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1 Introduction
J.Taylor’s list $([T])$ of configurations for so-called $(M, 0, \delta)$ -minimal sets ([Alm]) in $R^{3}$ include a
singularity type where three minimal surfaces are meetiiig along areal analytic ([KNS]) singular
curve with $120^{o}$ degree angle. In this article we introduce alocal conformal parametrization
of such aconfiguration by a2-dimensional simplicial complex $Y_{0}$ consisting of three half discs
whose diameters are identified to form al-dimensional face. The parametrization functions as an
isothermal coordinate system of the neighborhood of the singular surface.

We introduce two different methods in order to construct such parametrizations, both utilizing
the real analyticity of the singular surface, and the Euclidean ambieiit geometry. What is required
to establish aconformal parametrization is aBeltrami equation locally defined on ahalf plane.

Then we point out that the conformal parameterization $hom$ the 2-dimensional simplicial
coinplex into the singular surface with the three balanced surfaces has amean value property.
There has been much work on the subject of harmonic analysis on Euclidean buildings where
harmonic functions are defined on the buildings. The conformal harmonic parameterization of
the singular minimal surfaces can be regarded as agraph of aharmonic function defined over the
simplcial complex $Y_{0}$ .

The content of this article is apart of an ongoing project(cf. [MY],[MY2]) by C.Mese and the
author.

2 Identifying Beltrami equation
Let

$\triangle^{+}=\{(x, y)\in R^{2}:x^{2}+y^{2}<1, y>0\}$

and consider three copies of $\triangle^{+}$ and label them $\triangle_{1}^{+},$ $\triangle_{2}^{+},$ $\triangle_{3}^{+}$ to distinguish one from another. Let
$A_{i}=\{(x, y)\in R^{2}:-1<x<1,y=0\}\subset\overline{\triangle_{i}^{+}}.$ .
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Identify the points of $A_{i}$ and $A_{j}$ by the identity map Id : $A_{i}arrow A_{j}$ and $Y_{0}$ be the union of the 3
half-discs $\triangle_{i}$ with this identification on $A_{i}$ ’s and denote the $A_{i}$ ’s by $A$ . For a map $\alpha$ from domain
$Y_{0}$ , we will denote the restriction of $\alpha$ to $\triangle_{i}^{+}$ by $\alpha_{i}$ and write $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{n})$ .

Lemma 1 Let $\Gamma\subset R^{3}$ be a real-analytic curve and $\Sigma_{i}\subset R^{3}(i=1,2,3)$ be a real-analytic surface
so that $\Sigma_{i}\cup\Gamma$ is a real-analytic surface with boundary $\Gamma$ . We assume further that the three surfaces
are $balanced_{J}$ namely meeting along $\Gamma$ at 120’ degree angle. Then for every $p_{0}\in\Gamma$ , there exists a
real-analytic map $u_{i}$ : $\triangle^{+}\cup Aarrow\Sigma_{i}\cup\Gamma$ so that $u(\triangle^{+})\subset\Sigma_{i}$ and $p_{0}\in u_{i}(A)\subset\Gamma$ . $Furthem\iota ore,$ $u_{i}|_{A}$

is a constant speed parametrization of $\Gamma$ in a neighborhood of $p_{0}$ , with the constant speed shared by
$u_{1}|u|_{A}$ and $u_{3}|_{A}$ .

PROOF. [Construction 1] We $wiU$ present aversion of the proof where the regularity is optimal.
Then the statement for the real analytic data follows ffom the stronger statement. Let $\Sigma$ be $\Sigma_{1}$

for now. Let $\gamma$ : $(-t_{0}, t_{0})arrow\Gamma$ be an arclength parametrization of $\Gamma$ so that $\gamma(0)=p_{0}$ . Then
$t\in(-t_{0}, t_{0})\mapsto\gamma’(t)$ is a $C^{1}$ map. Let $P(t)\subset R^{N}$ be the hyperplane containing the point $\gamma(t)$

and perpendicular to $\gamma’(t)$ . Because $\Gamma$ is $C^{2}$ , for asufficiently $smaU$ neighborhood $\mathcal{V}$ of $p_{0}$ , every
point $p\in \mathcal{V}$ belongs to aunique $P(t)$ . The size of $\mathcal{V}$ is only dependent on the curvature of $\Gamma$ .
Define amap $\mathcal{P}$ : $\mathcal{V}\subset R^{N}arrow R^{N}$ so that $\mathcal{P}$ is the hyperplane $P(t)$ containing $p$ . In other words,
if $\pi_{\Gamma}$ : $\mathcal{V}arrow\Gamma$ is the nearest point projection map, then $\mathcal{P}(p)=Po\gamma^{-1}\circ\pi_{\Gamma}(p)$ . Since $\Gamma$ is a $C^{2}$

curve, $\pi_{\Gamma}$ is $C^{1}$ ([Si] 2.12.3). Therefore, $as$ acomposition of $C^{1}$ maps, $\mathcal{P}$ is also $C^{1}$ . Furthermore,
since $\Sigma$ is $C^{2}$ , the map $\mathcal{T}$ which takes $p\in(\Sigma\cup\Gamma)\cap \mathcal{V}$ to the 2-plane tangent to $\Sigma$ at $p$ is $C^{1}$ .
Since $\mathcal{P}$ and $\mathcal{T}$ are $C^{1}$ maps, we can let $V$ : $(\Sigma\cup\Gamma)\cap \mathcal{V}arrow R^{N}$ be the $C^{1}$ map so that $V(p)$ is
the unit vector associated to the line $\mathcal{P}(p)\cap T(p)$ . Now define a $C^{1}$ map $H$ : $(\Sigma\cup\Gamma)\cap \mathcal{V}arrow R^{N}$

by setting $H(p)$ to be the unit vector perpendicular to $V(p)$ in the plane $\mathcal{T}(p)$ . Thus $V$ and $H$

are orthonormal vector fields on $(\Sigma\cap\Gamma)\cap \mathcal{V}$ . Let $\sigma_{t}(s)$ be an arclength parametrization of the
curve $(\Sigma\cap\Gamma)\cap P(t)$ with $\sigma_{t}(0)=\gamma(t).$ By construction $\sigma_{t}’(s)=V(\sigma_{t}(s)),$ i.e. $\sigma_{t}$ is acharacteristic
curve of the vector field V. We define $\gamma_{8}(t)$ as the characteristic curve of the vector field $H$ with
condition $\gamma_{s}(0)=\sigma_{0}(s)$ . The existence and uniqueness of $\gamma_{s}(t)$ foUows $hom$ the standard ODE
theory because $H$ is a $C^{1}$ vector field on $(\Sigma\cup\Gamma)\cap \mathcal{V}$ and $\gamma_{0}=\gamma$ is the characteristic curve of
$H$ whose image is $\Gamma\cap \mathcal{V}$ . In this way, we have constructed apair of orthogonal foliations on a
neighborhood $\mathcal{U}\subset\Sigma\cup\Gamma$ (with $\mathcal{U}$ chosen smaller than $\mathcal{V}$ if necessary) of $p_{0}$ .

We define amap $\phi$ : $\mathcal{U}arrow R^{2}$ as foUows. For $p\in \mathcal{U}$ , let the $\gamma_{s}$ and $\sigma_{t}$ be the curves intersecting
at $p$ . Then we set $\phi(p)=(t, s)$ . Then the $C^{2}$ map $\phi^{-1}$ defines aparametrization of aneighborhood
of $p_{0}$ by an open neighborhood of the upper half space of the $ts$-plane. Furthermore the pulled-back
metric $(\phi^{-1})^{*}g_{0}$ of the 3-dimensional Euclidean metric $g_{0}$ , which we denote by $G$ is represented
on the upper half $ts$-plane as adiagonal matrix near the origin, since the surface is orthogonally
foliated by the leaves $\{\sigma_{t}\}$ and $\{\gamma_{s}\}$ . We are done by choosing $r>0$ sufficiently small and letting
$u:\triangle^{+}\cup Aarrow\Sigma\cup\Gamma$ be defined $u(x, y)=\phi^{-1}(rx, ry)$ .

Repeat the same argument for $i=2$.and 3. Q.E.D.

PROOF.[Construction 2] We use the so-called hodographic projection of [KNS] to param-
eterize a neighborhood of $p_{0}$ . The surfaces $\Sigma_{2}$ and $\Sigma_{3}$ are locally graphs over the tangent plane
$T_{p0}\Sigma_{1}$ . We suppose that $\Sigma_{3}$ lies above the plane, $\Sigma_{2}$ below. Let $\Pi_{2}$ and $\Pi_{3}$ be the orthogonal
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projection maps from $\Sigma_{2}\cap B_{\delta}(p_{0})$ and $\Sigma_{3}\cap B_{\delta}(p_{0})$ to $T_{p0}\Sigma_{1}$ for sufficiently small $\delta$ . We can
choose the coordinates so that $p_{0}=(0,0,0)\in R^{3}$ , the tangent line to $\gamma$ at $p_{0}$ is the $x_{1}$ -axis
and $T_{p0}\Sigma_{1}$ is the $x_{1}x_{2}$-plane. Define $u_{2},$ $u_{3}$ by the conditions $\Pi_{2}^{-1}(x_{1\}}x_{2})=(x_{1}, x_{2}, u_{2}(x))\in\Sigma_{2}$

and $\Pi_{3}^{-1}(x_{1}, x_{2})=(x_{1)}x_{2}, u_{3}(x))\in\Sigma_{3}$ . Near the origin, the map $h(x_{1}, x_{2}):=(x_{1}, u_{3}(x)-u_{2}(x))$

is of rank two. It sends $\Pi_{2}(\gamma)=\Pi_{3}(\gamma)$ to the $x_{1}$-axis and its image is contained in the upper
half plane. The map $h\circ\Pi_{2}$ is the hodographic projection and its inverse map $\Pi_{2}^{-1}\circ h^{-1}$ defined
on a sufficiently small half disk centered at the origin defines the real analytic parameterization
of $\Sigma_{2}$ around $q$ , while $\Pi_{3}^{-1}\circ h^{-1}$ defines that of $\Sigma_{3}$ . Similarly, $\Sigma_{1}$ can be parameterized using
the tangent plane $T_{p0}(\Sigma_{2})$ . Denote these three maps parameterizing the neighborhood of $p_{0}$ by
$u=(u_{1}, u_{2}, u_{3})$ : $Y_{0} arrow(\bigcup_{i=1}^{3}\Sigma_{i})\cup\gamma$ with $u_{i}$ : $\triangle_{i}^{+}\cup A_{i}arrow\Sigma_{i}$ . The real analyticity and the continuity
of $H$ follows from the construction. Q.E.D.

3 Construction of isothermal coordinates
Theorem 2 Let $\Gamma\subset R^{3}$ be a real-analytic curve and $\Sigma_{i}\subset R^{3}(i=1,2,3)$ be a real-analytic
surface so that $\Sigma_{i}\cup\Gamma$ is a real-analytic surface with boundary $\Gamma$ . We assume further that the three
surfaces are balanced, namely meeting along $\Gamma$ at $120^{o}$ degree angle. Then for every $p_{0}\in\Gamma$ , there
exists an isothermal coordinate system of a neighborhood of $p_{0}$ by a conform,$al$ map from $(Y_{0}, G_{0})$

where $G_{0}$ is the tnplet of standard Euclidean metric $iG_{0}$ on each face $\triangle_{i}$ .

PROOF. By Lemma 1, there exists a parameterization of a neighborhood of $p_{0}$ in the singular
surface so that $u_{\dot{\eta}}$ is real analytic in $\triangle_{i}^{+}\cup A_{i}$ . Let $iG$ be the the pull back of the Euclidean metric
on $R^{n}$ under the map $u_{i}$ . With respect to the Euclidean coordinates of $\triangle_{i}$ , denote the metric
components of $iG$ by $iG_{\alpha\beta}$ . We now wish to find an isothermal coordinate by solving the Beltrami
equation

$w_{\overline{z}}=\mu w_{z}$

where Beltrami coefficient $\mu$ is given by

$\mu=\frac{iG_{11}-iG_{22}+2\sqrt{-1}^{i}G_{12}}{iG_{11}+iG_{22}+2\sqrt{iG_{11^{i}}G_{22^{-i}}G_{12}^{2}}}$ .

Note here that the Beltrami coefficient $\mu$ is represented by the pull-back metric $iG=(u_{i})^{*}G_{0}$ .
The Beltrami coefficient $\mu$ has moduli strictly less than one. Furthermore, the metric components
$iG_{\alpha\beta}$ are given by

${}^{t}G_{\alpha\beta}= \langle\frac{\partial u_{i}}{\partial x^{\alpha}},$ $\frac{\partial u_{i}}{\partial x^{\beta}}\rangle_{R^{n}}$ .

Thus, the components of $iG$ are real analytic on $\triangle_{i}^{+}\cup A_{i}$ since the map $u_{i}1s$ real analytic there.
Note that the quantity $\sqrt{iG_{11^{i}}G_{22^{-i}}G_{12}^{2}}$ is the pulled-back area form of the immersed surface
$u_{i}(\triangle_{i}^{+}\cup A_{i})$ in $R^{n}$ by a real analytic map $u_{i}$ . As the differential of the map $u_{i}$ is non-degenerate by

construction, the term $iG_{11^{i}}G_{22^{-}}^{i}G_{12}^{2}$ is strictly positive. Then the quantity $\sqrt{iG_{11^{i}}G_{22^{-i}}G_{12}^{2}}$
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is real analytic. $(G_{11}-G_{22}+2\sqrt{-1}G_{12})(x, y)$ and $(G_{11}+G_{22}+2\sqrt{G_{11}G_{22}-G_{12}^{2}})(x, y)$ on the
open set $R$ near the origin.

Let $P=u_{i}(p)$ be a point on the free boundary with $p=(x_{0},0)\in R\cap A$ . We set $w(z,\overline{z})=$

$\alpha(x, y)+i\beta(x, y)$ and $\mu=\eta(x, y)+i\zeta(x, y)$ to rewrite the Beltrami equation defined on the half
disk $\triangle_{i}^{+}$ as the following system of equations with real analytic coefficients:

$(\alpha_{y}\beta_{y})=(\begin{array}{llll}\zeta (1+ \eta)(l- \eta) \zeta \end{array})(\begin{array}{ll}(l- \eta)u_{x}+\zeta v_{x}-(u_{x} \eta-(1+)v_{x}\end{array})$

The inverse matrix on the right hand side exists because $|\mu|^{2}=\eta^{2}+\zeta^{2}<1$ . We also have the
Cauchy initial data

$\alpha(x, 0)=x-x_{0}$ and $\beta(x, 0)=0$

for $(x, 0)\in A_{i}$ near $(x_{0},0)\in A_{i}$ . Therefore, we can apply the Cauchy-Kowalewski Theorem and
obtain, in some neighborhood of the point $p$ , a unique solution to the Beltrami equation. This
solution $w_{i}$ is a quasiconformal diffeomorphism from a neighborhood $\mathcal{U}_{i}\subset\triangle_{i}^{+}\cup A_{i}$ of $(x_{0},0)$ to
a neighborhood $\mathcal{V}_{i}\subset\triangle_{i}^{+}\cup A_{i}$ of $(0,0)$ . By construction, the pulled-back metric of the Euclidean
metric $G_{0}$ of $\triangle_{i}^{+}$ under $w_{i}$ is conformal to $iG$ . Thus the map $w_{i}^{-1}$ provides a parameterization of
the neighborhood of $p=(x_{0},0)$ in $(\triangle_{i}^{+}\cup A_{i},{}^{t}G)$ by an open set $\mathcal{V}_{i}$ in $\triangle_{i}^{+}\cup A_{i}$ . After scaling,
we have constructed an isothermal coordinate system $F=(F_{1}, F_{2}, F_{3})$ : $(Y_{0}, G_{0})arrow(Y_{0}, G)$ of
$p\in A$ . The map $f=(f_{1}, f_{2}, f_{3})$ with $f_{i}=u_{i}\circ F_{i}$ satisfies the desired properties of the isothermal
coordinate system of $P\in\Gamma.$ Q.E.D.

4 Harmonic functions on simplicial complexes
Let $f=(f_{1}, f_{2}, f_{3}):(Y_{0}, G_{0})arrow R^{3}$ be as in Theorem 2. The equality

$f_{i}(x, 0)=f_{j}(x, 0)$ (1)

for $i,j=1,2,3$ implies
$\frac{\partial f_{i}}{\partial x}(x, 0)=\frac{\partial f_{j}}{\partial x}(x, 0)$ . (2)

Using the conformality of $f_{i}$ , the balancing of the three surfaces along the singular curve $\Gamma$ can be
written as

$0= \sum_{i=1}^{3}\frac{4\partial\partial y}{|_{\text{\^{o}} y^{i}}^{\lrcorner}\partial|}(x, 0)=\sum_{i=1}^{3}\frac{\lrcorner\partial_{i}\partial y}{|_{\partial x^{i}}^{\partial}\lrcorner|}(x, 0)$.

This combined with (2) implies

$0= \sum_{i=1}^{3}\frac{\partial f_{i}}{\partial y}(x, 0)$ . (3)

If we let
$\tilde{f}_{1}(x, y)=-f_{1}(x, -y)+\frac{2}{3}\sum_{i=1}^{3}f_{i}(x, -y)$ (4)
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then (1) and (3) imply that

$f_{1}(x, 0)=\tilde{f}_{1}(x, 0)$ and $\frac{\partial f_{1}}{\partial y}(x, 0)=\frac{\partial\tilde{f}_{1}}{\partial y}(x, 0)$ . (5)

We claim (5) shows $U_{1}:\trianglearrow R^{n}$ defined by setting

$U_{1}(x, y)=\{\begin{array}{l}f_{1}(x, y) for y\geq 0\tilde{f}_{1}(x, y) for y<0\end{array}$

is harmonic. Indeed, for any smooth $\xi$ : $\trianglearrow R^{n}$ with compact support, integration by parts
gives.

$- \int_{\Delta+}\nabla\xi\cdot\nabla U_{1}dxdy=\int_{\triangle}+\xi\triangle f_{1}dxdy-\int_{I}\xi\frac{\partial f_{1}}{\partial y}(x, 0)dx$

and
$- \int_{\triangle}-\nabla\xi\cdot\nabla U_{1}dxdy=\int_{\triangle}-\xi\triangle\tilde{f}_{1}dxdy+\int_{I}\xi\frac{\partial\tilde{f}_{1}}{\partial y}(x, 0)dt$

where $\triangle^{+}=\{(x,y)\in\triangle : y>0\},$ $\triangle^{-}=\{(x, y)\in\triangle : y<0\}$ and $I=\{(x, y)\in\partial\triangle^{+}:y=0\}$ .
Summing up the above two equations and using the harmonicity of $f_{1}$ and $\tilde{f}_{1}$ , we obtain

$- \int_{\triangle}\nabla\xi\cdot\nabla U_{1}dxdy=0$ .

By Weyl’s Lemma, $U_{1}$ is a $C^{\omega}$ harmonic map. Similarly, there exists $C^{\omega}$ extensions $U_{2},$ $U_{3}$ of $f_{2}$

and $f_{3}$ . We call this construction of the real analytic extension $U_{i}$ of $f_{i}$ the multi-sheeted reflection.
By summarizing the argument above, we have

Theorem 3 Let $\Sigma_{1},$ $\Sigma_{2},$ $\Sigma_{3}$ and $\gamma$ as in Theorem 2. The surface $\Sigma_{i}$ can be extended real analyt-
$i$cally across the curve $\gamma$ . This extended surface is parametrized by the conformal, harmonic map
$U_{i}$ via the multi-sheeted reflection.

We note that the extendability of the minimal surface $\Sigma_{i}$ across a real analytic boundary curve
$\gamma$ follows from a celebrated result of H.Lewy [Le]. On the other hand, Theorem 3 gives a more
precise picture of the extension. Indeed, the extension of the parameterization $f_{1}$ of $\Sigma_{1}$ is given in
terms of a linear combination of odd reflections of $f_{1},$ $f_{2},$ $f_{3}$ as deflned in (4).

When three minimal surfaces are geometrically balanced along a $C^{\omega}$ curve in $R^{3}$ (i.e. the unit
outer normal of the three surfaces sum to zero as in (3) $)$ , the entire configuration is completely
determined by one of the three surfaces. This follows from the so-called Bj\"oling’s problem resolved
by H.Schwarz. We will explain below how to use this and arguments in the proof of Theorem 3
to give a construction of Lewy’s extension.

Theorem 4 A minimal surface in $R^{3}$ with a real analytic boundary can be extended across the
boundary by a multi-sheeted refiection.
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PROOF. We start with a surface $\Sigma_{1}$ with a real analytic boundary curve $\gamma$ . Let $\eta_{1}$ be the unit
outer normal to the surface $\Sigma_{1}$ along $\gamma$ . Let $\eta_{2}$ and $\eta_{3}$ be the two unit vector fields defined on $\gamma$ ,
normal to $\gamma$ , each making the angle of $\pi/3$ to $\eta_{1}$ , Note here $\eta_{1}+\eta_{2}+\eta_{3}=0$ . The solution by
Schwarz of the Bj\"orlng’s problem ([Ni] III \S 149) then provides locally defined, uniquely determined,
minimal surfaces $\Sigma_{2}$ and $\Sigma_{3}$ along $\gamma$ so that $\eta_{2}$ and $\eta_{3}$ are unit outer normals to $\Sigma_{2}$ and $\Sigma_{3}$ along
$\gamma$ respectively.

Recall that we have the harmonic and conformal parameterization $f_{i}$ : $\triangle_{i}^{+}\cup A_{i}arrow(\Sigma_{i}\cup\Gamma)\subset R^{3}$

without branch point. Furthermore, we also have

$\sum_{i=1}^{3}\frac{\partial f_{i}}{\partial y}=c\sum_{i=1}^{3}\eta_{i}=0$

where $c=| \frac{\partial}{\text{\^{o}}}xA|=|_{\text{\^{o}} y}^{\partial}A|$ . Now each $f_{i}$ : $\triangle_{i}arrow R^{3}$ can be extended across the real axis $A_{i}$ by $\tilde{f}_{1}$ of
$QE.D(4.).In$

particular, we have a conformal parameterization of the extension of $\Sigma_{1}$ as in Theorem 3.

Recall that on a locally finite simplicial complex of dimension $l$ , a function $f$ is called harmonic
if for every simplex $\sigma$ of dimension $l-1$ , the average value of the function $f$ on all maximal
simplices whose closure contain $\sigma$ is zero. We demonstrate that the map which provides our local
uniformization by $Y_{0}$ is harmonic in this sense after a normalization. In particular, we show that

Theorem 5 The coordinate functions of the map $f$ : $Y_{0}arrow R^{3}$ of the singular minimal surface
satisfy the mean value equality:

$\int_{B_{\epsilon}(po)}\sum_{i=1}^{3}[f_{i}(x)-f(p_{0})]dx=0$

where $p_{0}=(x_{0},0)$ in $A$ , and $B_{\epsilon}(p_{0})$ is a ball of radius $\epsilon>0$ in $(Y_{0}, G_{0})$ , namely the set $\{y\in$

$Y_{0}|d(y,p_{0})<\epsilon\}$ where the distance function $d$ is with respect to the Euclidean $metr\dot{\tau}c^{i}G_{0}$ on each
face $\triangle_{i}^{+}$ . Here we note $f_{i}(p_{0})=f(p_{0})$ for $i=1,2,3$ .

PROOF. We have shown above that each map $f_{i}$ defined on $\triangle_{i}^{+}$ can be canonically extended
across the edge $A$ to the disc $\triangle_{i}$ . The resulting harmonic function $U_{i}$ satisfies the mean value
equality

$\frac{1}{\pi\epsilon^{2}}\int_{B_{\iota}\phi_{0})}U_{i}(x)dx=f_{i}(p_{0})$ .

Rewriting the integral as a sum of integrals over the upper disc $B_{\epsilon}^{+}(p_{0})\subset\triangle_{i}^{+}$ and the lower disc
$B_{\overline{\epsilon}}(p_{0})\subset\triangle_{i}^{-}$ , we get

$\frac{1}{\pi\epsilon^{2}/2}\int_{B_{*}^{+}(po)}f_{i}(x)dx=-\frac{1}{\pi\epsilon^{2}/2}\int_{B^{-}(po)}\tilde{f_{i}}(x)dx+2f_{1}(p_{0})$ .

By rewriting $\tilde{f_{i}}(x, y)$ as $-f_{i}(x, -y)+ \frac{2}{3}\sum_{j=1}^{3}f_{j}(x, -y)$ for $y<0$ , and taking a sum over $i=1,2,3$ ,
we get

$\sum_{i=1}^{3}\frac{1}{\pi\epsilon^{2}/2}\int_{B_{\epsilon}^{+}(po)}f_{i}(x)dx=3f(p_{0})$ ,
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which is the mean value equality. Q.E.D.
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