can write

$$L_S^{spin}(s,\pi,\omega_{\tau}^{-1}) = L_S^{spin}(s,\tau,\omega_{\tau}^{-1}) = \zeta_S(s-z_0)L_S(s+z_0,\omega_{\sigma}^{-1})L_S(s,\sigma)$$
 (8)

for a certain $z_0 \in \mathbb{C}$, where $\sigma \in \Pi(GL_2(\mathbb{A}))$ is related to τ and unitalized. According to Jacquet, Shalika [1], Shahidi [7], $L_S(s,\sigma)$ and $L_S(s,\sigma,\omega_{\sigma})$ does not vanish in the region $\operatorname{Re}(s) \geq 1$. Hence the right hand side of (8) has a pole at $1+z_0$, or its ω_{σ} -twist has a pole at $1-z_0$. By lemma 3.1 of Piatetski-Shapiro [6], π is written as $\pi_1 \otimes (\mu \circ \nu)$ by the similtude norm ν of GSp(2), certain $\mu \in \mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}$ and $\pi_1 \in \Pi(GSp_2(\mathbb{A}))$ with $\omega_{\pi} = 1$. And by Thoerem 2.2 of [6], we conclude the spinor L-function is related to some CAP representation associated to Siegel parabolic subgroup.

In the (CASE.2) of τ , $L_S^{spin}(s,\tau)$ is written in the form (7), and $\omega_{\tau} = \omega_{\sigma}\chi$. From (7), the character $\xi := \omega_{\pi}(\omega_{\sigma}\chi)^{-1}$ satisfies $\xi^2 = 1$. In the case of $\xi = 1$ (i.e., $\omega_{\pi} = \omega_{\tau}$), π_v is equivalent to τ_v at almost all v since they have identical Satake parameters. Hence π is a CAP representation associated to Klingen parabolic subgroup. In the case that $\xi \neq 1$, calculating $L_S(s, \pi, \wedge^2)$, we see

$$L_{S}(s,\omega_{\pi})L_{S}^{st}(s,\pi,\omega_{\pi}) = L_{S}(s,\omega_{\pi}\xi^{-1})L_{S}(s-2,\chi\omega_{\pi}\xi^{-1})L_{S}(s+2,\chi^{-1}\omega_{\pi}\xi^{-1})L_{S}^{st}(s,\sigma,\omega_{\pi}\xi^{-1}).$$

Twisting both sides by $\omega_{\pi}^{-1}\xi$,

$$L_S(s,\xi)L_S^{st}(s,\pi,\xi) = \zeta_S(s)L_S(s-2,\chi)L_S(s+2,\chi^{-1})L_S^{st}(s,\sigma) = \zeta_S(s)L_S(s+t,\chi_1)L_S(s-t,\chi_1^{-1})L_S^{st}(s,\sigma).$$
 (9)

Here χ_1 is the unitalization of χ and we write $\chi_{\infty} = |\cdot|^{2+t}(\text{sign})^{\frac{1\pm 1}{2}}$. Applying lemma 1 to (9), we find that $L_S^{st}(s,\pi,\xi\chi_1)$ (resp. $L_S^{st}(s,\pi,\xi\chi_1^{-1})$) has a simple pole at s=1+t (resp. s=1-t), if $\Re(t)>0$ (resp. $\Re(t)<0$). However, π is cuspidal, so t is allowed to be ± 1 and π is a CAP representation along Klingen parabolic subgroup. If $\Re(t)=0$, we can also coclude t=0 by considering the possiblity of the location of the poles. In this case, if $\chi_1^2\neq 1$, then $(\xi\chi_1)^2\neq 1$ and we find that $L_S^{st}(s,\pi,\xi\chi_1)$ has a simple pole at s=1, twisting (9) by χ_1 . This conflicts to [2]. If $\xi^2=1$ but $\chi_1\xi\neq 1$, we find that $L_S^{st}(s,\pi,\xi\chi_1,st)$ has at least double pole at s=1, which conflicts to [2], too. Thus, the remained possibility of χ_1 is only $\chi_1=\xi$, i.e., some quadratic character. This is just the Base Change lift type.

REMARK 2 Conversely, for given spinor L-function $L(s,\sigma)L(s,\sigma,\chi_{K/\mathbb{Q}})$ of base change type, [5] gives generic non-cuspform and cuspform which is fixed by paramodular groups, if σ is holomorphic.

The next lemma used in the proof of previous theorem follows from the results of Jacquet, Shalika [1] and Shahidi [7].

LEMMA 1 Let $\pi \in \Pi(GL_2(\mathbb{A}))$ be cuspidal. Then,

- i) $L_S(s, \pi, \eta, st) \neq 0$ for every unitary $\eta \in \widehat{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}}$ at $\Re s \geq 1$,
- ii) if π comes from a größencharacter of a quadratic extension K over \mathbb{Q} , then

$$\begin{cases} ord_{s=1}L_S(s,\pi,\eta,st) = -1 & if \eta = \chi_{K/\mathbb{Q}}, \\ ord_{s=1}L_S(s,\pi,\eta,st) = 0 & otherwise. \end{cases}$$

iii) if π does not come from größencharacters, $\operatorname{ord}_{s=1}L_S(s,\pi,\eta,st)=0$ for every unitary $\eta\in\widehat{\mathbb{Q}^\times\backslash\mathbb{A}^\times}$.

Complementing Kudla-Rallis [2] by Proposition 2, we can give the following characterization of cuspidality of $\Pi(Sp_2(\mathbb{A}))$ by standard L-functions:

THEOREM 2 Non CAP $\pi \in \Pi(Sp_2(\mathbb{A}))$ is cuspidal, iff all the $i) \sim iii)$ are satisfied: For unitary $\eta \in \widehat{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}}$,

- i) $L_S(s, \pi, \eta, st)$ is entire at $\Re s > 1$;
- ii) if $\eta^2 = 1$, ord_{s=1} $L_S(s, \pi, \eta, st) \ge -1$;
- iii) if $\eta^2 \neq 1$, ord_{s=1} $L_S(s, \pi, \eta, st) \geq 0$.

PROOF. By corollary 7.2.3, Theorem 7.2.5 of [2], and Soudry [8], cuspidal π satisfies i), ii). (If the standard L-function has a simple pole at s=2, then π is liftable to O(2), and is a CAP representation.) Hence, our task is to show that both of i), ii) are not satisfied by non-cuspidal π' which is induced from by cuspidal $\sigma \in \Pi(GL_2(\mathbb{Q}_A))$. Put $\chi_1 = \chi/|\chi|$ and let $\chi_{\infty} = |\cdot|^{t+si} sign^a$ with $t, s \in \mathbb{R}$ and a=0 or 1. In the case of $|\chi_{\infty}| \neq |\cdot|$, $|\cdot|^3$, it holds

$$\left\{ \begin{array}{ll} L_S(s,\pi',\chi_1,st) \text{ has a double pole at a point in the reagion } \Re s \geq 1 & \text{if } \chi_1^2 = 1 \\ L_S(s,\pi',\chi_1,st) \text{ is not eintire in } \Re s \geq 1 & \text{otherwise.} \end{array} \right.$$

Indeed, from (6), $L_S(s, \pi', \chi_1, st) = \zeta_S(s-t)\zeta_S(s+t)L_S(s, \sigma, \chi_1, st)$, if $\chi_1^2 = 1$. Obviously, this *L*-function has a simple pole at 1+|t|, if $t \neq 0$. In the case of $|\chi_{\infty}| = |\cdot|$ or $|\cdot|^3$, we can say

$$\begin{cases} L_S(s, \pi, \chi_1, st) \text{ has a simple pole at } s = 2 & \text{if } \chi_1^2 = 1 \\ L_S(s, \pi, \chi_1, st) \text{ is not eintire in } \Re s \ge 1 & \text{otherwise.} \end{cases}$$

We are going to see that $L_S(s,\pi,\chi_1,st)$ has a double pole at a point in the region $\Re s \geq 1$ if $\chi_1^2 = 1$, and that $L_S(s,\pi,\chi_1,st)$ is not eintire in $\Re s \geq 1$ otherwise. If $\chi_1^2 = 1$, then

$$L_S(s, \pi, \chi_1, st) = \zeta_S(s)^2 L(s, \sigma, \chi_1, st),$$

which has a double (at least) pole at s = 1. If $\chi_1^2 \neq 1$, then

$$L_S(s,\pi,\chi_1,st)=\zeta_S(s)L(s,\chi_1^2)L(s,\sigma,\chi_1,st),$$

which has a simple (at least) pole at s = 1. This completes the proof.

REMARK 3 If π satisfies the generalized Ramanujan conjecture, we only need to see ii),iii) for the cuspidality of π .

References

- [1] H. Jacquet, J.A. Shalika: On the Euler products and the classification of automorphic representation I, Amer.J. Math 103, (1981) 499-558.
- [2] S. Kudla, S. Rallis: A regularized Siegel-Weil formula, Annals of Math. 140 (1994), 1-80.

- [3] S. Niwa: Commutation Relation of Differential Operators and Whittaker Functions on $Sp_2(\mathbb{R})$, Proc. Japan Acad. 71 Ser.A (1995), 189-191.
- [4] T. Okazaki: Proof of R. Salvati Manni and J. Top's conjectures on Siegel modular forms and Abelian surfaces, Amer. J. Math. 128 (2006), 139-165.
- [5] T. Okazaki: Paramodular forms associated to certain Galois representations of GSp(2)-types, preprint.
- [6] I.I. Piateteski-Shapiro: On the Saito-Kurokawa Lifting, Invent. Math. 71 (1983), 309-338.
- [7] F. Shahidi: On certain L-function, Amer. J. Math., 103 (1981), 297-355.
- [8] D. Soudry: The CAP representation of $GSp(4, \mathbb{A})$, J. reine angrew. Math. 383 (1988), 87-108.
- [9] N.A. Zharkovskaya, The Siegel operator and Hecke operators, Functs. Anal. Appl. 8(1974),113-120.