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Harmonic Univalent Functions with Janowski
Starlike Analytic Part

Emel YAVUZ

Abstract

In this paper we define a new subclass of harmonic univalent func-
tions for which analytic part is Janowski Starlike Function, and inves-
tigate some properties of this type of functions. Also we give a new
coefficient inequality for harmonic univalent fimctions.

1 Introduction

Let € be the class of analytic functions w(z) in the open unit disc D = {z €
Cl|z| < 1}, satisfying w(0) = 0 and |w(z)| < 1 for all z € D.

For arbitrary fixed real numbers A and B which satisfy - 1 < B< A1
we say p(z) belongs to the class P(A, B) if

o0
p(z) =1+ anz”
n=1

is analytic in ID and p(z) is given by

_ 1+ Aw(z)

P& = 13 Bu()

for every z in D and for some w(z) € Q. This class, P(4, B), was first
introduced by W. Janowski [3]. Therefore, we call p(z) in the class P(A, B)
“Janowski Function”.
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Let 8*(A, B) denote the family of functions

h(z) = z+ ianz"

n=2
regular in D, and such that h(z) is in §*(A, B) if and only if
K(2) _
z h(Z) - p(Z)

for some p(z) in P(A, B) and for every z € D. Functions in S*(A4, B) are
called the “Janowski Starlike Functions” [3].

A continuous complex valued function f = u + ¢v defined in a simply
connected domain U is said to be “Harmonic” in U if u and v are real har-
monic in 4. In any simply connected domain 4 C C we can write f = h+ g,
where h and g are analytic in 4. We call h the “Analytic Part” and g the
“Co-Analytic Part” of f.

The “Jocabian” of f is given by

Jy(z) = K (2)]* — |g'(2)I*-

A necessary and sufficient condition for f = h + § is to be locally univalent
and sense-preserving in U such as [2], [4]

Jy(z) = | (2)[* — |g'(2)|* > 0.

This is equivalent to
l9'(2)] < |W'(2)]

forall z e U.

Denote by Sy the class of functions f = h + g that are “Harmonic Uni-
valeni and Sense-Preserving” in the open unit disc D = {z € C||z| < 1}, for
which

f(0) = h(0) = f,(0) -1 =0.

For f = h + § € 8;; we may express the analytic functions A and ¢ as

h(z) =z+ Zamz", g(z) = anz". (1.1)

n=2 n=1

So, as a result of the sense-preserving property of f, |b| < 1.
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The classical family & which is analytic, univalent and normalized func-
tions on D is subclass of Sy, in which b, = 0 for all n € N,

The function ,

w1=71-;

is called the “Second Dilatation of f = h+ g”, and we denote the class of

the second dilatation of f by W. Note that |wi(z)| < 1 and w;(0) = b; # 0

for all z in . | |
We consider the transformation ¢ : C — C, given by

_ wi(z) —wi(0)
e o

(1.2)

maps the unit disc D onto itself, where w;(z) € W for every z in D. It is easy
to show that ¢(z) is an analytic function in D, and |¢(z)| < 1, and ¢(0) =0
for all z € D. Hence ¢(z) € Q.

Definition 1.1. Let f = h+ § € Sy;. We define a new subclass of harmonic
univalent functions for which analytic part is Janowski starlike function. We

denote by S3,(A, B) the family of all harmonic univalent functions on ID with
h € S*(A, B).

2 Auxiliary Lemmas

Lemma 2.1. (Schwarz’s Lemma [1]) If ¢(2) is analytic for |z| < 1 and
satisfies the condition |¢p(z)| < 1, ¢(0) = 0 then |p(2)| < |z| and |¢'(0)] < 1.
If |¢(2)| = z for some z % 0 or if |¢(0)| = 1, then ¢(z) = cz with a constant
¢ of absolute value 1.

Lemma 2.2. [3] If h(z) € S*(A, B), then for |z] =r,0<r <1

C(r;—A,—B) < |K(2)] < C(r; A, B), (2.1)
where | h-2B)/B
) _ (1+Ar)(1+‘Br) - , if B#0,
Clr; 4, B) = {(1 + Ar)edr, if B=0. 22)

These bounds are sharp, being attained at the point z = re¥, 0 < ¢ < 27, by
ha(2) = zho(z; — A, —B) 2.3)
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and
h*(z) = zho(2; A, B), (2.4)
respectively, where |
(1+ Be #°z)(4-2B)/B_ for B # 0,
ho(z; A, B) = )
o(z ) {e““"z, for B=0.
Lemma 2.3. Let f =h+ G € Sy and w; € W. Then we have
—i0 _a(l-r)] _r(l-a?
e un(2) 1—a?r?2 |~ 1—a?r?’ (2:5)

where first coefficient of g isby = ae?, 0 < 0 < 27, and |z| = r < 1. The
equality holds in the inequality (2.5) only for the function

w(z) =e z € D. (2.6)
Proof. Since ¢(z) which is given by (1.2) satisfies the conditions of Schwarz’s
lemma then |¢(2)| < |2| = < 1. Hence, we can write

le™*w;(z) —

T a0, (2)] <r=le ¥w(2) — af < 7]l — ae *w(2))

l$(2)| =

for all z in D. By taking e **w;(z) = = + iy we get following inequality

2 2 2
2 2 a(l—r) a”—7r
Ty A et T =0

So, e7*w;(z) maps |z| = r onto the circle, which has a center of C(r) =
(5252, 0) and radius of p(r) = 145}, 0

Lemma 2.4. Let f=h+ § € Sy and wy € W. Then we have

a—r7T a+r
| | < lwi(z)| <

2.
1—ar ~ 14+ ar’ (2.7)

Jorall|z| =r <1 and |b| = a.

Proof. 1f we use lemma 2.3, we can obtain the result. O
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3 Main Results

Theorem 3.1. If f = h + § € Sy be as given in (1.1) and wy € W, then we
have

bal < 5 + oo

for all z in D.

Proof. Lets consider the function ¢(z) which is given by (1.2). Since ¢(2)
satisfies the condition of Schwarz’s lemma then |¢/(0)] < 1. Hence we can

write
!bz -— agbll i 1

/ = 172 %2M1l. _ - ]

o) = B < 5 (3.1)

for all z € . By using the definition of the second dilatation function w;(z)
in (3.1) we get the desired result, after simple calculations. O

Lemma 3.2. If f = h+ g € 8;(A, B), then we have

| — r| , o+
< <
1—ar _‘Ig(z)l,_ 1+ ar

C(r; —A,—B) C(r; A, B) (3.2)

where C(r; A, B) is given by (2.2). The upper and the lower bounds for
0 < r <1 are sharp being attained by functions (2.3) and (2.4), respectively.

Proof. Since the definition of the second dilatation function of f is w(2) =
g (z)/K (2), then we can write

l9'(2)] = lw1(2)||W'(2)] (z € D). (3-3)
Using (2.1) and (2.7) in (3.3) we obtain desired result. O

Theorem 3.3. If f =h+ g € S}(A,B), then for |z2| =r, 0 <r < 1, we
have

./oru —ap)(1 - By P2 DU =) g ) <

(1+ ap)
/0 (1+ Ap)( + Bp)*#2 2’1?(01‘5 P4y, for B£0,
[ = ape e r@Coy, <) <
/0 "1+ ap)errd J(“lo_‘z(;:)’ 2 4o, for B0,
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where |by| = a and this bound for 0 < r < 1 is sharp being attained by
functions (2.3), (2.4) and the solution of the differantial equation g'(z) =

h'(z)ﬁa%.

Proof. For harmonic univalent function f = h + g we know that

(IR'(2)] — |’ (2))ldz| < |df (2)] < (Ih'(2)] + |g'(2)])]dz|. (3-4)
On the other hand, by using (3.3) we obtain
W' (2)] — |g'(2)] = |W'(2)I(1 = Jwi(2)]) (3.5)
for all z in D. If we use (2.7) and (2.1) in (3.5) we obtain
(1 — a)(l — 1‘) ) ’ ’
(1 + a'r) C(T‘, —A’ —B) < 'h (Z)I - Ig (z)’ (36)

Furthermore, we have

IR (2)] + 1g'(2)] < [P (2)|(1 + |wi(2)]) (3.7)
for all z in D. Again if we use (2.7) and (2.1) in (3.7) we obtain

Q+a)(1+7)
1+ ar)

By using (3.6) and (3.8) in (3.4) and integrating this inequality form O to r
we obtain the desired result. O

IW'(2)] + |g'(2)| < C(r; A, B). (3.8)

Corollary 3.4. The Heinz’s inequality for f = h+ § € §5,(A, B) is

(1- B8 (1- 4n)? (1+ (£2)°), B #0,
e~ 247(1 — Ar)? (1 + (&££) ) , B =0,

W' (2)[* +1g'(2)|* > {
1—ar
for all z € D, and |b| = a.
Proof. Since g'(z) = wy(2)W(2) for all z € D, then
W (2)” +1g'(2)* = |K'(2)2(1 + |lwi(2)?). (3.9)

If we use the inequalities (2.1) and (2.7) in (3.9) we get the result, after
simple calculations. a



133

Theorem 3.5. If f = h+ § € 8}(A, B), then

- (1 o)
(1+ ar)?

for all z € D, and |b,| = a.

C%(r; —A, —B) (1 < Js(z) < C*(r; A, B) (1 — M)

(1-ar)?

Proof. Using lemma 2.4 and the relations
J5(2) = K (2)[* — |¢'(2)[?

and
g'(z) = w(z)h'(2)
we obtain the result. O

Note. If we consider the spacial values for A and B as below, we can
obtain some subclasses.

e A=1,B=-1.

e A=1-2a(0<a<1l),B=-1.
e A=1,B=4-1(M>1).

e A=8,B=-3(0<8<1).
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