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ABSTRACT. In this paper, we are going to introduce the recent development in
the study of the geometric properties of parabolic flows. It provides a parabolic
approach on geometric properties of the solutions of the nonlinear eigen value
problems.

1. INTRODUCTION

Let us present the problems and concepts to motivate our issue in the geomet-
ric properties. Let the function $\varphi(x)$ satisfy the following nonlinear eigenvalue
problem

(1.1) $\{\begin{array}{ll}-\triangle\varphi=\lambda\varphi^{p} in \Omega,\varphi >0 in \Omega,\varphi =0 on \partial\Omega. .\end{array}$

The main question we address is the following: assuming that $\Omega$ is a strictly convex
domain in $\mathbb{R}^{N}$ , are the level sets of the positive first eigen-function convex? A
stronger version of this question is the following: is there a monotone real function
$f$ such that $f(\varphi(x))$ is convex or concave? Since $\varphi$ and $f(\varphi)$ share the same
level sets, the convexity or concavity of $f(\varphi)$ will imply an affirmative answer to
the main question; and strict convexity or concavity will imply the existence of a

$\rho$

unique peak of $\varphi$ (i.e., the point of maximum, also called hot spot).
If $\Omega$ is a ball, then there is a unique rotationally symmetric solution by the

Alexandrov reflection argument, and this function is decreasing as $|x|$ increases.
Then each level set of $\varphi$ is a ball as $\varphi$ has a unique peak. Somehow, we are
asking whether similar geometric properties are preserved under a large convex
perturbation of the domain. The case $p=1$ corresponds to the linear eigenvalue
problem for the Laplace equation. H.J. Brascamp and E.H. Lieb [BL] have shown
that $\log(\varphi)$ is concave by a probability method, and the proof has been simplified
by N. Korevaar’s new approach which will be discussed below, [Ko]. B. Kawohl
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[Ka] has extended Korevaar’s idea to the case $0<p<1$ by considering $\varphi^{q}$ for
some $q>0$ instead of $\log(\varphi)$ .

For $0<p<p_{s}$ where $p_{s}$ is the Sobolev exponent $(p_{s}= \frac{n+2}{n-2}$ for $n\geq 3$ , infinity
for $n=1,2)$ , C.S. Lin [Li] shows the uniqueness of the energy minimizer of (1.1)
and the convexity of the level sets of the energy minimizer in two dimensions. F.
Gladis and M. Grossi [GG] show that there is a small $\epsilon_{o}>0$ such that the energy
minimizing sequence $u_{\epsilon}$ such that

$\lim_{\epsilonarrow 0}\frac{\int_{\Omega}|\nabla u_{\epsilon}|^{2}dx}{(\int_{\Omega}u_{\epsilon}^{2^{*}}dx)\overline{2}^{T}2}=S$

(where $S$ is the best Sobolev constant and $2^{*}= \frac{2n}{n-2}$ ) has strictly convex level
sets. L. Caffarelli and J. Spruck [CS] use Korevaar’s idea to show such geometric
property for the solution of the following elliptic free boundary problems:

$-\triangle u=\lambda u_{+}$ with $\lambda\int_{\Omega}u_{+}dx=$ constant.

X. Cabr\’e and S. Chanillo [CCh] show, in two dimensions, that the semi-stable
solution for general $p\leq 1$ has a unique critical point, which is a nondegenerate
maximum: this means that, in a neighborhood of the peak, the level sets will be
convex. And we recall that for $p>1$ all positive solutions are unstable.

1.1. A simple computation. Let us introduce the main difficulties and ideas
through a simple computation. For example, if we try to show the log-concavity
of $\varphi$ in (1.1), we can put $v=\log(\varphi)$ and replace $\varphi$ by $e^{v}$ in the equation. We get

(1.2) $\triangle v+|\nabla v|^{2}=-e^{(p-1)v}$ .
The concavity of $v$ is equivalent to the non-positivity of the quantity: $Z=$
$\sup_{x}\sup_{\beta}v_{\beta\beta}$ . Let us assume that the supremum is achieved at a point $x_{o}$ in
the direction $\alpha$ , i. e.,

$\sup_{x}\sup_{\beta}v_{\beta\beta}(x)=v_{\alpha\alpha}(x_{o})=\delta$
.

Notice that $x_{o}$ may be located in the interior or on the boundary of the domain
$\Omega$ . We want to eliminate the possibility $\delta>0$ .

CASE 1. The non-degeneracy of $|D\varphi|(i.e., |D\varphi|>0)$ is enough to rule out the
possible maximum point on the boundary. Let $\nu$ be the outward normal direction
to $\partial\Omega$ at $0$ , set $\tau=(\tau_{1}, \cdots, \tau_{n-1})$ to be orthogonal tangential coordinates, and
let $x_{\nu}=\gamma(\tau)$ be the representation of the boundary near $0$ . Then, we have
$D_{\tau\tau}v(\tau, \gamma(\tau))=0$ and $\gamma_{\tau}(0)=0$ . From the convexity of the boundary $\partial\Omega$ , the
tangential second derivative in the direction $\tau,$ $D_{\tau\tau}v=-v_{\nu}D_{\tau\tau}\gamma\leq 0$ . Besides,
$-\triangle_{\tau}\gamma$ is the mean curvature, $H(\partial\Omega)$ , of $\partial\Omega$ at $0$ (for example, for a rotationally
symmetric function, $v(x)=v(|x|),$ $\triangle v=v_{\nu\nu}+\sum_{i}v_{\tau_{1}\tau_{i}}=v_{\nu\nu}+\frac{N-1}{r}v_{\nu}$ where $\nu=e_{r}$ ,
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$1/r$ is the curvature in the direction $\tau_{i}$ , and $(n-1)/r$ is the mean curvature of the
boundary).

Now, only the normal second derivative may be positive. But $|D\varphi|=-\varphi_{\nu}>0$

tells us that
$v_{\nu\nu}= \frac{\varphi_{\nu\nu}}{\varphi}-\frac{\varphi_{\nu}^{2}}{\varphi^{2}}$ .

We conclude that the maximum of $Z$ can only be achieved at an interior point.

CASE 2. When $x_{o}$ is an interior point, we note that $v_{\alpha\alpha}$ satisfies the following
equation:

$\triangle v_{\alpha\alpha}+2\nabla v\cdot\nabla v_{\alpha\alpha}+\sum_{\beta}v_{\alpha\beta}^{2}=-(p-1)e^{(p-1)v}v_{\alpha\alpha}-(p-1)^{2}e^{(p-1)v}v_{\alpha}^{2}$
.

Since the supremum of the pure second derivative has been achieved in the direction
$e_{\alpha},$ $e_{\alpha}$ will be an eigen-direction of $D^{2}v$ at $x_{o}$ , which means $v_{\alpha\beta}(x_{o})=0$ for $\beta\neq\alpha$ .
Therefore, we have at this point

$\triangle v_{\alpha\alpha}+2\nabla v\cdot\nabla v_{\alpha\alpha}=-v_{\alpha\alpha}^{2}-(p-1)e^{(p-1)v}v_{\alpha\alpha}-(p-1)^{2}e^{(p-1)v}v_{;^{\alpha}}^{2}$ .
We also have $\triangle v_{\alpha\alpha)}(x_{o})\leq 0$ and $\nabla v_{\alpha\alpha}=0$ . To have a contradiction we expect a
nonnegative term at the right hand side of the equation above. Since $v_{\alpha\alpha}(x_{o})=$

$\delta>0$ , we impose $p-1\leq 0$ ; to treat the last term we also need $-(p-1)^{2}=0$
i. e., $p=1$ , which is the reason that log-concavity of $\varphi$ holds only for $p=1$ . For a
general $p,$ $\varphi^{q}$ can be considered and $q$ will be selected in order to kill the third term
in right-hand side. But we still need to impose $p-1\leq 0$ so that the second term
is nonnegative. Korevaar’s idea is brought to treat the first term $-v_{\alpha\alpha}^{2}=-\delta^{2}$ ,
and will be presented in next subsection.

1.2. Korevaar’s idea. Equation (1.2) can be written in a more general form:
(1.3) $Lu:=a_{ij}(Du)D_{ij}u-b(x, u, Du)=0$,
with the restrictions equivalent to the condition on $p$ above:

(1.4) $\frac{\partial b}{\partial u}\geq 0$, $b$ is jointly concave in $(x, u)$ ,

see [Ko, Theorem 1.3]. The second difference of $u$ ,

$C(x, y) \simeq\frac{1}{2}(u(x)+u(y))-u(\frac{x+y}{2})$ ,

is then considered. The point is that the concavity of $u$ is equivalent to the non-
positivity of $C(x, y)$ . The paper shows that there is a contradiction if $C(x, y)$ has
a positive maximum. In this introduction, we are going to show only how to deal
with the gradient term $|Du|$ in (1.3) at an interior maximum point, since this is
important for the sequel (the other details can be found in [Ko]). Let us assume
$C(x, y)$ has a positive maximum at an interior point $(x_{o}, y_{0})$ . Then for any unit
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vector $e,$ $C(x_{o}+te, y_{0})$ and $C(x_{o}, y_{0}+te)$ , for $t\in \mathbb{R}$ , will have a maximum at $t=0$ .
This implies that $D_{e}u(x_{o})=D_{e}( \frac{x_{o}+y_{0}}{2})=D_{e}u(y_{0})$ . Set $Du(x_{o})=U$ and

$M_{ij}=D_{e_{i}}D_{e_{j}}C(x_{o}, y_{0})= \frac{1}{2}(D_{ij}u(x_{o})+D_{ij}u(y_{0}))-D_{ij}u(\frac{x_{o}+y_{0}}{2})\leq 0$ .

Rom (1.3),(1.4), we have

$a_{ij}(U)M_{ij}= \frac{1}{2}(b(x_{o}, u(x_{o}), U)+b(y_{0}, u(y_{0}), U))-b(\frac{x_{o}+y_{0}}{2}, u(\frac{x_{o}+y_{0}}{2}), U)$

$\geq b(\frac{x_{o}+y_{0}}{2}, \frac{u(x_{o})+u(y_{0})}{2}, U)-b(\frac{x_{o}+y_{0}}{2}, u(\frac{x_{o}+y_{0}}{2}), U)\geq 0$ ,
$|$

which is a contradiction to $(M_{ij})\leq 0$ after a simple modification.

Note that the condition $\frac{\partial b}{\text{\^{o}} u}\geq 0$ in (1.4) imposes $p\leq 1$ in (1.1) through (1.2).
Therefore we may need to create different approach for the nonlinear eigen value
problems. In the next chapter, we will overview the recent development on the
geometric properties in nonlinear parabolic flows.

2. GEOMETRIC PROPERTIES AND REGULARITIES IN DEGENERATE DIFFUSION
EQUATIONS

One of the important class of nonlinear equations is the degenerate diffusion
equations. The porous medium equation

$(PME)$ $u_{t}=\triangle u^{m}$

describes the isentropic gas through a porous medium. $u$ and $v= \frac{m}{m-1}u^{m-1}$ rep-
resent the density of mass and its corresponding pressure respectively. And the
pressure $v$ satisfies
$(PME_{p})$ $v_{t}=(m-1)v\triangle v+|\nabla v|^{2}$

We see that the diffusion coefficient is $mu^{m}$‘1 which vanishes for $m>1$ wherever
$u$ is zero. In the other words, $(PME)$ is degenerate parabolic equation. For $m=1$ ,
we recover the heat equation, $u_{t}=\triangle u$ which is not degenerate. For $0<m<1$ ,
the diffusion coefficient $\frac{m}{u^{1-m}}arrow\infty$ as $uarrow 0$ and then we call it fast diffusion
equation.

The existence of weak solution and strong solution can be found in [V3]. And
the concept of viscosity solution and its existence can be found in [HV]. The
degeneracy in $(PME)$ for $m>1$ results in the interesting phenomenon of the
finite speed of propagation: if the initial data $u^{0}$ is compactly supported in $\mathbb{R}^{n}$ , the
solution $u(x, t)$ remains supported for all time $t$ . Therefore the boundary of the
support of $u,$ $\Gamma=\sim suppu$ may have finite speed. If the initial configuration of the
support of $u(x, 0)=u_{o}(x)$ and mass distribution is complicated, the advancing free
boundary may collide with each other and create some singularity. And a small
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empty hall can be filled out by advancing mass which also create a singularity. The
global $C^{\alpha}$-regularity has been proved by L. Caffarelli and A. Riedman, [CF]. L.
Caffarelli, J.L. Vazquez and N.I. Wolanski show that the solution will be Lipschitz
for $t>T$ after the support of $u(x, t)$ overflows a ball containing the support of
initial data, $u_{0}(x)$ , for $t>T$ , [CVW]. L. Caffarelli and N.I. Wolanski show that
the solution is $C^{1}$ and that the free boundary $\partial\{u>0\}$ is $C^{1,\alpha}$ for $t>T$ , [CW].
H. Koch show that $u$ and $\partial\{u>0\}$ are $C^{\infty}$ for $t>T$ . The short time existence of
the smooth solution is proved by P. Daskalopolous and R. Hamilton, [DH], under
the condition that the the initial speed of the free boundary is nondegenerate. As
we observed, it is important to prohibit the collision of free boundaries in order
to have the long time existence of smooth solution and the smoothness of the free
boundaries.

Let us briefly summarize the recent development of geometric properties in para-
bolic flows. We start by some results on minimal curvature flows. Gage, Hamilton,
and Grayson show that any convex curve or surface will stay convex (the property
is called all-time convexity) and, in the 2-dimension minimal curvature flow, even
any simply connected curve will become convex in finite time (eventu$al$ convexity)
in [GH][G]. And they show that the convex curve converges to a circle after a
normalization.

These issues have been pursued by the author on nonlinear diffusion equations.
All-time square-root concavity of the pressure in the porous medium equation has
been shown at [DHL] and, through a simpler computation, it has been extended
to degenerate parabolic nonlinear equation with various homogeneity, for example
parabolic p-Laplace equation where all-time $\epsilon_{\frac{-2}{p}}$-concavity of the density is proved,
[Le]. And all time log-concavity of the solution has been shown in one-phase free
boundary problems of flame type, [DLl], and of Stephan type, [DL2]. Recently Su
Jung Kim found the similar geometric properties for the Fully nonlinear Parabolic
flows, $[KsL]$ , with the author. In addition, Sung Ho\"on Kim and the author showed
geometric properties of the ground state eigen functions for non-local equation,
[KLl], conjectured by Bauelos, R., Kulczycki, T., and Mndez-Hernndez, P. J. ,
[BKM].

The geometric properties of parabolic flows prevent the collision of the advanc-
ing free boundaries considered in the Porous Medium Equations, [DHL], Flame
propagation, [DLl], and Stephan Problems, [DL2] and then let us prove the ex-
istence of smooth solutions in those flows under a natural conditions. The initial
conditions consist of two parts: the first is the smoothness of the initial data and
the second is on the finite and nondegenerate initial speed of the free boundary,
without which there may be waiting time and no improvement of the regularity of
the solutions.
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3. LONG TIME BEHAVIOR OF PARABOLIC FLOWS

In [LVl], J.L. Vazquez and the author considered the long time behavior of
Porous medium equations (PME), Fast Diffusion equations (FDE), and a heat
equation (HE). It is well-known that any solution of (PME) with finite $L^{1}$-data
converges uniformly to rotationally symmetric self-similar solution called a Baren-
blatt Solution in $L^{1}$ -norm in $\mathbb{R}^{n}$ and $L^{\infty}$-norm in an expanding domain. And
similar convergence to the heat kemel is true in (HE). Barenblatt solution is con-
cave for (PME) and convex for (FDE). And the heat kernel is log-concave in (HE).
The key idea is to scale the solution in the time $[2^{k}, 2^{k+1}]$ to a scaled solution in
the time [1, 2] following the scale invariance in the space, the time, and the value
satisfied by the Barenblatt solution. Now the scaled solution will represent the
original solution in the different time intervals. The key estimate is the uniform
estimate of the derivatives of the scaled solutions so that the second derivate of
parabolic flows converge to those of the self-similar solutions, which will imply the
eventual geometric properties of parabolic flows.

In [LPV], A. Petrosyan, J.L. V\’azquez, and the author showed the similar long
time behavior of the solutions in the parabolic p-Laplace equations.

4. APPLITCATIONS To NONLINEAR EIGEN VALUE PROBLEMS

4.1. Heat $e$quation and linear eigen value problem. Another important ap-
plication of the geometric properties of parabolic flows is characterizing the long-
time behavior of the parabolic flows and finding the geometric properties of the
ground state eigen functions of nonlinear eigen value problems proposed in the
introduction, [LV2]. Let us summarize the key steps in the proof for the Heat
equations and the linear eigen value problems. Similar method can be applicable
for the non linear eigen value problems.

We consider the solutions $u(x, t)$ of the problem

(4.5) $\{\begin{array}{ll}u_{t}(x, t)=\triangle u(x, t) in Q=\Omega\cross(0, T),u(x, 0)=u_{o}(x)\in W_{o}^{1,2}(\Omega), u(x, t)=0 for x\in\partial\Omega\cross(0, T),\end{array}$

where $\Omega$ is a bounded sub-domain of $\mathbb{R}^{N}$ with smooth boundary. Our geometrical
results will be derived under the extra assumption that $\Omega$ is strictly convex.

It is well-known, cf. Theorem 8.37 in [GT], that (even without the last as-
sumption) the Laplace operator has a countable discrete set of eigenvalues $\Sigma=$

$\{\lambda_{i}|\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\cdots\}$ , whose eigen-functions $\{\phi_{n}\}$ span $W_{o}^{1,2}(\Omega)$ , where
$\phi_{n}$ is a normalized eigen-function corresponding to $\lambda_{n}$ . For $u_{o}\in L^{2}(\Omega)$ there are
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coefficients $\{a_{n}\}$ such that $u_{0}= \sum_{n=1}^{\infty}a_{n}\phi_{n}$ . Hence,

(4.6) $u(x,t)= \sum_{n=1}^{\infty}a_{n}e^{-\lambda_{n}}{}^{t}\phi_{n}=a_{1}e^{-\lambda_{1}}{}^{t}\varphi+e^{-\lambda_{2}}{}^{t}\eta(x, t)$

where $||\eta(x, t)||_{L_{x}^{2}(\Omega)}<C<\infty$ . Then $\varphi(x)$ will be the unique solution of

(EV) $\{\begin{array}{l}\triangle\varphi(x)=-\lambda_{1}\varphi(x) in \Omega\varphi(x)=0 on \partial\Omega\end{array}$

In this section, $\varphi(x)$ will be the solution of (EV). We have the following well-
known result.

Lemma 4.1 (Approximation lemma). For every $u_{0}\in L^{2}(\Omega)$ we have

(4.7) $|e^{\lambda_{1}}{}^{t}u(x, t)-a_{1}\varphi(x)|\leq Ce^{-(\lambda_{2}-\lambda_{1})t}$

and

(4.8) $||e^{\lambda_{1}}{}^{t}u(x, t)-a_{1}\varphi(x)||_{C_{x}^{k}(\Omega)}\leq CKe^{-(\lambda_{2}-\lambda_{1})t}$

for $k=1,2,$ $\cdots$ .

Next, coming to our subject, we have the following result about preservation of
$log$ concavity, which is easy but allows to present the basic technique.

Lemma 4.2. Let $\Omega$ be a convex bounded domain and let $u_{0}\geq 0$ be a continuous
and bounded initial function that vanishes on the boundary. If $\log(u_{0})$ is concave,
then the solution of the heat equation, $u(x, t)$ , is log-concave in the space variable
for all $t>0$ , i. e., $D^{2}\log(u(x, t))\leq 0$ .

PROOF. (i) Let us also assume that $u_{0}$ is smooth in Ki, that $D^{2}\log u_{0}(x)\leq-cI<0$

in $\Omega$ , and $u_{0}=0$ on $\partial\Omega$ , and that this border is $C^{2}$ smooth. There is a smooth
solution of (4.5) with initial data $u_{0}$ . Let us put $g(x, t)=\log u(x, t)$ , which is
finite and smooth for $x\in\Omega$ and takes the value $g=-\infty$ on the lateral boundary
$S=\partial\Omega\cross(O, \infty)$ . It also satisfies the equation

(4.9) $\partial_{t}g=\triangle g+|\nabla g|^{2}$ .
To estimate the maximum of the second derivatives, we look at the quantity

$Z(t)= \sup_{y\in\Omega,s\in[0,t]}\sup_{\beta}g,\beta\beta(y, s)$

$(1 \leq\beta\leq N)$ , which is taken along a direction $\alpha$ in which the maximum of
the second directional derivative is achieved, $Z(t)=g_{\alpha\alpha}(x_{o}, t)$ . Therefore $\alpha$ is
an eigen-direction of the symmetric matrix $D^{2}g(x_{o}, t)$ , which means that, using
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orthonormal coordinates in which $\alpha$ is taken as one of the coordinate axes, we
have $g_{\alpha\beta}=0$ at $(x_{o}, t)$ for $\beta\neq\alpha$ . Then, we notice that

$g_{\alpha\alpha}= \frac{uu_{\alpha\alpha}-u_{\alpha}^{2}}{u^{2}}arrow-\infty$

as $x\in\Omegaarrow\partial\Omega$ , since $\partial\Omega$ is smooth and $|\nabla u|>0$ on $\partial\Omega$ by Hopf’s principle. We
conclude that the maximum of $z$:can only be achieved at an interior point $(x_{o}, t_{o})$ .

Next, we see that the evolution of $g_{\alpha\alpha}(x, t)$ is given by the equation

(4.10) $g_{\alpha\alpha t}=\triangle g_{\alpha\alpha}+2\nabla g\cdot\nabla g_{\alpha\alpha}+2\nabla g_{\alpha}\cdot\nabla g_{\alpha}$ .

At the point of maximum we have $\nabla g_{\alpha\alpha}=0,$ $\Delta g_{\alpha\alpha}\leq 0$ , as well as $g_{\alpha\beta}=0$ for
$\beta\neq\alpha$ , hence at this point

(4.11) $g_{\alpha\alpha t}\leq 2g_{\alpha\alpha}^{2}$ .

Then, we have $Z’(t)\leq 2Z^{2}$ and $Z(O)<0$ which implies $Z(t)\leq 0$ for all $t\geq 0$ .
The proof is finished when the initial data and domain are as regular as assumed.

(ii) The proof in the general case uses a density argument which is more or less
standard. Briefly, if $u_{0}$ is not smooth and strictly log-concave, we first perform a
mollification to obtain an approximating sequence $u_{0n}$ of smooth and log-concave
functions; we then modify $u_{0n}$ to make it strictly log-concave. We may put for
instat tce,

$\tilde{u}_{on}(x)=u_{on}(x)\exp(-c_{n}x^{2}/2)$

for some $c_{\eta}>0,$ $c_{n}arrow 0$ as $narrow\infty$ . Then,

$\tilde{g}_{m}(x)=\log(\tilde{u}_{on}(x))=g_{m-}(x)-c_{n}x^{2}$ ,

so that $D^{2}\tilde{g}_{on}\leq-2cI$ . We get the conclusion for $\tilde{u}_{n}$ , the solution of the problem
with data $\tilde{u}_{on}$ and pass to the limit $narrow\infty$ to get the result for $u$ .

(iii) When the domain is not smooth, we make the approximation of the domain
with smooth convex domains and use the uniform convergence due to the H\"older-

estimate in the Lipschitz domain to show the sign of second difference preserved.

The approximation lemma and the preservation of log-concavity will give us the
following lemma for the first eigen function.

Corollary 4.3 (Log-concavity). If $\Omega$ is convex the stationary profile $\varphi(x)$ is log-
concave, i. e., $D^{2}\log(\varphi(x))\leq 0$ .

Now the any pure second derivative of $\log(\varphi(x))$ is non-positive. To show the
strict log-concavity of $\varphi(x)$ , we need to show the strict negativity of any pure
second derivative, which requires a kind of strong maximum principle for the pure
second derivatives. The detail of the proof can be found in [LV2].
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Lemma 4.4 (Strict log-concavity). If $\Omega$ is smooth and strictly convex, $\varphi$ is
strictly log-concave; there exists a constant $c_{1}>0$ such that
(4.12) $D^{2}\log(\varphi(x))\leq-c_{1}$ I.

The constant $c_{1}$ depends only on the shape of $\Omega$ .
$\mathbb{R}om$ the Approximation Lemma, the second derivative of $u(x, t)$ converges uni-

formly to that of $\varphi$ .

Theorem 4.5 (Eventual log-concavity). Let $u_{0}$ be a nonnegative and integrable
initial function. Then, the solution $u(x, t)$ of Problem (4.5) is strictly log-concave
in the space variable for all large $t>0$ . $M\dot{0}re$ precisely, for every $\epsilon>0$ there is
$t_{0}=t_{0}(u, \epsilon)$ such that
(4.13) $D^{2}\log(u(x, t))\leq-(c_{1}-\epsilon)$ I for all $t\geq t_{0}$ ,

where $c_{1}=c(\varphi)>0$ is the constant of Lemma 4.4.

4.2. Porous Medium Equations and Nonlinear Eigen value problem $(0<$

$p<1)$ . We address now the long-time geometrical properties of solutions of the
initial-value problem for the Porous Medium Equation

(4.14) $u_{t}=\Delta u^{m}$ , $m>1$ ,

posed in a bounded domain $\Omega$ with homogeneous Dirichlet conditions
(4.15) $u=0$ on $\partial\Omega$ ,

and initial data
(4.16) $u(x, 0)=u_{0}(x)$ nonnegative and integrable.
By known regularity theory, cf. $[$Ar, Vl, V2], we may also assume without loss of
generality that $u_{0}$ is continuous and bounded. We assume for convenience that $\partial\Omega$

is $C^{2,\alpha}$ smooth.
The large-time stabilization for the solutions of the above problem has been

studied by Aronson and Peletier [AP], who prove that as $tarrow\infty$ , they tend in the
$L^{\infty}$ norm to the similarity solution $U(x, t)=f(x)/(1+t)^{1/(m-1)}$ with an error of
order $O(1/(1+t)^{m/(m-1)})$ . Here, $f$ is the unique solution of the elliptic equation
(profile equation)

(4.17) -A$f^{m}= \frac{1}{m-1}f$

satisfying the conditions $f>0$ in $\Omega$ and $f=0$ on $\partial\Omega$ .
Lemma 4.6 (Approximation Lemma). Let $u(x, t)$ be a nonnegative weak so-
lution of (4.14) satisfying the conditions $(4.15)-(4.16)$ in a smooth domain $\Omega$ . Set
$U(x, t)=f(x)/(1+t)^{1/(m-1)}$ where $f$ is defined above. Then, we have the following
properties.
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(i) There is a time $t_{o}(u_{o}, \Omega)>0$ such that $u(x, t)>0$ for $t>t_{o}$ .
(ii) We have the estimate

(4.18) $\lim_{tarrow\infty}t^{1/(m-1)}|u(x, t)-U(x, t)|arrow 0$

uniformly in $x\in\Omega$ .
(iii) There is a $t_{o}^{*}(u_{o}, \Omega)\geq t_{o}(u_{o}, \Omega)>0$ such that $u^{m}$ is $C^{1}$ up to the boundary
and $0<c_{o}<t^{m/(m-1)}|\nabla u^{m}(x, t)|<C_{o}$ for some uniform constants $c_{o}$ and $C_{o}$ .

After a simple transformation $\varphi=(\frac{1}{m-1})^{\frac{m}{m+1}}f^{m}$ , we recover from (4.17) the
equation (1.1) with $0<p= \frac{1}{m}<1$ . In this section, $\varphi(x)$ will be the solution of
the following equation:

(NLEV) $\{$

$\triangle\varphi(x)=-\varphi(x)^{p}$ in $\Omega$ ,
$\varphi(x)=0$ on $\partial\Omega$ ,
$0<p<1$ .

Let us start our investigation by recalling the equation satisfied by the pressure
and its square root. Here we introduce the pressure variable in the form $v=u^{m-1}$ .
We then have

(4.19) $v_{t}=v\triangle v+r|\nabla v|^{2}$ , $r= \frac{1}{m-1}$ .

Apart from its physical significance in the model of flow of gases in porous media,
this variable plays a very important mathematical role in the study of the geometric
properties of the solutions: the property of finite speed of propagation, as well as
the interface behavior and regularity, cf. [V3], Chapters 14, 15.

Lemma 4.7. Let $\Omega$ be a convex bounded domain and let $v_{0}\geq 0$ be a continuous
and bounded initial function that $v_{0}$ vanishes on the boundary. If $\sqrt{v_{0}}$ is concave,
then the solution of the porous medium equation, $v(x, t)$ , is square root-concave in
the space variable for all $t>0$ , i. e., $D^{2}\sqrt{v(x,t)}\leq 0$ .

Set $V(x, t)=U^{1/(m-1)}=h(x)/(1+t)$ . By applying the convergence (4.18) on
the second difference quotient, we have the following.

Corollary 4.8 (Square-root Concavity). If $\Omega$ is convex the stationary pressure
profile $h(x)$ is square root-concave, i. e., $D^{2}\sqrt{h(x)}\leq 0$ .

We also have the following similar Lemmas as those in the Heat equation, [LV2]

Lemma 4.9 (Strict Square-root Concavity). If $\Omega$ is smooth and strictly convex,
$h(x)$ is strictly square root-concave: there exists a constant $c_{1}>0$ such that

(4.20) $D^{2}\sqrt{h(x)}\leq-c_{1}$ I.

The constant $c_{1}$ depends only on the shape of $\Omega$ .
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Theorem 4.10 (Eventual square-root concavity). Let $v_{0}$ be a nonnegative and
integrable initial function. Then the pressure $v(x, t)$ is strictly square root-concave
in the space variable for all large $t>0$ . More precisely, for every $\epsilon>0$ there is
$t_{0}=t_{0}(v_{o}, \epsilon)$ such that

(4.21) $D^{2}\sqrt{tv(x,t)}\leq-(c_{1}-\epsilon)$ I

for all $t\geq t_{0}$ and $x\in\Omega_{(-\epsilon)}=\{x\in\Omega|d(x, \partial\Omega)>\epsilon\}$ , where $c_{1}=c(\varphi)>0$ is the
constant of Lemma (4.9).

4.3. The Fast Diffusion Equation and Nonlinear Eigen Value Problems
$(1<p<2^{*}-1)$ . We now examine the same geometrical questions for the initial-
value problem for the Fast Diffusion Equation
(4.22) $u_{t}=\Delta u^{m}$ , $0<m<1$ ,

posed in a bounded smooth domain $\Omega$ with homogeneous Dirichlet conditions
(4.23) $u=0$ on $\partial\Omega$ ,

and initial data
(4.24) $u(x, 0)=u_{0}(x)$ nonnegative and bounded.
By known regularity theory, we may assume without loss of generality that $u_{0}$ is
continuous and bounded. If we let $m= \frac{1}{q-1}$ for $q>2$ and $g=u^{m}$ , we have

(4.25) $\{\begin{array}{ll}(g^{1/m})_{t}=\triangle g g=0 on \partial\Omega g(x, 0)=g_{0}(x)=u_{o}(x)^{m} in \Omega\end{array}$

Preliminaries. The main difference with the previous analysis is the finite time
convergence of the solutions to the zero solution, which replaces the infinite time
stabilization that holds for $m\geq 1$ . This phenomenon is called extinction in finite
time and reads as follows.

Proposition 4.11. For every initial data $u_{o}$ as above there exists a classical solu-
tion $u(x, t)$ of equation (4.22) defined in a strip $Q_{T}=\Omega\cross(0, T^{*})$ for some $\tau*>0_{f}$

and taking the initial data $u_{0}$ in the sense of initial trace in $L^{1}(\Omega)$ . Moreover, $as$

$tarrow T^{*},$ $t<\tau*$ , we have
(4.26) $\lim_{tarrow T^{*}}\Vert u(\cdot, t)\Vert_{\infty}=0$ .

The solution can be continued past the extinction time $\tau*$ in a weak sense as $u\equiv 0$ .

The study of extinction was initiated in a famous paper by Berryman and Hol-
land [BH]. Further information is found in [DK, Kwl, DKV]. The following is
known.
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Proposition 4.12. Let $g(x, t)$ be the unique weak solution of the problem (4.25)
where $g_{0}\in L^{\infty}(\Omega),$ $g_{0}\neq 0$ , and $g_{0}\geq 0$ . Then $g(x, t)$ is a positive classical solution
of the equation in $Q\tau*whereT^{*}$ . And we have

(1) $g\in C^{2,1}\cap L^{\infty}(Q_{T^{*}})$ and $g>0$ in $Q_{T^{s}}$ .
(2) $(g^{1/m})_{t}-\triangle g=0$

(3) $c_{1}(T^{*}-t)^{m/(1-m)}\leq|g(x, t)|_{L^{q}(\Omega)}\leq C_{2}(T^{*}-t)^{m/(1-m)}$

(4) $c_{1}(T^{*}-t)^{m/(1-m)}d(x, \partial\Omega)\leq|\nabla g(x, t)|\leq C_{2}$ .

SPECIAL SOLUTIONS AND STABILIZATION. The form of extinction is studied in
[BH, Kw2, Kw3] and [BV]. The asymptotic description is based on the existence
of appropriate solutions that serve as model for the behavior near extinction: there
is a self-similar solution of the form

(4.27) $U(x, t;T)=(T-t)^{1/(1-m)}f(x)$ ,

for a certain profile $f>0$ , where $\varphi=f^{m}$ is the solution of the super-linear elliptic
equation

(4.28) $- \Delta\varphi(x)=\frac{1}{1-m}\varphi(x)^{p}$ , $p= \frac{1}{m}$ .

such that $\varphi>0$ in $\Omega$ with zero boundary data. Hence, similarity means in this case
the separate-variables form. The existence and regularity of this solution depends
on the exponent $p$ , indeed it exists for $p<(N+2)/(N-2)$ , the Sobolev exponent.
Since $p=1/m$ , this means that smooth separate-variables solutions exist for

(4.29) $(N-2)/(N+2)<m<1$ ,

an assumption that will be kept in the sequel. Note that the family of solutions
(4.27) has a free parameter $T>0$ .

STABILIZATION. The above family of solutions allows to describe the behavior of
general solutions near their extinction time. Indeed, it is proved that as $tarrow T$ ,
the solution stabilizes in the $L^{\infty}$ norm, after the natural rescaling, to the separate
variables profile. We have

Proposition 4.13. Under the above assumptions on $u_{o}$ and $m$ we have the fol-
lowing property near the extinction time of a solution $u(x, t)$ : for any sequence
$\{u(x, t_{n})\}$ , we have a subsequence $t_{n_{k}}arrow T$ and a $\varphi(x)$ such that

(4.30) $\lim_{karrow\infty}(T-t_{n_{k}})^{-1/(1-m)}|u(x, t_{n_{k}})-U(x,t_{n_{k}};T)|arrow 0$

uniformly in $x\in\Omega$ for $U(x, t)=(T-t)^{1/(m-1)}\varphi^{1/m}(x)$ .

Remarks. (1) The result can also be written as
$\lim_{karrow\infty}|(T-t_{n_{k}})^{-1/(1-m)}u(x, t_{n_{k}})-\varphi(x)|arrow 0$
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(2) A very important observation is that solutions of (4.28) need not be unique.
That property depends on the geometry of $\Omega$ and on $p$ . Now, when the solution
of (4.28) is unique (for instance in a ball), then the limit of $(T-t)^{-1/(1-m)}u(x, t)$

is also uiUque.
(3) Uniform convergence does not describe accurately the similarity between $u$

and $U$ near the boundary, where both are zero. It is proved in [BV] that the
convergence is indeed uniform in relative error in the sense that (considering the
uniqueness case for simplicity)

(4.31) $\lim_{tarrow\infty}|\frac{u(x,t)}{U(x,t;T)}-1|arrow 0$

uniformly in $\Omega$ .
Square root of pressure. When $0<m<1$ , the constant $r$ in (4.19) becomes
negative and the pressure $v$ goes to infinity as $x$ approaches $\partial\Omega$ . Hence, in fast
diffusion we will consider square-root convexity of the pressure $v$ .

Set $w=v^{1/2}=g^{\frac{m-1}{2m}}$ , where $g=v^{\frac{m}{m-1}}=u^{m}$ . Since $g=u^{m}$ has a linear behavior
near the boundary of $\Omega$ , we will have
Lemma 4.14. When $0<m<1_{f}$ for every $t>0$ and as $xarrow\partial\Omega(v)$

$w_{\alpha\alpha}(x, t)= \frac{m-}{2mg^{2-\frac{m-11}{2m}}}(gg_{\alpha\alpha}-[1-\frac{m-1}{2m}]g_{\alpha}^{2})\geq\frac{\delta_{1}}{\epsilon^{2}}$ .

Lemma 4.15. Let $\Omega$ be a convex bounded domain and let $v_{0}\geq 0$ be a continuous
and bounded initial function that $v_{0}$ vanishes on the boundary. If $\sqrt{v_{0}}$ is convex,
then the solution of the fast diffusion equation, $v(x, t)$ , is square root-convex in the
space variable for all $t>0$ , i. e., $D^{2}\sqrt{v(x,t)}\geq 0$ .

Similarly, we have

Corollary 4.16 (Square-root Convexity). If $\Omega$ is convex, there is a stationary
pressure profile $h(x)=\varphi(x)^{\frac{1-m}{m}}=\varphi^{1-p},$ $1<p< \frac{n+2}{n-2}$ which is square-root convex.
i. e., $D^{2}\sqrt{h(x)}\geq 0$ .
As a consequence, the level sets of $\varphi$ are convex.

A small modification of Lemma 4.9 with Lemma 4.15 and Corollary 4.16, allow
us to derive the strict square-root convexity of $\varphi^{\frac{m-1}{m}}$

Lemma 4.17 (Strict Square-root Convexity). If $\Omega$ is smooth and strictly convex,
$h(x)=\varphi(x)^{\frac{m-1}{m}}=\varphi^{1-p},$ $1<p< \frac{n+2}{n-2}$ is strictly square root-concave: there exists a
constant $c_{1}>0$ such that
(4.32) $D^{2}\sqrt{h(x)}\geq c_{1}$ I.
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The constant $c_{1}$ depends only on the shape of $\Omega$ . As a consequence, the level sets
of $\varphi$ are strictly convex.
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