Harmonic Univalent Functions with Janowski Starlike Analytic Part

Emel YAVUZ

Abstract

In this paper we define a new subclass of harmonic univalent functions for which analytic part is *Janowski Starlike Function*, and investigate some properties of this type of functions. Also we give a new coefficient inequality for harmonic univalent functions.

1 Introduction

Let Ω be the class of analytic functions w(z) in the open unit disc $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$, satisfying w(0) = 0 and |w(z)| < 1 for all $z \in \mathbb{D}$.

For arbitrary fixed real numbers A and B which satisfy $-1 \le B < A \le 1$ we say p(z) belongs to the class $\mathcal{P}(A, B)$ if

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$$

is analytic in \mathbb{D} and p(z) is given by

$$p(z) = \frac{1 + Aw(z)}{1 + Bw(z)}$$

for every z in \mathbb{D} and for some $w(z) \in \Omega$. This class, $\mathcal{P}(A, B)$, was first introduced by W. Janowski [3]. Therefore, we call p(z) in the class $\mathcal{P}(A, B)$ "Janowski Function".

²⁰⁰⁰ Mathematics Subject Classification: Primary 30C45.

Key words and phrases: Harmonic univalent, Janowski starlike, coefficient inequality, distortion inequality.

Let $S^*(A, B)$ denote the family of functions

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

regular in \mathbb{D} , and such that h(z) is in $\mathcal{S}^*(A, B)$ if and only if

$$z\frac{h'(z)}{h(z)} = p(z)$$

for some p(z) in $\mathcal{P}(A, B)$ and for every $z \in \mathbb{D}$. Functions in $\mathcal{S}^*(A, B)$ are called the "Janowski Starlike Functions" [3].

A continuous complex valued function f = u + iv defined in a simply connected domain \mathcal{U} is said to be "Harmonic" in \mathcal{U} if u and v are real harmonic in \mathcal{U} . In any simply connected domain $\mathcal{U} \subset \mathbb{C}$ we can write $f = h + \bar{g}$, where h and g are analytic in \mathcal{U} . We call h the "Analytic Part" and g the "Co-Analytic Part" of f.

The "Jocabian" of f is given by

$$J_f(z) = |h'(z)|^2 - |g'(z)|^2.$$

A necessary and sufficient condition for $f = h + \bar{g}$ is to be locally univalent and sense-preserving in \mathcal{U} such as [2], [4]

$$J_f(z) = |h'(z)|^2 - |g'(z)|^2 > 0.$$

This is equivalent to

$$|g'(z)|<|h'(z)|$$

for all $z \in \mathcal{U}$.

Denote by $S_{\mathcal{H}}$ the class of functions $f = h + \bar{g}$ that are "Harmonic Univalent and Sense-Preserving" in the open unit disc $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$, for which

$$f(0) = h(0) = f_z(0) - 1 = 0.$$

For $f = h + \bar{g} \in \mathcal{S}_{\mathcal{H}}$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n.$$
 (1.1)

So, as a result of the sense-preserving property of f, $|b_1| < 1$.

The classical family S which is analytic, univalent and normalized functions on \mathbb{D} is subclass of $S_{\mathcal{H}}$ in which $b_n = 0$ for all $n \in \mathbb{N}$.

The function

$$w_1=rac{g'}{h'}$$

is called the "Second Dilatation of $f = h + \bar{g}$ ", and we denote the class of the second dilatation of f by \mathcal{W} . Note that $|w_1(z)| < 1$ and $w_1(0) = b_1 \neq 0$ for all z in \mathbb{D} .

We consider the transformation $\phi: \mathbb{C} \to \mathbb{C}$, given by

$$\phi(z) = \frac{w_1(z) - w_1(0)}{1 - \overline{w_1(0)}w_1(z)},\tag{1.2}$$

maps the unit disc \mathbb{D} onto itself, where $w_1(z) \in \mathcal{W}$ for every z in \mathbb{D} . It is easy to show that $\phi(z)$ is an analytic function in \mathbb{D} , and $|\phi(z)| \leq 1$, and $\phi(0) = 0$ for all $z \in \mathbb{D}$. Hence $\phi(z) \in \Omega$.

Definition 1.1. Let $f = h + \bar{g} \in \mathcal{S}_{\mathcal{H}}$. We define a new subclass of harmonic univalent functions for which analytic part is Janowski starlike function. We denote by $\mathcal{S}^*_{\mathcal{H}}(A, B)$ the family of all harmonic univalent functions on \mathbb{D} with $h \in \mathcal{S}^*(A, B)$.

2 Auxiliary Lemmas

Lemma 2.1. (Schwarz's Lemma [1]) If $\phi(z)$ is analytic for |z| < 1 and satisfies the condition $|\phi(z)| \le 1$, $\phi(0) = 0$ then $|\phi(z)| \le |z|$ and $|\phi'(0)| \le 1$. If $|\phi(z)| = z$ for some $z \ne 0$ or if $|\phi'(0)| = 1$, then $\phi(z) = cz$ with a constant c of absolute value 1.

Lemma 2.2. [3] If $h(z) \in S^*(A, B)$, then for |z| = r, 0 < r < 1

$$C(r; -A, -B) \le |h'(z)| \le C(r; A, B),$$
 (2.1)

where

$$C(r; A, B) = \begin{cases} (1 + Ar)(1 + Br)^{(A-2B)/B}, & \text{if } B \neq 0, \\ (1 + Ar)e^{Ar}, & \text{if } B = 0. \end{cases}$$
 (2.2)

These bounds are sharp, being attained at the point $z = re^{i\varphi}$, $0 \le \varphi \le 2\pi$, by

$$h_*(z) = zh_0(z; -A, -B)$$
 (2.3)

and

$$h^*(z) = zh_0(z; A, B),$$
 (2.4)

respectively, where

$$h_0(z;A,B) = \begin{cases} (1 + Be^{-i\varphi}z)^{(A-2B)/B}, & \text{for } B \neq 0, \\ e^{-i\varphi}z, & \text{for } B = 0. \end{cases}$$

Lemma 2.3. Let $f = h + \bar{g} \in \mathcal{S}_{\mathcal{H}}$ and $w_1 \in \mathcal{W}$. Then we have

$$\left| e^{-i\theta} w_1(z) - \frac{\alpha(1-r^2)}{1-\alpha^2 r^2} \right| \le \frac{r(1-\alpha^2)}{1-\alpha^2 r^2},$$
 (2.5)

where first coefficient of g is $b_1 = \alpha e^{i\theta}$, $0 \le \theta \le 2\pi$, and |z| = r < 1. The equality holds in the inequality (2.5) only for the function

$$w_1(z) = e^{i\beta} \frac{e^{i\theta}z + \alpha}{1 + \alpha e^{i\theta}z}, \quad z \in \mathbb{D}. \tag{2.6}$$

Proof. Since $\phi(z)$ which is given by (1.2) satisfies the conditions of Schwarz's lemma then $|\phi(z)| \leq |z| = r < 1$. Hence, we can write

$$|\phi(z)| = \frac{|e^{-i\theta}w_1(z) - \alpha|}{|1 - \alpha e^{-i\theta}w_1(z)|} \le r \Rightarrow |e^{-i\theta}w_1(z) - \alpha| \le r|1 - \alpha e^{-i\theta}w_1(z)|$$

for all z in \mathbb{D} . By taking $e^{-i\theta}w_1(z)=x+iy$ we get following inequality

$$x^{2} + y^{2} - 2\frac{\alpha(1-r^{2})}{1-\alpha^{2}r^{2}}x + \frac{\alpha^{2}-r^{2}}{1-\alpha^{2}r^{2}} \leq 0.$$

So, $e^{-i\theta}w_1(z)$ maps |z|=r onto the circle, which has a center of $C(r)=\left(\frac{\alpha(1-r^2)}{1-\alpha^2r^2},0\right)$ and radius of $\rho(r)=\frac{r(1-\alpha^2)}{1-\alpha^2r^2}$.

Lemma 2.4. Let $f = h + \bar{g} \in \mathcal{S}_{\mathcal{H}}$ and $w_1 \in \mathcal{W}$. Then we have

$$\frac{|\alpha - r|}{1 - \alpha r} \le |w_1(z)| \le \frac{\alpha + r}{1 + \alpha r},\tag{2.7}$$

for all |z| = r < 1 and $|b_1| = \alpha$.

Proof. If we use lemma 2.3, we can obtain the result.

3 Main Results

Theorem 3.1. If $f = h + \bar{g} \in S_H$ be as given in (1.1) and $w_1 \in W$, then we have

$$|b_2| < \frac{1}{2} + |a_2|$$

for all z in \mathbb{D} .

Proof. Lets consider the function $\phi(z)$ which is given by (1.2). Since $\phi(z)$ satisfies the condition of Schwarz's lemma then $|\phi'(0)| \leq 1$. Hence we can write

$$|\phi'(0)| = \frac{|b_2 - a_2 b_1|}{1 - |b_1|^2} < \frac{1}{2}$$
(3.1)

for all $z \in \mathbb{D}$. By using the definition of the second dilatation function $w_1(z)$ in (3.1) we get the desired result, after simple calculations.

Lemma 3.2. If $f = h + \bar{g} \in \mathcal{S}^*_{\mathcal{H}}(A, B)$, then we have

$$C(r; -A, -B)\frac{|\alpha - r|}{1 - \alpha r} \le |g'(z)| \le \frac{\alpha + r}{1 + \alpha r}C(r; A, B)$$
(3.2)

where C(r; A, B) is given by (2.2). The upper and the lower bounds for 0 < r < 1 are sharp being attained by functions (2.3) and (2.4), respectively.

Proof. Since the definition of the second dilatation function of f is $w_1(z) = g'(z)/h'(z)$, then we can write

$$|g'(z)| = |w_1(z)||h'(z)| \quad (z \in \mathbb{D}). \tag{3.3}$$

Using (2.1) and (2.7) in (3.3) we obtain desired result.

Theorem 3.3. If $f = h + \bar{g} \in \mathcal{S}^*_{\mathcal{H}}(A, B)$, then for |z| = r, 0 < r < 1, we have

$$\int_{0}^{r} (1 - A\rho)(1 - B\rho)^{\frac{A-2B}{B}} \frac{(1 - \alpha)(1 - \rho)}{(1 + \alpha\rho)} d\rho \leq |f(z)| \leq \int_{0}^{r} (1 + A\rho)(1 + B\rho)^{\frac{A-2B}{B}} \frac{(1 + \alpha)(1 + \rho)}{(1 + \alpha\rho)} d\rho, \quad \text{for } B \neq 0,$$

$$\int_{0}^{r} (1 - A\rho)e^{-A\rho} \frac{(1 - \alpha)(1 - \rho)}{(1 + \alpha\rho)} d\rho \leq |f(z)| \leq \int_{0}^{r} (1 + A\rho)e^{A\rho} \frac{(1 + \alpha)(1 + \rho)}{(1 + \alpha\rho)} d\rho, \quad \text{for } B = 0,$$

where $|b_1| = \alpha$ and this bound for 0 < r < 1 is sharp being attained by functions (2.3), (2.4) and the solution of the differential equation $g'(z) = h'(z) \frac{z+\alpha}{1+\alpha z}$.

Proof. For harmonic univalent function $f = h + \bar{g}$ we know that

$$(|h'(z)| - |g'(z)|)|dz| \le |df(z)| \le (|h'(z)| + |g'(z)|)|dz|. \tag{3.4}$$

On the other hand, by using (3.3) we obtain

$$|h'(z)| - |g'(z)| = |h'(z)|(1 - |w_1(z)|)$$
(3.5)

for all z in \mathbb{D} . If we use (2.7) and (2.1) in (3.5) we obtain

$$\frac{(1-\alpha)(1-r)}{(1+\alpha r)}C(r; -A, -B) \le |h'(z)| - |g'(z)|. \tag{3.6}$$

Furthermore, we have

$$|h'(z)| + |g'(z)| \le |h'(z)|(1 + |w_1(z)|) \tag{3.7}$$

for all z in \mathbb{D} . Again if we use (2.7) and (2.1) in (3.7) we obtain

$$|h'(z)| + |g'(z)| \le \frac{(1+\alpha)(1+r)}{(1+\alpha r)}C(r;A,B).$$
 (3.8)

By using (3.6) and (3.8) in (3.4) and integrating this inequality form 0 to r we obtain the desired result.

Corollary 3.4. The Heinz's inequality for $f = h + \bar{g} \in \mathcal{S}^*_{\mathcal{H}}(A, B)$ is

$$|h'(z)|^2 + |g'(z)|^2 \ge \begin{cases} (1 - Br)^{\frac{2A - 4B}{B}} (1 - Ar)^2 \left(1 + \left(\frac{\alpha - r}{1 - \alpha r}\right)^2\right), & B \ne 0, \\ e^{-2Ar} (1 - Ar)^2 \left(1 + \left(\frac{\alpha - r}{1 - \alpha r}\right)^2\right), & B = 0, \end{cases}$$

for all $z \in \mathbb{D}$, and $|b_1| = \alpha$.

Proof. Since $g'(z) = w_1(z)h'(z)$ for all $z \in \mathbb{D}$, then

$$|h'(z)|^2 + |g'(z)|^2 = |h'(z)|^2 (1 + |w_1(z)|^2).$$
(3.9)

If we use the inequalities (2.1) and (2.7) in (3.9) we get the result, after simple calculations.

Theorem 3.5. If $f = h + \bar{g} \in \mathcal{S}^*_{\mathcal{H}}(A, B)$, then

$$C^{2}(r; -A, -B) \frac{(1-r^{2})(1-\alpha^{2})}{(1+\alpha r)^{2}} \leq J_{f}(z) \leq C^{2}(r; A, B) \left(1 - \frac{|\alpha - r|^{2}}{(1-\alpha r)^{2}}\right)$$

for all $z \in \mathbb{D}$, and $|b_1| = \alpha$.

Proof. Using lemma 2.4 and the relations

$$J_f(z) = |h'(z)|^2 - |g'(z)|^2$$

and

$$g'(z) = w(z)h'(z)$$

we obtain the result.

Note. If we consider the spacial values for A and B as below, we can obtain some subclasses.

- A = 1, B = -1.
- $A = 1 2\alpha \ (0 \le \alpha < 1), B = -1.$
- A = 1, $B = \frac{1}{M} 1$ $(M > \frac{1}{2})$.
- $A = \beta$, $B = -\beta$ ($0 \le \beta < 1$).

References

- [1] L.V. Ahlfors, "Complex Analysis, An Introduction to the Theory of Analytic Functions of One Variable," McGraw-Hill Inc., New York, 1979.
- [2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9 (1984), 3-25.
- [3] W. Janowski, "Some extremal problems for certain families of analytic functions I," Annales Polonici Mathematici, 28(1973), 297-326.
- [4] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42 (1936), 689-692.
- [5] P. Duren, Harmonic Mappings in the Plane, Cambridge University Press, UK, 2004.

EMEL YAVUZ Department of Mathematics and Computer Science, İstanbul Kültür University, 34156 İstanbul, Turkey e-mail: e.yavuz@iku.edu.tr