On a sufficient condition for starlikeness of meromorphic functions

Mamoru Nunokawa

Abstract

A function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is called convex of order α , $0 < \alpha < 1$ if f(z) is analytic in $\mathbb{E} = \{z \mid |z| < 1\}$ and satisfies the following inequality

$$1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} > \alpha$$
 in E.

Then we denote by $f(z) \in \mathcal{K}(\alpha)$.

The family of starlike functions of order α , $0 < \alpha < 1$ shall be denoted by $S^*(\alpha)$ and is defined by the conditions that $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ satisfies

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha$$
 in \mathbb{E} .

Then it is well known that $f(z) \in \mathcal{K}(\alpha)$ implies $f(z) \in \mathcal{S}^*(\beta)$ where

$$\beta = \begin{cases} \frac{1 - 2\alpha}{2^{2-2\alpha}(1 - 2^{2\alpha-1})} & \text{if } \alpha \neq \frac{1}{2} \\ \frac{1}{2\log 2} & \text{if } \alpha = \frac{1}{2}. \end{cases}$$

The above result was completed by 3 papers by Jack [1], MacGregor [2] and Wilken and Feng [5].

In this paper, we will obtain the order of starlikeness of the function $F(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$ which is meromorphic in \mathbb{E} and satisfies the inequality

$$-\left(1+\operatorname{Re}\frac{zF''(z)}{F'(z)}\right)<\frac{3}{2}\alpha,\quad \frac{2}{3}<\alpha<1,\quad \text{in}\quad \mathbb{E}.$$

1 Introduction

Let Σ denote the class of normalized functions F(z) which are meromorphic in $\mathbb E$ and defined by

$$F(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$$

with a simple pole at the origin.

Also let $\Sigma^*(\alpha)$, $0 < \alpha < 1$, denote the subclass of Σ consisting of the functions F(z) which are univalent and starlike with respect to the origin in \mathbb{E} or

$$-{\rm Re}\frac{zF'(z)}{F(z)}>\alpha\quad {\rm in}\ \mathbb{E},$$

and let $\Sigma_k(\alpha)$, $0 < \alpha < 1$, denote the subclass of Σ consisting of the functions F(z) which are univalent and convex in $\mathbb E$ or

$$-\left(1+\mathrm{Re}\frac{zF''(z)}{F'(z)}\right)>\alpha\quad\text{in }\;\mathbb{E}.$$

2 Lemma

Lemma 1 Let p(z) be analytic in \mathbb{E} , p(0) = 1 and suppose that there exists a point $z_0 \in \mathbb{E}$ such that

$$\operatorname{Re} p(z) > 0$$
 for $|z| < |z_0|$

$$\operatorname{Re} p(z_0) = 0$$
 and $p(z_0) \neq 0$.

Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = iK$$

where K is real and

$$K \ge rac{1}{2}\left(a + rac{1}{a}
ight) \quad when \quad p(z_0) = ia \quad and \quad 0 < a,$$

and

$$K \leq -rac{1}{2}\left(a+rac{1}{a}
ight) \quad when \quad p(z_0) = -ia \quad and \quad 0 < a.$$

A proof can be found in [3].

3 Theorem

Theorem 1 Let p(z) be analytic in \mathbb{E} , p(0) = 1 and suppose that

$$\operatorname{Re}\left(p(z) - rac{zp'(z)}{p(z)}
ight) < rac{3}{2}lpha, \quad rac{2}{3} < lpha < 1 \quad in \ \ \mathbb{E},$$

and suppose that for arbitrary r, 0 < r < 1

$$\min_{|z| \le r} \operatorname{Re} p(z) = \operatorname{Re} p(z_0) \neq p(z_0), \quad |z_0| = r$$

or $\operatorname{Re} p(z)$ on any circle |z| = r, 0 < r < 1 does not take its minimum value on the real axis. Then we have

$$\operatorname{Re} p(z) > \alpha$$
 in \mathbb{E} .

Proof. If there exists a point $z_0 \in \mathbb{E}$ such that

$$\operatorname{Re} p(z) > \alpha \quad \text{for} \quad |z| < |z_0|$$

and

$$\operatorname{Re} p(z_0) = \alpha \neq p(z_0),$$

putting

$$q(z) = \frac{p(z) - \alpha}{1 - \alpha}, \quad q(0) = 1$$

it follows that

$$\text{Re } q(z) > 0 \quad \text{for } |z| < |z_0|.$$

From the hypothesis of Theorem 1 and Lemma 1, we have

$$\operatorname{Re} q(z_0) = 0$$
 and $q(z_0) \neq 0$

$$\frac{z_0 q'(z_0)}{q(z_0)} = \frac{z_0 p'(z_0)}{p(z_0) - \alpha} = iK$$

where

$$K \geqq rac{1}{2} \left(a + rac{1}{a}
ight) \quad ext{when} \quad p(z_0) - lpha = ia \ ext{ and } \ 0 < a,$$

and

$$K \le -rac{1}{2}\left(a+rac{1}{a}
ight) \quad ext{when} \quad p(z_0)-lpha=-ia \ ext{ and } \ 0 < a.$$

For the case, $p(z_0) - \alpha = ia$, 0 < a, we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = \frac{z_0 p'(z_0)}{p(z_0) - \alpha} \cdot \frac{p(z_0) - \alpha}{p(z_0)} = iK \frac{ia}{\alpha + ia}$$
$$= iK \frac{ia(\alpha - ia)}{\alpha^2 + a^2} = -\frac{\alpha aK - ia^2K}{\alpha^2 + a^2}.$$

Putting

$$q(a) = \frac{1+a^2}{\alpha^2 + a^2}$$
, $0 < a$ and $0 < \alpha < 1$

then it follows that

$$q'(a) = \frac{2a(\alpha^2 - 1)}{(\alpha^2 + a^2)^2} < 0$$

and

$$\lim_{a \to \infty} q(a) = 1.$$

Therefore we have

$$\operatorname{Re} \frac{z_0 p'(z_0)}{p(z_0)} = -\frac{\alpha}{\alpha^2 + a^2} a K$$

$$\leq -\frac{\alpha}{2} \frac{1 + a^2}{\alpha^2 + a^2} \leq -\frac{\alpha}{2}.$$

Then it follows that

$$\operatorname{Re}\left(p(z_0)-rac{z_0p'(z_0)}{p(z_0)}
ight) \geqq lpha + rac{lpha}{2} = rac{3}{2}lpha.$$

This is a contradiction and for the case $p(z_0) - \alpha = -ia$, 0 < a, applying the same method as the above, we also have a contradiction. It completes the proof.

From Theorem 1, we have the following corollary.

Corollary 1 Suppose that

$$-\left(1+\mathrm{Re}rac{zF''(z)}{F'(z)}
ight)<rac{3}{2}lpha, \quad rac{2}{3}$$

and for arbitrary r, 0 < r < 1

$$\min_{|z| \le r} \operatorname{Re} \left(-\frac{zF'(z)}{F(z)} \right) = \operatorname{Re} \left(-\frac{z_0 F'(z_0)}{F(z_0)} \right) \neq -\frac{z_0 F'(z_0)}{F(z_0)}$$

where $|z_0| = r$. Then we have

$$F(z) \in \Sigma^*(\alpha)$$
.

In [4, Theorem 3 and 4], Robertson obtained the following result.

Robertson's result Let $F(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$ be meromorphic in \mathbb{E} and suppose that

$$F(z) \in \Sigma^*(0)$$
.

Then it follows that

$$-\left(1+\mathrm{Re}\frac{zF''(z)}{F'(z)}\right)\geqq0\quad in\ |z|\leqq\frac{1}{\sqrt{3}}.$$

References

- [1] I. S. Jack, Functions starlike and convex of order α , J. London Math. Soc. (2), 3 (1971), 469-474.
- [2] T. H. MacGregor, A subordination for convex functions of order α , J. London Math. Soc., (2), 9 (1975), 530-536.
- [3] M. Nunokawa, On properties of non-Carathéodory functions, Proc. Japan Acad., Vol. 68, Ser A, No.6 (1992), 152-153.
- [4] M. S. Robertson, Extremal problems for functions with positive real part and applications, Trans. American Math. Soc., Vol. 106, No. 2 (1963), 236-253.
- [5] D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc., (2), 21 (1980), 287-290.

Mamoru Nunokawa
Emeritus Professor of University of Gunma
Hoshikuki-cho 798-8, Chuou-Ward,
Chiba city 260-0808
Japan

e-mail: mamoru_nuno@doctor.nifty.jp