
$\pi_{1}$- and $\pi_{2}$-theories of operators

Shunsaku Nii*

In this talk, a topological index theory which can be seen as $\pi_{2}$-theory of
operators is introduced. This terminology is inspired by the one $\pi_{1}$ -theory of
operators by Sanson [6] referring to infinite dimensional Maslov index the-
ory. This viewpoint begins by seeing the classical theory of Strum-Liouville
operators as $\pi_{1}$-theory of $S^{1}$ .

1 The theory of Strum-Liouville operators:
a $\pi_{1}$-theory of $S^{1}$

Consider the eigenvalue problem of a Strum-Liouville operator:

$-p”+f(x)p=\lambda p$ , on $I=[-1,1]$ or $\mathbb{R}$

This equation is written as a system of first order equations:

$\{\begin{array}{l}p’=qq’=(f(x)-\lambda)p.\end{array}$

In the polar coordinate $p=r\cos\theta,$ $q=r\sin\theta$ , this system becomes:

$\{\begin{array}{l}r’=(1-\lambda+f(x))r\sin\theta\cos\theta\theta’=1+(\lambda-f(x)-1)\sin^{2}\theta\end{array}$

Because the right hand side of the $\theta$ equation is monotone in $\lambda$ , the number
of $\theta(I)$ winds $S^{1}$ increase as $\lambda$ does. Therefore for each eigenvalue $\lambda,$ $\theta(I)\in$

$\pi_{1}(S^{1})$ identifies the eigenfunction. That is, the eigenfunctions are ordered
by the number of humps.
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2Maslov index: a $\pi_{1}$-theory of matrices
The first natural generalization of the above theory is what is called (Keller-
$)$ Maslov($-$Arnol d) index for the eigenvalue problem of a Schr\"o dinger opera-
tor:

$-p”+M(x)p=\lambda p$ , $p\in \mathbb{R}^{n}$ , on $I=[-1,1]$ or $\mathbb{R}$

This system is equivalent to the following Hamiltonian system:

$\{\begin{array}{l}p’= \frac{\partial H}{\partial q}q’=-\frac{\partial H}{\partial p},\end{array}$

where the Hainiltonian is given by $H(p, q)= \frac{1}{2}\{|q|^{2}+t_{p}(\lambda I-M(x))p\}$ .
Because a Hamiltonian system preserves the symplectic structure, this

system induces a flow on the Lagrangian GraJ3mannian manifold $\Lambda(n)=$

$Sp(n)(\mathbb{R}^{n}\cross\{0\})$ , where $Sp(n)$ is the symplectic group.

Fact $\pi_{1}(\Lambda(n))\cong \mathbb{Z}$

Therefore $(p, q)(I)\in\pi_{1}(\Lambda(n))$ characterizes the eigenfunctions. $((p, q)(x)$ is
not necessarily monotone.) This is what is called Maslov index.

3 Infinite dimensional Maslov index:
a $\pi_{1}$-theory of operators

There are several infinite dimensional generalization of Maslov index. One
by Swanson [6] is among the earliests.

Let $E=H\cross H^{*}$ for a Hilbert space $H$ and its dual $H^{*}$ . Define a
symplectic structure on $E$ by $\omega((e, \alpha), (f, \beta))=\alpha\cdot f-\beta\cdot e$ Then the IFhredholm
Lagrangian GraJ3mannian manifold $\mathcal{F}\Lambda_{H}$ is defined by $\mathcal{F}\Lambda_{H}=Sp_{C}(E)H$ ,
where $Sp_{C}(E):=$ { $id+$ compact $|$ preserves $\omega$ } $\subset GL(E)$

Fact $\pi_{1}(\mathcal{F}\Lambda_{H})\cong \mathbb{Z}$

Swanson applied this fact for deformations of elliptic operators, and call
his theory as $\pi_{1}$ -theory of operators contrasting it to Ftiredholm index $(\pi_{0^{-}}$

theory of operators) which distinguishes connected components of operators.
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Recently, Deng [2] reformulated this theory on $E=H^{\frac{1}{2}}(\partial\Omega)\cross H^{-\frac{1}{2}}(\partial\Omega)$

for a star-shaped domain $\Omega$ and applied to the boundary value problem of
an elliptic operator.

4 The Stability index: a $\pi_{2}$-theory of matrices

In spite of early development of the $\pi_{1}$-theory for selfadjoint operators, any
analogous theory for non-selfadjoint operators has not appeared until re-
cently. The obstacles were that the eigenvalues are not real and the systems
are no longer Hamiltonian. The first step for this direction seems to be the
Stability index theory by Alexander-Gardner-Jones [1, 5] explained below.

Consider the eigenvalue problem for a not-selfadjoint operator:

$-p”+M(x)p’+N(x)p=\lambda p$ , $p\in \mathbb{C}^{n}$ , on $I$ .

This system is equivalent to the following system on $\mathbb{C}^{2n}$ :

$\{\begin{array}{l}p’=qq’=(N(x)-\lambda I)p+M(x)q.\end{array}$

This time, the system induces a flow on the complex Graflmannian manifold
$G_{n}(\mathbb{C}^{2n})=GL(2n)(\mathbb{C}^{n}\cross\{0\})$ . For a disc $D\subset \mathbb{C}$ , this flow induces a map

$\Phi:S^{2}\cong(D\cross\partial I)\cup(\partial D\cross I)arrow G_{n}(\mathbb{C}^{2n})$

Fact $\pi_{2}(G_{n}(\mathbb{C}^{2n}))\cong \mathbb{Z}$

Then Alexander-Gardner-Jones proved sort of $\pi_{2}$-theory of matrices.

Theorem (Alexander-Gardner-Joned [1],Gardner-Jones [5])
$\Phi(S^{2})\in\pi_{2}(G_{n}(\mathbb{C}^{2n}))$ represents the number of eigenvalues in $D$ includ-

ing the multiplicity.

This theory is sometimes referred to as Alexander-Gardner-Jones bundle the-
ory, as it is formulated by the terminology of line bundles and the Chern class.
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5 The infinite dimensional Stability index:
a $\pi_{2}$-theory of operators

It is natural to think about infinite dimensional generalization of the Stability
index from the viewpoints both in pure mathematics and in application. One
such example is the following eigenvalue problem:

$\{\begin{array}{l}u_{xx}+\Delta_{y}u+\beta(y)u_{x}+f(x, y)u=\lambda u, (x, y)\in \mathbb{R}\cross\Omega\frac{\partial u}{\partial\nu}=0, on \mathbb{R}\cross\partial\Omega,\end{array}$

where $\Omega\subset \mathbb{R}^{m}$ is a bounded domain. This equation can be written as an
ordinary differential equation in x-variable on an appropriate Hilbert space
$H_{\Omega}$ .

Here is a difficulty: $GL(H)$ is contractible for an infinite dimensional
Hilbert space $H$ . This means that a naive generalization of the Stability
index becomes trivial and does not detect any information.

Fortunately, we can exploit compactness of the problem: Let $GL_{C}(H)$ $:=$

{ $id+$ compact $|$ invertible} $\subset GL(H)$ and fix a polarization $H=H_{-}\oplus H_{+}$ ,
then the $\mathbb{R}edholm$ GraBmannian manifold $F(H_{+})$ is the orbit of $H_{+}$ under
the action of $GL_{C}(H)i.e$ . $F(H_{+})=GL_{C}(H)H_{+}$ .

Under this setting, the problem induces a system on $F(H_{+})$ .

Remark In this case, the system does not generate a flow, as the problem
is ill-posed.

Then, for a disc $D\subset \mathbb{C}$ , this system induces a map

$\Phi:S^{2}\cong(D\cross\partial I)\cup(\partial D\cross I)arrow F(H_{+})$ ,

and we have the following theorem.

Theorem (Deng-N. [3])
$\Phi(S^{2})\in\pi_{2}(F(H_{+}))$ represents the number of eigenvalues in $D$ including

the multiplicity.

We also have a similar result for an elliptic operator posed on a bounded
domain [4]

These results can be called $\pi_{2}$-theory of operators in the Swanson’s ex-
pression.
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