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Log canonical threshold of Vandermonde
matrix type singularities and learning theory

Miki Aoyagi*

Abstract

In this paper, we consider the log canonical threshold of Vandermonde matrix
type singularities over the real field. It has recently been proved that these singu-
larities are essential in learning theory.

1 Introduction
The log canonical threshold cz(Y, f) in algebraic geometry is analytically defined by
cz(Y, f) = sup{c: | f|¢ is locally L? near Z},

over C and
cz(Y, f) = sup{c: |f|~¢ is locally L' near Z},

over R for a nonzero regular function f on a smooth variety Y, where Z C Y is a closed
subscheme([16), [19]). It is also known that co(C?, f) is the largest root of the Bernstein-
Sato polynomial b(s) € C[s] of f, where b(s)f* = Pf**! for a linear differential operator
P([8], [9], [15]).

Watanabe proved that the largest pole of a zeta function for a hierarchical learn-
ing model gives the main term of the generalization error of the model asymptotically
([24],[25]). The largest pole of [ ear 7 |f1¥¥(w)dw over C (f pear 7 |fI*¢(w)dw over
R), corresponds to the log canonical threshold cz(Y, f), where ¥(w) is a C*°— function
with a compact support and ¥(Z) # 0.

The theoretical study of hierarchical learning models has been rapidly developed in
recent years. A learning system consists of data, a learning model and a learning algo-
rithm. The purpose of such a system is to estimate an unknown true density function
from data distributed by the true density function. The data associated with image or
speech recognition, artificial intelligence, the control of a robot, genetic analysis, data
mining, time series prediction, and so on, are very complicated and not usually generated
by a simple normal distribution, as they are influenced by many factors. Learning models
to analyze such data should likewise have complicated structures. Hierarchical learning
models such as the layered neural network model, the Boltzmann machine, the reduced
rank regression model and the normal mixture model may be known as effective learning
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models. They are, however, non-regular statistical models, which cannot be analyzed
using the classic theories of regular statistical models [13], [23], [12], [10]. The theoretical
study has therefore been started to construct a mathematical foundation for non-regular
statistical models.

The generalization error of a learning model is a difference between a true density
function and a predictive density function obtained using distributed training samples. It
is one of the most important topic in learning theory. The largest pole of a zeta function
for a learning model, which is called a learning coefficient, gives the main term of the
generalization error and can be obtained by a desingularization.

In spite of these mathematical foundations, obtaining the largest pole is still difficult
for the following reason.

It is known that the desingularization is obtained by using a finite blowing up pro-
cess [14]. However, desingularization in general is very difficult. Furthermore, most of
functions for hierarchical learning models are degenerate with respect to their Newton
polyhedrons [11], their singularities are not isolated and they are not simple polynomials,
i.e., they have parameters.

We note that there are many classical results for calculating the largest poles of the
zeta functions using the desingularization in lower dimension. There have also been many
investigations in the case of prehomogeneous spaces. The functions, however, do not occur
in prehomogeneous spaces.

Therefore, most of these singularities in learning theory have not been investigated,
so far.

Our study is over the real field not the complex field. In algebraic geometry and
algebraic analysis, these studies are usually done over an algebraically closed field. We
have many differences between the real field and the complex field, for example, log
canonical thresholds over the complex field are less than 1, while those over the real field
are not necessarily less than 1.

In this paper, we consider the log canonical threshold of Vandermonde matrix type
singularities which is the largest pole of zeta functions for the three layered neural network
and the normal mixture model, as such models are widely used in many applied fields.

Theorem 1 shows a kind of an orthogonal relation of the log canonical threshold of
Vandermonde matrix type singularities. It means that the learning model learns a true
distribution independently on each hidden unit in case of three layered neural networks
or each peak in case of the normal mixture model (Section 3).

Theorem 2 gives the log canonical thresholds in some condition. Our future purpose
is to obtain the log canonical thresholds of Vandermonde matrix type singularities in
general.

Recently, the term “algebraic statistics” arises from the study of probabilistic models
and techniques for statistical inference using methods from algebra and geometry [22].
Our study may stand for this attitude.

2 Vandermonde matrix type singularities

In this paper, we denote by a*, b* constants and denote by a* if the variable a is in a
sufficiently small neighborhood of a*.
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Define the norm of a matrix C = (ci;) by ||C|| = /3, ;lci;|?. Denote by (C) the
ideal generated by {c;;}. Set Nyo = NuU {0}.

Definition 1 Set cz(f) = sup{c: |f| ¢ is locally L! near Z} over R, for a nonzero reg-
ular function f on a neighborhood of Z, where Z is a closed subscheme.

Definition 2 Fiz Q € N. Define [b},b3, - ,bylo = %(0,--- ,0,b},.-- ,by) ifbj =+ =

. . 1 if Q is odd,
b;_,=0,b; #0, and v, = { |b7|/br  if Q is even.

Definition 3 Fiz Q € N and m € N4,.

* *
i GH Gy Fe1r o GLH4r
@1 v+ G2H Q3 py1 - G2 H4r
) ) N
Let A= . ’12(21’"'7£N)€N+0 ’
ami - GMH GhrH41 - OMH4r

N N N N N
_ £; £; 25 * £; * £\t
Br = (ITo3 I16% - T1 %85 T T 8ha1s®s -+ T O™

and B = (B1)g+-+txn=Qn+mo<n<H+r—1 (t denotes the transpose).
We call singularities of || AB||? = 0 Vandermonde matriz type singularities.
To simplify, we usually assume that

(a;,H+j’ a‘;,I-H—j’ e »aif,ﬂﬁ)t # 0, (b;{+j,1~ b;-1+j,2" T ;{+j,N) #0
for1 < j<r and
[ ;1+j,1» ;I+j,2"" ’b;-l-i-j,N]Q # [b;1+j’.1’b;1+j',2"" ’b;‘1+J”,N]Q
forj #j'.
From now on, we set A and B as in Definition 3.

Remark 1 By the ascending chain condition, we have (AB) = (AB’) where B’ =
(Bf)fl+-~-+€N=Qn+m,05n5H' and H' > H+r-1.

apnn -+ g
a2z -+ O2H
Example 1 If N=1,m=0,Q =1 andr =0, we have A = . and
ayn ' AGOMH
1 by b3 - bE7?
1 by b3, .. b1
1 by b%4, -+ bET?

(The matriz B as above is usually called a Vandermonde matriz.)
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ain  Qjp

a1 G5
Example 2 IfN=3, m=Q=1andr = H =1, we have A = : . and

aprn a?\.{g

B= ( b brﬁz b12 b%;)z b3 bf32 bi1bi2 biibis  bi2biz )
b3y b5 bao b3p° boz b3g® by b3, b31033 b3obis

Theorem 1 Consider a sufficiently small neighborhood of

Set (b5, b5 02, o bgn) =(0,...,0).
Let each (b33, 12.--- JOIND), o (B3, b, e biy) be a different real vector in

[:15 ;2"" )b:N]Q#Oa fO’I"i=1,...,H+r;

{1, - 5 INDs o (B0, 3B 5 (B biNle # Ovi =1, H + 1}

Then v’ 2 r and set (b, ,bi5) = [bhyi1, - Ohrrinle for 1 <i <.
Assume that
PR binle

: = 0,
oh *
[ngl’ R} bHoN]Q
* *
[bHo+1,1a U ’bHo+1,N]Q
. *k X )
- ( 11 yYIN/»
L *
[bHo+H1‘1’ et 7bHo+H1,N]Q
* *
[bHo+H1+1'17 T bHo+H1+1,N]Q
. — (b** e ko
— 21> 1 V2N /s
[b* ceo bt ]
Ho+Hy+H,,1 » UHo+H14+H2,N1Q

* *
[bH0+"'+Hr"—l+1’1’ Y H0+...+Hr,_1+1,N]Q
. — ( kL b
= 1> N

L3 *
[ Ho++Hu_j+H 10" " " bHo+-~~+Hr,__1+H,,,N]Q
and Hy+---+ Hv = H.
Then we have

T,

cwr (IIABI?) =D e (|| A B@|2),

a=0

a)* L (a)*
where w@" = {a{¥ bij) } = 0% Hytot Hooy4ir Do F1<h<M,1<i<Ha 1<GEN
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I = (Cly...,EN> € N-&-ON)

‘ N ()b
“i‘?; a?; - a?{;" L b( )¢
[03 (o1 [0 4 o)t
a a @ by;
Al — 21 22 _ 2Ha ,B§°‘) = H , fora=0r+1<a<r,
@ (@ . (@ 4
ay Gy2 C GMH, H'.V b;?: p ’
N (a)f:'
(@ (@ . @ (I, \
)y G2 : alH Q1. H+a N b(a) 7
al® a(‘;) - a as g . H =1
Al = a2 ) 2H, Hte |, Bﬁa) = , forl1<a<r,
: N (a) £;
(@ (a) (@) . b
RN J ) 1YHq,
A1 Qpro aA[Ha M,H+a \ JN bt*JeJ )

0
B = (B4 4. +en=animosn<Ho—1 and B = (B g 4. ren=no<n<Ha1 for 1 < a <
r.

(Proof)
S 0 0
(a( )’”_ EH)o)_(a'l""’aiHo)’
(1) (l)
) (a,l RN z1.1])—(azlflo-f—la“'10*12,Ho+H1)7 for 1 < i< M. and
I , |
(a’zl ey 1,H ,) (a‘l JHo++H 141y - ’a't,Ho+"'+H,.l)’
0 0
(b( ) ( )J) (blja"'ybHoj)v
oD b(l? b ot s b .
( H1_7) - ( Ho+1,js++ > H0+H1,J)7 for 1 < ] <N
b(f') b(") b b
( 1y H ,] ( Ho+-+H._y+1,3s Ho+-+H IJ)
F01 ,,(b“", by = b, “”]Q, we again set a{? by a{? /(%)™ and b%’ by

b,J ,l,1<]<Nand1<k<,M
Main parts of the proof is appeared in Appendix. By applying Lemma 4 in Appendix

we have this theorem.
Q.E.D.
Usually, 7 corresponds to the number of elements of a true distribution. This theorem
shows that the Bayesian learning coefficient related with such singularities is the sum of
each for the small model with respect to each element of a true distribution (cf. Section

3).
Theorem 2 We use the same notations as in Theorem 1. If N = 1, we have

AIQko(k'o + 1) + 2H,

Cw‘(HAB”z) 4(m + kOQ)
Mr O Mkg(ka +1) +2Hy o~ Mka(ka + 1) + 2(Hg — 1)
o ; 41+ ko) a;q A1+ ka) :
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where
ko = max{i € Z;2Hp > M(i(i — 1)@ + 2mi)},
ko = max{i € Z;2H, > M(i* +4)}, fori1<a<r,

kl, = max{i € Z;2(Hy ~ 1) > M(i* +4i)}, forr+1<a<r.

For the proof of Theorem 2, we use a similar method in [6], [4], where we used recursive

blowing ups and toric resolution.
The key point is that co(]|A©@ B©||2) = ¢o(]|AQ B’||?) for N = 1, where

it 0 0 0

0 bR(bd —b2) 0 0

B=| 0 0 b (65, ~ bR (b5 —~ b5h) -+ 0
0 0 0 tre ﬂl (b?Il - b?l T (bgl - bzc-zf_l,l)

and Ilel < IbH—1,1| < e < |b21’ < |bnl.

Recently, we have the explicit values ¢,~(||AB||?) for general natural numbers N and
M but for H < 2 [5].

The following is also an important learning model, which is called reduced rank re-
gression. The model corresponds to the three-layer neural network with linear hidden
units.

*
an @z - G Gy 0 O H4.
QG - G Gypyq Q3 piy
Theorem 3 ([7]) Let A = i i and
ap1 Qm2 ccc QMH Ohger 0 QM H4r
( b1 b2 - bin \
b2 by -+ ban
B = b bz -+ bun
b* x* e ¥
H+11 OH41.2 H+1,N
* * *
\ bH+r,1 bH+r,2 oo bH+r,N )
a* . a*
1L,H+1 1LH+r * * R
@ ey o dhp bh+11 Ohe12 bh+iN
b + ] .
Let r be the rank of ) T
* * s *
a* cee a* H+rl YH+r2 H+r,N
M,H+1 M,H+r

Then the log canonical threshold of ||AB||? at Z = {||AB||*> = 0} is

(N+M)yr—r2+s(N—-r)+(M—-r—-3s)(H—-1—235) |
2
0<s<min{M +r H+r}}

max{—

That is,
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Casel Let N+r<M+H M+r<N+Hand H+r <M+ N.
(a) If M + H+ N +r is even, then

—(H+7)2~M?-N?+2(H+7r)M+2(H+r)N+2MN
3 .

cz(l|AB|*) =

(b) If M + H+ N +r is odd, then

—(H+71)2—=M?>—-N?>+2(H+r)M+2(H+7)N+2MN +1

c2(||ABI?) = .
Case 2 Let M + H < N +r. Then c5(||AB|[?) = ZM = Hr + Nr.
Case 3 Let N + H < M +r. Then cz(||AB|?) = Y= ’;"*MT.
Case 4 Let M + N < H+r. Then cz(]|AB||?) = AIZ—A—I

3 Learning theorem

In this section, we overview the stochastic complexity and the generalization error in
Bayesian estimation.

Let g(r) be a true probability density function and (z)" := {z;}}., be n training
independent and identical samples from g(x). Consider a learning model which is written
by a probability form p(z|w), where w is a parameter. The purpose of the learning system
is to estimate g(z) from (z)" by using p(z|w).

Let p(w|(z)") be the a posteriori probability density function:

n 1 .
p(wl(z)") = 9 (w) [ p(zilw),
n i=1
where 1(w) is an a priori probability density function on the parameter set W and

n
Zo= [ wiw) [T plaw)dw.
w i=1
So the average inference p(z|(z)") of the Bayesian density function is given by

p(a|(z)") = / p(zlw)p(wl(2)")dw,

which is the predictive density function.
Set

K(qllp) = / a(z) log le((%))—njdx.

This is always a positive value and satisfies K(g||p) = 0 if and only if ¢(z) = p(z|(z)").
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The generalization error G(n) is its expectation value E,, over n training samples:

cJ( )
G(n)=E {/ log IOk )da:}

Let

n

Ky(w) = -Tl—LZlog a(z)

=1 p(zi|w)’

The average stochastic complexity or the free energy is defined by

F(n) = —E,{log / exp(=nK(w)) ¥ (w)dw}.

Then we have G(n) = F(n + 1) — F(n) for an arbitrary natural number n ([17], [2],
[3]). F(n) is known as the Bayesian criterion in Bayesian model selection [21], stochastic
complexity in universal coding [20], [28], Akaike’s Bayesian criterion in optimization of

hyperparameters [1] and evidence in neural network learning [18].

It has recently been proved that the largest pole of a zeta function gives the general-
ization error of hierarchical learning models asymptotically [24],[25]. We assume that the
true density distribution ¢(x) is included in the learning model, i.e., g(z) = p(z|w}) for

wy € W, where W is the parameter space.

Theorem 4 (Watanabe[24, 25]) Define the zeta function J(z) of a complex variable z

for the learning model by

/K w)dw,

p(z | t)
p(z Iw)

Then, for the largest pole —\ of J(2) and its order 6, we have

where K(w) is the Kullback function:

K(w) = / plzef) log LAEILE)

F(n) = Alogn — (68 — 1) loglogn + O(1),
where O(1) is a bounded function of n, and if G(n) has an asymptotic expansion,

A 01
n nlogn

as n — OQ.

G(n) &
To prove the above theorem, Watanabe used the function

o) = [t~ Kwhewyw =7 [ L,

which satisfies [v(t)f(t)dt = [ f(K(w))y(w)dw for any analytic function f(t).

Laplace transform of v(¢) is

Z(n) = / exp(—nkK (w))p(w)duw,

(1)

(2)

The
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and the Mellin transform of v(t) is

C(2) = / K (w)*p(w)dw = / tu(t)dt

The key point of the proof is that by using poles of {(z) and the inverse Mellin transform
of {(z), he obtained the asymptotic expansion of v(t), and then the asymptotic expansion
of Z(n). The analysis of the difference between — log Z(n) and F(n) completes the proof.
In learning theory, X is, therefore, an essential value, which corresponds to the log
canonical threshold of K (w).
The log canonical thresholds of Vandermonde matrix type singularities are equal to A
of the following two hierarchical learning models.

(a) The three layered neural network with N input units, H hidden units and M output
units which is trained for estimating the true distribution with r hidden units:

Denote an input value by z = (z;) € R" with a probability density function ¢(z)
which has a compact support W. Then an output value y = (yx) € RM of the three
layered neural network is given by yx = fi(x,w) + (noise), where w = {ak;, b;j;1 < k <
M1<i<H1<j< N} and

fr(z,w) = Za’" tanh(ZbJ:c_,,)

i=1

Consider a statistical model
1 1 2
p(ylz, w) = COLE exp(—3lly — f(z, w)|").
Assume that the true distribution
* 1 1 * 2
plylz, wi) = Goswi exp(=3llv = £z, w5,

is included in the learning model, where w; = {a};,bj;;l1 < k< M\H+1<i< H +
r,1<j< N} and fi(z,w}) = Zi‘;}H(——a;,») tanh(zﬁ.l bi;z;). Suppose that an a priori
probability density function ¥ (w) is a C®— function w1th a compact support W where
¥(w}) > 0. Then the model has the zeta function [, ||AB||**dw with @ = 2 and m = 1,

where A and B are defined in Definition 3.

(b) The normal mixture model with H peaks which is trained for estimating the true
distribution with r peaks [27]:

Consider a normal mixture model

Z]— ( j" z])

p(elw) = &= )m Zau exp(— ),

where w = {a1:,b;;;1 <i < H,1<j <N} and Zi=1 ai; = 1. Set the true distribution
by

H+r Z-’\L (:C'—b:-)r"
p(zluy) = > (—a) exp(—- =),

N/2
(27T) / i=H+1 2
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where wy = {a};,bjj; H+1<i< H+7,1<j < N} and Efi'g_._l a}; = —1. Suppose that
an a priori probability density function ¥(w) is a C*°— function with a compact support
W where ¢(w}) > 0.

Then the model has the zeta function [, ||AB||*dw with Q =1, M =1 and m =1,
where A and B are defined in Definition 3.

(a) and (b) as above show that A in Theorem 4 for three layered neural networks and for
normal mixture models are obtained by the same type of singularities, i.e., Vandermonde
matrix type singularities. The paper [29], moreover, shows that A for mixtures of binomial
distributions is also obtained by Vandermonde matrix type singularities. These facts seem
to imply that Vandermonde matrix type singularities are essential for learning theory.

Appendix

Lemma 1 Let U be a neighborhood of w* € R%. Let T be the ideal generated by fi, ..., fn
which are analytic functions defined on U. If g1,...,gm € I, then cy=(f2 + -+ f32) is
greater than cy«(g? + - + g2). In particular, if g1, . ..,gm generate the ideal T then

cw*(f12+ +fr?) = cw‘(g¥+"' +g$n)

(Proof)
The fact g2 +--- + g2, < P(f2 +--- + f2) for P >> 1 yields this lemma.
Q.ED.
pm p@t™ ... pQEH-DAm pQU-D+m
Lemma 2 Let B' = : : and b; = :
br[p} b?{+m . bg(H_lH-m b?[(j—l)""m

Consider a sufficiently small neighborhood of {b}}1<i<s-
Let b: = ’}’,lb:l
Y Hgb;1=)b;|.15kgj—1(bk/’)’k —bi/v), fb #0,

Set b}, = m e e for1<j<iandb! =
7 b; Hb;:o,1sk5j-1(bl? - biQ)» if by =0, d
)
b‘?_,' ,for1<j< H.
12
Hi )

Then there exists a regular matriz R such that BR= ( b{,bj,..., b} ).

(Proof) We only need to prove that the vector space generated by bf, b, ..., b% is
equal to that generated by b}, bj, ..., by.
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Some computation shows that the vector space generated by

. : 0 :
! b (b3 — b3 :
OB a2 b8 - | :

bm
H bP(bF — b)) -+ (bF_, — b3)

m bQ.— bQ :
BOT =00/ \ o2 - 8368 - 89)

is equal to that generated by b}, b5, ..., by.
Therefore, we may set

b m QO Q 0
P R IV I C LV _
1 . s W — . y ] -
: 0
b '
" bR (bT — bF) b (6T — bFp) - (bfg—y — bF)

We use an induction.

From now on, denote by {(c;, a2, . . ., Cy) the vector space generated by vectors ¢;,Cz2,...,CH.

It is easy to check that (b}, b, ..., b%) = (b}, b), ..., by_;,b%).

Let g;,;(2), gj+1,;(x), ..., 9n,j(z) be polynomials of z, b;_,, ..., by such that g; ;(zv;") =
gimj(xype) if 03] = |65, # 0 and gj;(x) — g»;(z’) can be devided by z% — 2’ if
b}l = b;n = 0

(2 )
0
Assume that is an element of (b’/,...,b%) and that
‘ 56,05 (b5 bl
\ 910 (bs)bls; /
(B, by = (b, , by, bl bY).
Since
( 0 ) 0 \
b,_, = 0 = 0
-1 b}n—1(b(1'2 - ij—l) Tt (b?—z - ij-l) - gj—l,j—l(bj-l)b_lg"—l,j-—l '
\  bROT —b3) - (07, -bF) ) 9r,i-1(br)bly ;) )
where

gj—l,j~1(bj—l) # 0,... y9H,j—1 (bH) 76 0,
git j-1(75x) = gjn -1 () if |05 = |b4| # 0 and gjr ;-1(z) — gj» j—1(z’) can be divided



by #'? — 2@ if b}, = b}, = 0, we have

bj_, =bj_1g;-1;-1(bj—1) +

(9#,5-1(bar)

(

= bj_19j-1,j-1(bj-1) +

(gj,j—-l (bj) -

— gj-1,-1(bj—1))b ;4 ),

95.5(b))b5; |

\ g1 b)bls, /
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0
gi-1,j-1(bj-1))bj ;1

o

0

9r,i (bk) = grj-1(bk) = gj-1,j~1(bj-1), if |og| # 165_11,
where ¢ gk;(br) = (grj—1(bk) — gj—1,j-1(bj=1))/(bj—1/Yi-1 — be/), if [bE| = 1b*-1i # 0,
9 (Bk) = (G j—1(bk) — gj—1,j-1(bj—1))/ (b7, — bF) if b =bj_, =0.

° )
0

By the inductive assumption
» PO 1 g15(65)by;

951, (be)bly; /

generated by bf,. .-, bf.

Therefore, (b,--- ,by) = (b},---,bi_;,b},--- ,by) = (b},--- ,bj_5,bj_;,bj,--- ,by).
Q.E.D.
b11-n b1Q+m b?(H-1)+m le(j—l)-f-m
Lemma 3 Let B' = : : and b = :
m m H-1)+m j—1)+m
bH bg+ bg( D+ bg(] I+
Consider a sufficiently small neighborhood of {b}}1<i<h-
Let b} = ~;|b}].
Let each |b3*|,...,|bx*| be a different real number in {|b}] ; |b}| # 0}:
{1677, 1627 5 1077| # 165714 # g} = {I6] 5 |bf] # O}
Also set by* = 0.
Assume that bI == b;:fo = ba*l [b;fo-i-ll = = Ib*Ho+H1| = IbI*l? MR |b;{o+"'+Hr—-l+l =
= |bhtg 4, | = 1077].
Set
O, .. b)) = (br, ..., bay),
(bgl)’ s abgl) = (bHo+l’ sy bHo+H1)’
(b(r) (r)) - (bHo+ +Hp_1+19 -+ bH0+"‘+Hr)'

is an element of the vector space
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Let ™" = 7.

B® o o ... 0
0o BWL ¢ ... 0
Then there exists a regular matriz R such that B'R = . )
0 0 0 - B™
o)ym 0 Q+m 0 Q(Ho-1)+m
B0 b b
where B0 = : : : and
b(o)m b(o)Q+m b(O)Q(Ho 1)+m
m ™ a m m _
71" b&%i’ KO AN e 1T O ) e
B(a) = .
m m m " m
R T T U 0 ) R A C A 2

forl1<a<r.

(Proof)
0
bj :
(©) b0 ©) 0
Set b"}"’ = nd b”;7 = m Q Q for j > 2.
1 a j b(o) n1<k<1 l(b(O) b§~0) ) J =z
"

o)m )< 0@
| " Moy 00 2

( 0

0

Also set , b"® = forl<a<r2<j<i.
- (a) Hl<kz<g 1(b(a)/')’(a) b(a)/%(a)) - T =J=

m
\ 0" gy 62— 8122 )
Then, by Lemma 2, there exists a regular matrix R such that

b/lgo) b//(20) . b//(o) 0 e 0
BR b”(ll) b"(ll) . bﬂ(lg bl/(l) bn(l) L. b//(}}I) 0 . 0
b//gr) bngr) . : . b//g") bugr) b”gr) . _- . b//&?‘) . bngr) . b//(f’z
Therefore, we have
b"® b ... by 0(1) (1) (1) 0
— 0 0 L 0 b prH ... b”Hl 0 ... 0

0 0 0 0 0 0 P b"gz



for some regular matrix R’.
By applying Lemma 2 to B{®), we have the proof
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Q.E.D.

H bl_]
b
Lemma 4 Let B; = H %

N e
[Tj=184;
(Br)ey+..4+En=Q(n—1)+mneN-

Consider a sujﬁcz’ently small neighborhood of {b’{,}1<i<H,1ngN
Let each (bi3,b15,- - ,biN), -, (B33, 0)5, -+, bin) be a different real vector in

[ il :2$"' ab:N]Q?éo,’I:=1,...,H+T:
{( 11*"' 1N ’(:;* rN)}_{[zla"':b:N]Q%O;i

Set (51, bz, - » 0N>=(0,..., >.
Assume that

and B =

=1,...,H}.

[bllv T IN]Q == [b*Holv' v ab;foN]Q = (bS’{,' e
[ Ho+1,12 """ abgo+l,N]Q == [b;Ig-}-Hl,la v ab;{0+H1.N]Q = ( ;,{7 e 7b;;\f)a
b

BN,

* — . . o= * ..
[bHo+ +Hr3+1,10 77 ’bH0+"'+Hr-1+1yN]Q == [bH0+"'+Hr,1’
Set

(b(lg)’ L bﬁ‘({)g‘]) = (b1j9 L 7bHoj)a

1
(bg,lj)’ s &Ii]) (bHo-i-l,j’ ceey bHo+Hx,j)a
170 ) = ( Ho++Hr_1+1,j1 Ho+:+Hyr.j/s
for1<j<N.
™™ | HN b(a)%
(a)m | N b(a)%
LetI=(£1,... t8) € Ny, B® = | ™2 H
’yé{aa) Hj:l bﬁz: ’
and B = (B ))81+--»+£N=m+Q(ﬂ—1)an€N7 B@ = (B§a))£1+--.+@N=n,n€N+0 fOT‘ l1<acxsr
where . o
WO, bR = bR T

Then there exists a regular matriz R such that

B® o o ... 0

o BWD o ... 0
BR = )

bH0+ +Hr,N]Q - (brh *
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(Proof)
The key point of the proof is to use
H%VV:l bljej b H?;z bljlj 0 . 0 by B8
T, by; & _ 0 by &1 H;V-__ by - 0 by &6
: : 0 :
H;V=1 baj" 0 0 oo bp® H;\;g ba;% b 78
and Lemma 3.
Q.E.D.
References
[1] Akaike, H.: Likelihood and Bayes procedure. Bayesian Statistics (Bernald J.M. eds.)

[2]

[3]

[4]

[5]

University Press, Valencia, Spain (1980) 143-166

Amari, S., Fujita, N., Shinomoto, S.: Four Types of Learning Curves. Neural Com-
putation 4-4 (1992) 608-618

Amari, S., Murata, N.: Statistical theory of learning curves under entropic loss.
Neural Computation 5 (1993) 140-153

Aoyagi, M.: The zeta function of learning theory and generalization error of three
layered neural perceptron. RIMS Kokyuroku, Recent Topics on Real and Complex
Singularities (2006) No. 1501, pp.153-167.

Aoyagi, M., Nagata, K.: Learning coefficient of generalization error of three layered
neural networks and normal mixture models in Bayesian estimation (preprint).

Aoyagi, M., Watanabe, S.: Resolution of Singularities and the Generalization Error
with Bayesian Estimation for Layered Neural Network. IEICE Trans. J88-D-II, 10
(2005a) 2112-2124 (English version : Systems and Computers in Japan John Wiley
& Sons Inc. (in press))

Aoyagi, M., Watanabe, S.. Stochastic Complexities of Reduced Rank Regression in
Bayesian Estimation. Neural Networks 18 (2005b) 924-933

Bernstein, I. N.: The analytic continuation of generalized functions with respect to
a parameter. Functional Anal. Appl., 6 (1972) 26-40

Bjork, J. E.: Rings of differential operators. Amsterdam: North-Holland (1979)

Fukumizu. K.: A regularity condition of the information matrix of a multilayer per-
ceptron network. Neural Networks 9-5 (1996) 871-879

Fulton, W.: Introduction to toric varieties. Annals of Mathematics Studies Princeton
University Press (1993) p131



39

[12] Hagiwara, K., Toda, N., Usui, S.: On the problem of applying AIC to determine the
structure of a layered feed-forward neural network. Proc. of IJICNN Nagoya Japan 3
(1993) 2263-2266

[13] Hartigan, J. A.: A Failure of likelihood asymptotics for normal mixtures. Proceedings
of the Berkeley Conference in Honor of J.Neyman and J.Kiefer 2 (1985) 807-810

[14] Hironaka, H.: Resolution of Singularities of an algebraic variety over a field of char-
acteristic zero. Annals of Math. 79 (1964) 109-326

[15] Kashiwara, M.: B-functions and holonomic systems. Inventions Math., 38 (1976)
33-53

[16] Kollar, J.: Singularities of pairs, Algebraic geometry-Santa Cruz 1995, Proc. Sympos.
Pure Math., 62, Amer. Math. Soc., Providence, RI, (1997 221-287

[17] Levin, E., Tishby, N., Solla, S. A.: A statistical approaches to learning and general-
ization in layered neural networks. Proc. of IEEE 78-10 (1990) 1568-1674

[18] Mackay, D. J.: Bayesian interpolation. Neural Computation 4-2 (1992) 415-447

[19] Mustata, M.: Singularities of pairs via jet schemes, J. Amer. Math. Soc. 15 (2002),
599-615.

[20] Rissanen, J.: Stochastic complexity and modeling. Annals of Statistics 14 (1986)
1080-1100

[21] Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6-2 (1978)
461-464

[22] Sturmfels, B.: Open problems in algebraic statistics, in Emerging Applications of
Algebraic Geometry, (editors M. Putinar and S. Sullivant), . M.A. Volumes in Math-
ematics and its Applications, 149, Springer, New York, (2008) 351-364

[23] Sussmann, H. J.: Uniqueness of the weights for minimal feed-forward nets with a
given input-output map. Neural Networks 5 (1992) 589-593

[24] Watanabe, S.: Algebraic analysis for nonidentifiable learning machines. Neural Com-
putation 13-4 (2001a) 899-933

[25] Watanabe, S.: Algebraic geometrical methods for hierarchical learning machines.
Neural Networks 14-8 (2001b) 1049-1060

[26] Watanabe, S., Hagiwara, K., Akaho, S., Motomura, Y., Fukumizu, K., Okada M.,
Aoyagi, M.: Theory and Application of Learning System. Morikita (2005) p. 195
(Japanese)

[27] S. Watanabe, K. Yamazaki and M. Aoyagi, Kullback Information of Normal Mixture
is not an Analytic Function, Technical report of IEICE, NC2004, 2004, 41-46.

[28] Yamanishi, K.: A decision-theoretic extension of stochastic complexity and its ap-
plications to learning. IEEE Trans. on Information Theory 44-4 (1998) 1424-1439



40

[29] Yamazaki, K., Aoyagi, M., Watanabe, S.: Asymptotic Analysis of Bayesian Gener-
alization Error with Newton Diagram, (preprint)



