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Abstract

In this article, N-fractional calculus and n(€ Z*)-th derivatives of functions

1
f(z)=z72~_b—c)2—d (Vz2=b-0)?-d #0)

are discussed. That is, n-th derivatives of the function,

2. [Um[2+2mik[s + 1+ m],

(f(2))n=(-1)*(z —b)" 1™ mZk:=O — Skm
where
s=—_ 1= (5/<1, ITI<1)
Vz=>b' z—b ’ )

is reported for example.

1 Definition of N-Fractional Calculus

In order to treat the derivatives of arbitrary order, we descrive the definition
of fractional calculus and some basical theorems and identities.

(I) Definition. ( by K. Nishimoto, [1] Vol. 1)

Let D={D_,D,},C = {C-,C4}, C- be a curve along the cut joining
two points 2z and —oo + iIm(z), C+ be a curve along the cut joining two
points 2z and oo + iIm(z), D_- be a domain surrounded by C_ , D be a
domain surrounded by C, ( Here D contains the points over the curve C ).



Moreover, let f = f(z) be a regular function in D(z € D) ,

fo = (He=clfh

= F(;,;_: 1) C (Cffcz;if.n (V ¢ Z_)a (1)
(f)-m = lim (fl (meZ¥), @

where
—m<arg({—2)<w for C_, 0<arg((—=2)<2m for C,,

(#z2, zeC, ve R, T; Gamma function,

then (f), is the fractional differintegration of arbitrary order v ( derivatives
of order v for v > 0, and integrals of order —v for v < 0 ), with respect to
z , of the function f , if [(f).| < oo.

(ITI) On the fractional calculus operator NV , some fundamental proper-
ties have reported. ([3], [5])

Theorem A. Let fractional calculus operator ( Nishimoto’s Operator )
N¥ be

N = (IR [ ) w20, (Refertol) ()
with |
N-"= lm N* (meZ*), (4)

and define the binary operation o as
NBo N*f = NBN®f = NA(N°f) (a,f € R), (5)

then the set
{N"}={N"|lv € R} (6)

is an Abelian product group ( having continuous index v ) which has the
inverse transform operator (N*)~! = N~ to the fractional calculus operator
N* , for the function f such that f € F = {f;0 # |fu| < oo,v € R}, where
F=f(z)and 2z € C. (vis. —co<v < ).

( For our convenience, we call N® o N® as product of N? and N® . )

Theorem B. Fractional calculus operator group {N"} is an Action
product group which has continuous index v for the set of F' .
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Theorem C. Let
S:={xN}u{0}={N"}Uu{-N"}uU{0} (v€R). (7

Then the set S is a commutative ring for the function f € F, when the
identity
N+ NP =NY (N®,NP,N'eS) (8)
holds. ([5])
(III) We have following results for some elementary functions. ([1])

@)
e Clnd ) PR A ol

| < )
(i) _
(log(z — €))a = —e™"T(a)(z — )™ (II(a)| < o0)
(i)
(2= &) ) =~ s log(z =), (IT(@)] < )
where 2 —c# 0 in (i), and 2 — ¢ # 0,1 in (ii) and (iii) ,

(iv)

= Ia+1) _ _
(u-v)q = kg F (ot 1= F) "% (u = u(2),v=1v(2))

2  Preliminary

(I) The following theorem is reported by K. Nishimoto [12].
Theorem D. We have

)

(((Z—b)ﬁ—c)a)'y = e_i"’Y(z—b)"‘ﬁ-—’Y i [—a]]gﬁllj‘((gi::z;— v) ( G fb)ﬁ )k

(1)

( Ir'(Bk — aB +7)
I'(Bk — ap)

| < ),

and
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(i)
(2 =B — ) = (~1)"(z~ 5" i e (S

(2)

(ne 28, I=pp! <1
where
Mr=AMA+1)---(A+Ek=1) =T(A+k)/T(\) with Mo =1,
(Pochhammer’s Notation).

(II) The following theorem is reported by K. Nishimoto already[13].
Theorem E. We have

(@)
(= - b)ﬁ - 0)"‘) d)%), = e (5 — b)2B5—

x Z e e 2GS g™
(3
= <o
and
(ii)
((((z - b?f: — %) = d)%)n = (-1)"(z — )"
> [~flml—o(d =~ mslfk — oB(é m)]"<(z LI B
(4)
(n € Zg)
where

((Z-—b)ﬁ—-c)a—d#(], I( b)ﬁ'<1> I( b)aﬂl<1)

We apply these theorems to obtain some theorems for the function
1
(Vz=b—c)i-d’



48

3  N-Fractional Calculus of Functions mlzz)—g_—d

Theorem 1. We have

(®)

1 -1 —1—
(( P—__z—b—c)z—d)7=e T(z —b)~!

X Am2+2mplE+1+m+y), ¢ % d \n
xm,;:o m!k!F(§j1+m) (\/z——b) (z—-b) )

(DG +1+m+7)] < 00)

and

(ii)

1 n b Sl £
((J__—_z--b——c)z—d)n: (=1)™(z—b) !
X Mm2+2milf+14+m),, ¢ d .,
* 3 = G @

m.k=0

(ne€ Z§)
where (Vz—b—c)?2—d#0,

and Y., k=0 = Lm0 2ohe0-

Proof of (i). We operate N7 to the both sides of following relation,

<1

<1, =2
vVz—0b " lz—b

S el (CRUKET AL ®)

and by setting a = 2, 8 = 1/2, § = —1 in Theorem E (i) we obtain (1),
under the conditions stated before.
Proof of (ii). We have the result by setting v = n in the equation (1).

Furthermore by setting ¢ = 0 in Theorem 1, we have the following
corollary immediately.
Corollary 1. We have



()

1
(2—20\/2— ~b+c2

and

(i)

1
(z—— 2¢cvV/z—b—

49

e —1- 2iTE+1+9), ¢
) (=)~ 7,;:; k(E + 1) (7=%"
(4)

(TS +144)] < o)

), ~ et S B ey

(5)
(n € Zg),
where vVz—b—-c#0, ‘\/z—c:T;lsl'
Theorem 2. We have the following identities,
(i)
. — )1/ 2 [m[2+ 2mDE+1+m+7) c d \m
(z—8) lzm;_o m!k!l"(%j1+m) (ﬁ——‘)k( - )
1 QlE+L+7), c+Vd, Vd,;
ik mGah e St O
(T3 + 14 m +7)] < o0) (ID(} + 291 < o0)
and
(i) for n € Z7,
“1/2 x [Um[2+ 2me[§ + 1+ m]n m
) el 2 (=2
1 & [Uklk + Lo, e+ V. V.
2\/3,:2, 2k. 2 {(\/———) —(\/———)} (7)

where (Vz — b —0)2—-d7é0 d#0,

l\/—-l# Li—

TN =C PN =L
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Proof of (i). We have the following relation,

1 _ 1 ( 1 _ 1 ) (8)
(Vz—b—c)2~d 2/d\vVz—b—c—+vd Vz—b—c++vd/’
From Theorem D,(i), we have

(\/z —lb——p) - (((z—b)llzﬂp)—l)v @

NIV | 3 ¢ R Tkt L
o b)lhgo G+ D (m)

(IP(2m+ 2+ v — k)| < o0)
Therefore, setting p = ¢+ v/d or ¢ — Vd, we have

(10)

(=) - (= - =y
(Vz-b—c)2—d 7—2\/_ Vz—b—c—vd' ‘Vz—b-c+Vvd"

_ - el +3+7) [c+Vd * c—vd\*
ez =)~ 72 k!r()fmckzﬂ){(m) —(ﬁ) .

(11)

Proof of (ii). Set v = n in (6).

4  Semi Derivatives and Integrals
(I} We have
()

1 ey
((\/z_'_—l;_c)z “d)uz = —i(z — b)™3/2
E [Um[2+2mll(5 + 3 +m) N
aZo  mIKIDG +1+m) (=M™ @

X

(semi derivative)

and
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(ii)
1 . -
((m e d) L i
<3 L e
(semi integral)
where

(VF=b-ef—d#0, | i<, =<1,

from Theorem 1 by setting v = 1/2 and —1/2, respectively.
[II] We have

@

1 (. p\=3/2
(z——2c\/z-5 b+cz)1/2_~ i(z=b)

2T(5+3), c
S

- (semi derivative)

and

(ii)

1 — il B\-1/2
(z—-2c\/z— b+c2) 1/2-1'(2' )

[kC(3+3), ¢ o
8 EO REE 1) VoD “

(semi integral)

where

|—<1
vz—b>b ’
from Corollary 1 by setting v = 1/2 and —1/2, respectively.



5 Some Special Cases

52

When the order of differentiation is some integer, our results coincide the

classical calculus. So, we illustrate some examples in cases of n = Q, 1.
(I) When n = 0, from Theorem 1.(ii), we have the followings,

1 -
(r=rtrma), = o

S [Uml2+ 2m]i[& + 1+ m]o
x 3 —r Skr™
m,k=0
Here we set d
c
S = — T=z-—b'
Indeed we have
1 = [1]m
RHS. of 1)=(z2-b)"1 )" %—'-T' Z
m=0 ) =0

=Gt Y [llme(1 §)=2-2m

m=0

1 [1]m m
“z—b(l—S)ﬁz (G 5)2)

1 1 (1_ T )-1
T z—-b(1-9)2 (1-9)2
1 1 1

[2 + 2m]k

T Z-b(1-82%-T (Vz-b-cp2—

(II) When n = 1, our result is written as follows.

1 -
((\/z,——_b—c)z—d)1 =—(z-0)

y i [1}m[2 + 2m]k_[£2‘;+ 14+mj; ghqm.

|
a0 mlk!

Indeed we have

RHS. of ()= —(z—-b)"2 i ElﬂTm

XS_‘: [2 + 2m]i( +1+m)

k=0 k!

(1)

(2)
3
(4)

(8)
(6)

(7)

(8)
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Now we take notice that

[2+ 2m]x(£) 1. XX [2+ 2mii
>, Bl L S B e Q
- _;_Si [2+ i:n]k+1 Sk (10)
k=0 :
= 15+ 2m) > B+ 2l g (11)

=S(1+m)(1 - §)~3-2m (12)
and |

Z[2+2mk(1+m) 1+ )Z 2+2m]k

=(1+m)(1—8) 22", (13)

Therefore we obtain

RH.S. of (T) = —(z — b1 - §)* > [1]""(1 +m) ( = S)z)m (14)

m=0

=—(z- 6721 - S)'*"{mi:0 [:,LT ((1 = S)z)m -5 [1]m ((1 = 3)2) '

m=0

—_ - T B T T K
 e—80_s) 3{(1‘ZTT§75) + T (1—(1_3)2) }
‘ _ 4

=~(-071 -9 £1S)”Sl Ty
-_ 1-5
=—(2-1b) 2((1-—5)’-’—T)'“’

1 e (15)
Ve b((Ve—b—cP—ap

This result coincides with the one obtained from the classical calculus

i (=)
=\ (Vzi-b-02_d

(ITI) The cases of n = 2 and 3 are somewhat complicated , we will report
those cases at anothor time.
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Note. In this section we use the following identities.

> Blegk_ a5, (s1<) (16)
k=0
Nes1 = A+ 1] (17)
kz:% Plak o i A f_\_]kl )’ _g ; LIS (18)
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