n-th Derivatives of Some Functions in terms of N-Fractional Calculus

Tsuyako Miyakoda
Department of Information and Physical Science
Graduate School of Information Science and Technology
Osaka University, Suita 565 - 0871, Osaka, JAPAN

Abstract

In this article, N-fractional calculus and $n \in \mathbb{Z}^+$ -th derivatives of functions

$$f(z) = \frac{1}{(\sqrt{z-b}-c)^2 - d} \qquad ((\sqrt{z-b}-c)^2 - d \neq 0)$$

are discussed. That is, n-th derivatives of the function,

$$(f(z))_n = (-1)^n (z-b)^{-1-n} \sum_{m,k=0}^{\infty} \frac{[1]_m [2+2m]_k [\frac{k}{2}+1+m]_n}{m! k!} S^k T^m$$

where

$$S = \frac{c}{\sqrt{z-b}}, \quad T = \frac{d}{z-b} \quad (|S| < 1, \quad |T| < 1).$$

is reported for example.

1 Definition of N-Fractional Calculus

In order to treat the derivatives of arbitrary order, we descrive the definition of fractional calculus and some basical theorems and identities.

(I) Definition. (by K. Nishimoto, [1] Vol. 1)

Let $D = \{D_-, D_+\}$, $C = \{C_-, C_+\}$, C_- be a curve along the cut joining two points z and $-\infty + iIm(z)$, C_+ be a curve along the cut joining two points z and $\infty + iIm(z)$, D_- be a domain surrounded by C_- , D_+ be a domain surrounded by C_+ (Here D contains the points over the curve C).

Moreover, let f = f(z) be a regular function in $D(z \in D)$,

$$f_{\nu} = (f)_{\nu} = {}_{C}(f)_{\nu}$$

$$= \frac{\Gamma(\nu+1)}{2\pi i} \int_{C} \frac{f(\zeta)d\zeta}{(\zeta-z)^{\nu+1}} \quad (\nu \notin Z^{-}), \qquad (1)$$

$$(f)_{-m} = \lim_{\nu \to -m} (f)_{\nu} \quad (m \in Z^+),$$
 (2)

where

$$-\pi \leq arg(\zeta - z) \leq \pi \text{ for } C_-, \quad 0 \leq arg(\zeta - z) \leq 2\pi \text{ for } C_+,$$

$$\zeta \neq z, \quad z \in C, \quad \nu \in R, \quad \Gamma; \quad Gamma \quad function,$$

then $(f)_{\nu}$ is the fractional differintegration of arbitrary order ν (derivatives of order ν for $\nu > 0$, and integrals of order $-\nu$ for $\nu < 0$), with respect to z, of the function f, if $|(f)_{\nu}| < \infty$.

(II) On the fractional calculus operator N^{ν} , some fundamental properties have reported. ([3], [5])

Theorem A. Let fractional calculus operator (Nishimoto's Operator) N^{ν} be

$$N^{\nu} = \left(\frac{\Gamma(\nu+1)}{2\pi i} \int_{C} \frac{d\zeta}{(\zeta-z)^{\nu+1}}\right) \quad (\nu \notin Z^{-}), \quad (Refer\ to[1])$$
 (3)

with

$$N^{-m} = \lim_{\nu \to -m} N^{\nu} \quad (m \in Z^+),$$
 (4)

and define the binary operation o as

$$N^{\beta} \circ N^{\alpha} f = N^{\beta} N^{\alpha} f = N^{\beta} (N^{\alpha} f) \quad (\alpha, \beta \in R), \tag{5}$$

then the set

$$\{N^{\nu}\} = \{N^{\nu} | \nu \in R\} \tag{6}$$

is an Abelian product group (having continuous index ν) which has the inverse transform operator $(N^{\nu})^{-1} = N^{-\nu}$ to the fractional calculus operator N^{ν} , for the function f such that $f \in F = \{f; 0 \neq |f_{\nu}| \leq \infty, \nu \in R\}$, where f = f(z) and $z \in C$. (vis. $-\infty < \nu < \infty$).

(For our convenience, we call $N^{\beta} \circ N^{\alpha}$ as product of N^{β} and N^{α} .)

Theorem B. Fractional calculus operator group $\{N^{\nu}\}$ is an Action product group which has continuous index ν for the set of F.

Theorem C. Let

$$S := \{ \pm N^{\nu} \} \cup \{0\} = \{N^{\nu}\} \cup \{-N^{\nu}\} \cup \{0\} \ (\nu \in R). \tag{7}$$

Then the set S is a commutative ring for the function $f \in F$, when the identity

$$N^{\alpha} + N^{\beta} = N^{\gamma} \quad (N^{\alpha}, N^{\beta}, N^{\gamma} \in S)$$
 (8)

holds. ([5])

(III) We have following results for some elementary functions. ([1])

(i)
$$((z-c)^{\beta})_{\alpha} = e^{-i\pi\alpha} \frac{\Gamma(\alpha-\beta)}{\Gamma(-\beta)} (z-c)^{\beta-\alpha} \quad (|\frac{\Gamma(\alpha-\beta)}{\Gamma(-\beta)}| < \infty)$$

(ii)
$$(\log(z-c))_{\alpha} = -e^{-i\pi\alpha}\Gamma(\alpha)(z-c)^{-\alpha} \quad (|\Gamma(\alpha)| < \infty)$$

(iii)
$$((z-c)^{-\alpha})_{-\alpha} = -e^{i\pi\alpha} \frac{1}{\Gamma(\alpha)} \log(z-c), \quad (|\Gamma(\alpha)| < \infty)$$

where $z-c \neq 0$ in (i), and $z-c \neq 0, 1$ in (ii) and (iii) ,

(iv)
$$(u \cdot v)_{\alpha} := \sum_{k=0}^{\infty} \frac{\Gamma(\alpha+1)}{k!\Gamma(\alpha+1-k)} u_{\alpha-k} v_{k}. \quad (u = u(z), v = v(z))$$

2 Preliminary

(I) The following theorem is reported by K. Nishimoto [12]. **Theorem D.** We have

$$(((z-b)^{\beta}-c)^{\alpha})_{\gamma} = e^{-i\pi\gamma}(z-b)^{\alpha\beta-\gamma} \sum_{k=0}^{\infty} \frac{[-\alpha]_{k}\Gamma(\beta k - \alpha\beta + \gamma)}{k!\Gamma(\beta k - \alpha\beta)} (\frac{c}{(z-b)^{\beta}})^{k}$$

$$(|\frac{\Gamma(\beta k - \alpha\beta + \gamma)}{\Gamma(\beta k - \alpha\beta)}| < \infty),$$

$$(1)$$

and

(i)

$$(((z-b)^{\beta}-c)^{\alpha})_{n} = (-1)^{n}(z-b)^{\alpha\beta-n} \sum_{k=0}^{\infty} \frac{[-\alpha]_{k}[\beta k - \alpha\beta]_{n}}{k!} (\frac{c}{(z-b)^{\beta}})^{k}$$

$$(n \in Z_{0}^{+}, |\frac{c}{(z-b)^{\beta}}| < 1),$$
(2)

where

$$[\lambda]_k = \lambda(\lambda+1)\cdots(\lambda+k-1) = \Gamma(\lambda+k)/\Gamma(\lambda)$$
 with $[\lambda]_0 = 1$,

(Pochhammer's Notation).

(II) The following theorem is reported by K. Nishimoto already[13]. **Theorem E.** We have

(i)

$$((((z-b)^{\beta}-c)^{\alpha})-d)^{\delta})_{\gamma} = e^{-i\pi\gamma}(z-b)^{\alpha\beta\delta-\gamma} \times \sum_{m,k=0}^{\infty} \frac{[-\delta]_m[-\alpha(\delta-m)]_k\Gamma(\beta k - \alpha\beta(\delta-m) + \gamma)}{m!k!\Gamma(\beta k - \alpha\beta(\delta-m))} (\frac{c}{(z-b)^{\beta}})^k (\frac{d}{(z-b)^{\alpha\beta}})^m,$$
(3)

$$(\left|\frac{\Gamma(\beta k - \alpha \beta(\delta - m) + \gamma)}{\Gamma(\beta k - \alpha \beta(\delta - m))}\right| < \infty),$$

and

(ii)

$$((((z-b)^{\beta}-c)^{\alpha})-d)^{\delta})_{n}=(-1)^{n}(z-b)^{\alpha\beta\delta-n}$$

$$\times \sum_{m,k=0}^{\infty} \frac{[-\delta]_{m}[-\alpha(\delta-m)]_{k}[\beta k-\alpha\beta(\delta-m)]_{n}}{m!k!} (\frac{c}{(z-b)^{\beta}})^{k} (\frac{d}{(z-b)^{\alpha\beta}})^{m},$$

$$(4)$$

$$(n\in Z_0^+)$$

where

$$((z-b)^{\beta}-c)^{\alpha}-d\neq 0, \ |\frac{c}{(z-b)^{\beta}}|<1, \ |\frac{d}{(z-b)^{\alpha}\beta}|<1).$$

We apply these theorems to obtain some theorems for the function $\frac{1}{(\sqrt{z-b}-c)^2-d}$.

3 N-Fractional Calculus of Functions $\frac{1}{(\sqrt{z-b}-c)^2-d}$

Theorem 1. We have

(i)

$$\left(\frac{1}{(\sqrt{z-b}-c)^2-d}\right)_{\gamma} = e^{-i\pi\gamma}(z-b)^{-1-\gamma} \times \sum_{m,k=0}^{\infty} \frac{[1]_m[2+2m]_k\Gamma(\frac{k}{2}+1+m+\gamma)}{m!k!\Gamma(\frac{k}{2}+1+m)} \left(\frac{c}{\sqrt{z-b}}\right)^k \left(\frac{d}{z-b}\right)^m (1)$$

$$(|\Gamma(\frac{k}{2}+1+m+\gamma)| < \infty)$$

and

(ii)

$$\left(\frac{1}{(\sqrt{z-b}-c)^2-d}\right)_n = (-1)^n (z-b)^{-1-n}
\times \sum_{m.k=0}^{\infty} \frac{[1]_m [2+2m]_k [\frac{k}{2}+1+m]_n}{m!k!} \left(\frac{c}{\sqrt{z-b}}\right)^k \left(\frac{d}{z-b}\right)^m$$
(2)

$$(n\in Z_0^+)$$

where
$$(\sqrt{z-b}-c)^2-d\neq 0$$
, $|\frac{c}{\sqrt{z-b}}|<1$, $|\frac{d}{z-b}|<1$.

and $\sum_{m,k=0} := \sum_{m=0}^{\infty} \sum_{k=0}^{\infty}$.

Proof of (i). We operate N^{γ} to the both sides of following relation,

$$\frac{1}{(\sqrt{z-b}-c)^2-d} = \left(((z-b)^{1/2}-c)^2-d\right)^{-1} \tag{3}$$

and by setting $\alpha = 2$, $\beta = 1/2$, $\delta = -1$ in Theorem E (i) we obtain (1), under the conditions stated before.

Proof of (ii). We have the result by setting $\gamma = n$ in the equation (1).

Furthermore by setting $\alpha = 0$ in Theorem 1, we have the following corollary immediately.

Corollary 1. We have

(i)
$$\left(\frac{1}{z - 2c\sqrt{z - b} - b + c^2} \right)_{\gamma} = e^{-i\pi\gamma} (z - b)^{-1 - \gamma} \sum_{k=0}^{\infty} \frac{[2]_k \Gamma(\frac{k}{2} + 1 + \gamma)}{k! \Gamma(\frac{k}{2} + 1)} (\frac{c}{\sqrt{z - b}})^k$$

$$(|\Gamma(\frac{k}{2} + 1 + \gamma)| \le \infty)$$

and

(ii)
$$\left(\frac{1}{z - 2c\sqrt{z - b} - b + c^2}\right)_n = (-1)^n (z - b)^{-1 - n} \sum_{k=0}^{\infty} \frac{[2]_k [\frac{k}{2} + 1]}{k!} (\frac{c}{\sqrt{z - b}})^k$$

$$(n \in Z_0^+),$$

$$where \sqrt{z - b} - c \neq 0, \quad \left|\frac{c}{\sqrt{z - b}}\right| \leq 1.$$

Theorem 2. We have the following identities,

(i)

$$(z-b)^{-1/2} \sum_{m,k=0}^{\infty} \frac{[1]_m [2+2m]_k \Gamma(\frac{k}{2}+1+m+\gamma)}{m!k!\Gamma(\frac{k}{2}+1+m)} (\frac{c}{\sqrt{z-b}})^k (\frac{d}{z-b})^m$$

$$= \frac{1}{2\sqrt{d}} \sum_{k=0}^{\infty} \frac{[1]_k \Gamma(\frac{k}{2}+\frac{1}{2}+\gamma)}{k!\Gamma(\frac{k}{2}+\frac{1}{2})} \{ (\frac{c+\sqrt{d}}{\sqrt{z-b}})^k - (\frac{c-\sqrt{d}}{\sqrt{z-b}})^k \} \quad (6)$$

$$(|\Gamma(\frac{k}{2}+1+m+\gamma)| < \infty) \quad (|\Gamma(\frac{k}{2}+\frac{1}{2}\gamma| < \infty)$$

and

(ii) for $n \in \mathbb{Z}_0^+$,

$$(z-b)^{-1/2} \sum_{m,k=0}^{\infty} \frac{[1]_m [2+2m]_k [\frac{k}{2}+1+m]_n}{m!k!} (\frac{c}{\sqrt{z-b}})^k (\frac{d}{z-b})^m$$

$$= \frac{1}{2\sqrt{d}} \sum_{k=0}^{\infty} \frac{[1]_k [\frac{k}{2}+\frac{1}{2}]_n}{k!} \{ (\frac{c+\sqrt{d}}{\sqrt{z-b}})^k - (\frac{c-\sqrt{d}}{\sqrt{z-b}})^k \}$$
 (7)

where $(\sqrt{z-b}-c)^2-d\neq 0$, $d\neq 0$,

$$\left|\frac{c}{\sqrt{z-b}}\right| \neq 1, \left|\frac{d}{z-b}\right| \neq 1, \left|\frac{c+\sqrt{d}}{\sqrt{z-b}}\right| \neq 1, \left|\frac{c-\sqrt{d}}{\sqrt{z-b}}\right| \neq 1.$$

Proof of (i). We have the following relation,

$$\frac{1}{(\sqrt{z-b}-c)^2-d} = \frac{1}{2\sqrt{d}} \left(\frac{1}{\sqrt{z-b}-c-\sqrt{d}} - \frac{1}{\sqrt{z-b}-c+\sqrt{d}} \right). \quad (8)$$

From Theorem D,(i), we have

$$\left(\frac{1}{\sqrt{z-b}-p}\right)_{\gamma} = \left(((z-b)^{1/2}-p)^{-1}\right)_{\gamma} \tag{9}$$

$$=e^{-i\pi\gamma}(z-b)^{-1/2-\gamma}\sum_{k=0}^{\infty}\frac{[1]_k\Gamma(\frac{k}{2}+\frac{1}{2}+\gamma)}{k!\Gamma(\frac{k}{2}+\frac{1}{2})}\left(\frac{p}{\sqrt{z-b}}\right)^k.$$
 (10)

$$(|\Gamma(2m+2+\gamma-k)|<\infty)$$

Therefore, setting $p = c + \sqrt{d}$ or $c - \sqrt{d}$, we have

$$\left(\frac{1}{(\sqrt{z-b}-c)^2-d}\right)_{\gamma} = \frac{1}{2\sqrt{d}} \left(\left(\frac{1}{\sqrt{z-b}-c-\sqrt{d}}\right)_{\gamma} - \left(\frac{1}{\sqrt{z-b}-c+\sqrt{d}}\right)_{\gamma} \right) \\
= e^{-i\pi\gamma} (z-b)^{-1/2-\gamma} \sum_{k=0}^{\infty} \frac{[1]_k \Gamma(\frac{k}{2} + \frac{1}{2} + \gamma)}{k! \Gamma(|frack2 + \frac{1}{2})} \left\{ \left(\frac{c+\sqrt{d}}{\sqrt{z-b}}\right)^k - \left(\frac{c-\sqrt{d}}{\sqrt{z-b}}\right)^k \right\}.$$
(11)

Proof of (ii). Set $\gamma = n$ in (6).

4 Semi Derivatives and Integrals

[I] We have

(i)

$$\left(\frac{1}{(\sqrt{z-b}-c)^2-d}\right)_{1/2} = -i(z-b)^{-3/2}
\times \sum_{m,k=0}^{\infty} \frac{[1]_m [2+2m]_k \Gamma(\frac{k}{2}+\frac{3}{2}+m)}{m!k!\Gamma(\frac{k}{2}+1+m)} \left(\frac{c}{\sqrt{z-b}}\right)^k \left(\frac{d}{z-b}\right)^m \quad (1)$$

(semi derivative)

and

$$\left(\frac{1}{(\sqrt{z-b}-c)^2-d}\right)_{-1/2} = i(z-b)^{-1/2}
\times \sum_{m,k=0}^{\infty} \frac{[1]_m [2+2m]_k \Gamma(\frac{k}{2}+\frac{1}{2}+m)}{m!k! \Gamma(\frac{k}{2}+1+m)} \left(\frac{c}{\sqrt{z-b}}\right)^k \left(\frac{d}{z-b}\right)^m \quad (2)$$

(semi integral)

where

$$(\sqrt{z-b}-c)^2-d\neq 0, \ |\frac{c}{\sqrt{z-b}}|<1, \ |\frac{d}{z-b}|<1,$$

from Theorem 1 by setting $\gamma = 1/2$ and -1/2, respectively.

[II] We have

(i)

$$\left(\frac{1}{z - 2c\sqrt{z - b} - b + c^2}\right)_{1/2} = -i(z - b)^{-3/2}
\times \sum_{k=0}^{\infty} \frac{[2]_k \Gamma(\frac{k}{2} + \frac{3}{2})}{k! \Gamma(\frac{k}{2} + 1)} \left(\frac{c}{\sqrt{z - b}}\right)^k$$
(3)

(semi derivative)

and

(ii)

$$\left(\frac{1}{z - 2c\sqrt{z - b} - b + c^2}\right)_{-1/2} = i(z - b)^{-1/2}
\times \sum_{k=0}^{\infty} \frac{[2]_k \Gamma(\frac{k}{2} + \frac{1}{2})}{k! \Gamma(\frac{k}{2} + 1)} \left(\frac{c}{\sqrt{z - b}}\right)^k$$
(4)

(semi integral)

where

$$|\frac{c}{\sqrt{z-b}}| < 1,$$

from Corollary 1 by setting $\gamma = 1/2$ and -1/2, respectively.

5 Some Special Cases

When the order of differentiation is some integer, our results coincide the classical calculus. So, we illustrate some examples in cases of n = 0, 1.

(I) When n = 0, from Theorem 1.(ii), we have the followings,

$$\left(\frac{1}{(\sqrt{z-b}-c)^2-d}\right)_0 = (z-b)^{-1}
\times \sum_{m,k=0}^{\infty} \frac{[1]_m[2+2m]_k[\frac{k}{2}+1+m]_0}{m!k!} S^k T^m$$
(1)

Here we set

$$S = \frac{c}{\sqrt{z-b}}, \quad T = \frac{d}{z-b}.$$

Indeed we have

R.H.S. of (1) =
$$(z - b)^{-1} \sum_{m=0}^{\infty} \frac{[1]_m}{m!} T^m \sum_{k=0}^{\infty} \frac{[2 + 2m]_k}{k!} S^k$$
 (2)

$$= (z-b)^{-1} \sum_{m=0}^{\infty} \frac{[1]_m}{m!} T^m (1-S)^{-2-2m}$$
 (3)

$$=\frac{1}{z-b}\frac{1}{(1-S)^2}\sum_{m=0}^{\infty}\frac{[1]_m}{m!}(\frac{T}{(1-S)^2})^m\tag{4}$$

$$=\frac{1}{z-b}\frac{1}{(1-S)^2}\left(1-\frac{T}{(1-S)^2}\right)^{-1} \tag{5}$$

$$=\frac{1}{z-b}\frac{1}{(1-S)^2-T}=\frac{1}{(\sqrt{z-b}-c)^2-d}.$$
 (6)

(II) When n = 1, our result is written as follows.

$$\left(\frac{1}{(\sqrt{z-b}-c)^2-d}\right)_1 = -(z-b)^{-2}
\times \sum_{m,k=0}^{\infty} \frac{[1]_m[2+2m]_k[\frac{k}{2}+1+m]_1}{m!k!} S^k T^m.$$
(7)

Indeed we have

$$R.H.S. of (7) = -(z-b)^{-2} \sum_{m=0}^{\infty} \frac{[1]_m}{m!} T^m \times \sum_{k=0}^{\infty} \frac{[2+2m]_k (\frac{k}{2}+1+m)}{k!} S^k.$$
 (8)

Now we take notice that

$$\sum_{k=0}^{\infty} \frac{[2+2m]_k(\frac{k}{2})}{k!} S^k = \frac{1}{2} \sum_{k=1}^{\infty} \frac{[2+2m]_k}{(k-1)!} S^k$$
 (9)

$$=\frac{1}{2}S\sum_{k=0}^{\infty}\frac{[2+2m]_{k+1}}{k!}S^k$$
 (10)

$$= \frac{1}{2}S(2+2m)\sum_{k=0}^{\infty} \frac{[3+2m]_k}{k!} S^k$$
 (11)

$$=S(1+m)(1-S)^{-3-2m} (12)$$

and

$$\sum_{k=0}^{\infty} \frac{[2+2m]_k (1+m)}{k!} S^k = (1+m) \sum_{k=0}^{\infty} \frac{[2+2m]_k}{k!} S^k$$
$$= (1+m)(1-S)^{-2-2m}. \tag{13}$$

Therefore we obtain

$$R.H.S. \ of \ (7) = -(z-b)^{-2}(1-S)^{-3} \sum_{m=0}^{\infty} \frac{[1]_m}{m!} (1+m) \left(\frac{T}{(1-S)^2}\right)^m$$
(14)
$$= -(z-b)^{-2}(1-S)^{-3} \left\{ \sum_{m=0}^{\infty} \frac{[1]_m}{m!} \left(\frac{T}{(1-S)^2}\right)^m + \sum_{m=0}^{\infty} \frac{[1]_m}{m!} \left(\frac{T}{(1-S)^2}\right)^m \right\}$$

$$= -(z-b)^{-2}(1-S)^{-3} \left\{ \left(1 - \frac{T}{(1-S)^2}\right)^{-1} + \frac{T}{(1-S)^2} \left(1 - \frac{T}{(1-S)^2}\right)^{-2} \right\}$$

$$= -(z-b)^{-2}(1-S)^{-3} \frac{(1-S)^4}{((1-S)^2-T)^2}$$

$$= -(z-b)^{-2} \frac{1-S}{((1-S)^2-T)^2}$$

$$= -\frac{1}{\sqrt{z-b}} \frac{\sqrt{z-b}-c}{((\sqrt{z-b}-c)^2-d)^2}.$$
 (15)

This result coincides with the one obtained from the classical calculus

$$\frac{d}{dz}\left(\frac{1}{(\sqrt{z-b}-c)^2-d}\right)$$

(III) The cases of n=2 and 3 are somewhat complicated, we will report those cases at another time.

Note. In this section we use the following identities.

$$\sum_{k=0}^{\infty} \frac{[\lambda]_k}{k!} S^k = (1-S)^{-\lambda}, \quad (|S| < 1)$$
 (16)

$$[\lambda]_{k+1} = \lambda[\lambda+1]_k \tag{17}$$

$$\sum_{k=0}^{\infty} \frac{[\lambda]_k k}{k!} S^k = \sum_{k=1}^{\infty} \frac{[\lambda]_k}{(k-1)!} S^k = S \sum_{k=0}^{\infty} \frac{[\lambda]_{k+1}}{k!} S^k$$
 (18)

References

- [1] K. Nishimoto; Fractional Calculus, Vol. 1 (1984), Vol. 2 (1987), Vol. 3 (1989), Vol. 4 (1991), Vol. 5, (1996), Descartes Press, Koriyama, Japan.
- [2] K. Nishimoto; An Essence of Nishimnoto's Fractional Calculus (Calculus of the 21st Century); Integrals and Differentiations of Arbitrary Order (1991), Descartes Press, Koriyama, Japan.
- [3] K. Nishimoto; On Nishimoto's fractional calculus operator N^{ν} (On an action group), J. Frac. Calc. Vol. 4, Nov. (1993), 1 11.
- [4] K. Nishimoto; Unification of the integrals and derivatives (A serendipity in fractional calculus), J. Frac. Calc. Vol. 6, Nov. (1994), 1 14.
- [5] K. Nishimoto; Ring and Field Produced from The Set of N- Fractional Calculus Operator, J. Frac Calc. Vol. 24, Nov. (2003),29 36.
- [6] K. Nishimoto; On the fractional calculus of functions $(a-z)^{\beta}$ and $\log(a-z)$, J. Frac. Calc. Vol. 3, May (1993), 19 27.
- [7] K. Nishimoto and S. -T. Tu; Fractional calculus of Psi functions (Generalized polygamma functions), J. Frac. Calc. Vol. 5, May (1994), 27 34.
- [8] S. -T. Tu and K. Nishimoto; On the fractional calculus of functions $(cz-a)^{\beta}$ and $\log(cz-a)$, J. Frac. Calc. Vol. 5, May (1994), 35 43.
- [9] K. Nishimoto; N-Fractional Calculus of the Power and Logarithmic Functions, and some Identities, J. Frac. Calc. Vol. 21, May (2002), 1 -6.
- [10] K. Nishimoto; Some Theorems for N-Fractional Calculus of Logarithmic Functions, J. Frac. Calc. Vol. 21, May (2002), 7 12.

- [11] K. Nishimoto; N-Fractional Calculus of Products of Some Power Functions, J. Frac. Calc. Vol. 27, May (2005), 83 88.
- [12] K. Nishimoto; N-Fractional Calculus of Products of Some Composite Functions, J. Frac. Calc. Vol. 29, May (2006), 35 - 44.
- [13] K. Nishimoto; N-Fractional Calculus of Products of Some Composite Algebraic Functions, J. Frac. Calc. Vol. 31, May (2007), 11 - 23.