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Abstract

We continue the study of a degenerate parabolic equation derived
from the kinetic theory using Rényi-Tsallis’ entropy, particularly, the
quantized blowup mechanism for the critical mass exponent.

1 Introduction

The present paper studies the blowup mechanism for solutions to a degen-
erate parabolic equation in a kinetic theory describing the motion of a mean
field of many self-interacting particles [2].

First, the particle density at (z,t) € R™ x (0,T") with the velocity v is
denoted by 0 < f = f(z,v,t) which satisfies the kinetic equation

ft+v'vxf—v80‘vvf=—vv‘j (1)

provided with the general dissipation flux term —V, - j, where ¢ is the
Newton potential generated by f. We have the density-pressure relation

p= p(/-"a 9) (2)

and the Poisson equation
Ap = p, (3)
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where p and 6 stand for the pressure and the temperature, respectively.
The above flux term in (1) is determined by the maximum entropy pro-
duction principle, so that f maximize the local entropy

S=/Rn s(f(z,v,t))dv

under the constraint
u(at) = [ fz,o, 0
R”»
1 2
p(z,t) == [ |v|° f(=z,v,t)dv.
n Jrn

Averaging f over the velocities v € R™ and the passage to the limit of large
friction or large times lead to

we = V[Ds - (Vp+ uVe)), @

that is a hydrodynamical limit of self-gravitating particles whereby the total
mass

)\=/ p(x, t)dz
Rn”

is conserved during the evolution. We have, thus, several mean field equa-
tions according to the entropy function s(f) subject to the law of partition of
macroscopic states of particles into mezoscopic states, that is the entropies of
Boltzmann, Fermi-Dirac, Bose-Einstein, and so forth. System (2)-(4) is still
under-determined, and there are several theories to prescribe the tempera-
ture ¢. In the cannonical statistics one takes the iso-thermal setting, and
hence the temperature 6 is a constant. In the micro-cannonical statistics,
on the other hand, 6 is a function of ¢ and the total energy

n 1
E_E/desc—i——z-/nmpdx

is prescribed independently of ¢.
If Rényi-Tsallis’ entropy

~1
s=— [ (1-pa
g ) AR CAR L
is adopted, then (2) becomes

_an
p= K077 ptt,
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where k > 0 is a constant and % = -q—_l_—l + %, see [3, 1]. Normalizing physical
constants, we can reduce (3)-(4) to the degenerate parabolic equation

m—1

U =

Au™ —V - (uVDl xu), u>0 in R x (0,T) (5)

in the iso-thermal setting, where the new unknown u is a positive constant

times u, m—l_l- = ?1%—1""%’ and

1

R P ©

with wy,_1 denoting the area of the boundary of the unit ball in R".

When n = 3 and ¢ = §, the case m = 2 — 2 = £ actually arises to (5).
From the scaling invariance, see below, equation (5) of this exponent m is a
higher-dimensional version of the Smoluchowski-Poisson equation associated
with the Boltzmann entropy in two-space dimensions. This two-dimensional

equation is given by
uy=ADu—-V- - (uVl*xu), u>0 in R? x (0,T) (7)

defined for I'(z) = 5= log rz]- It is thus a relative to the simplified system of
chemotaxis and there arises the formation of collapse for the blowup solution
in finite time similarly, that is '

u(z, t)dz = Y 8mdy,(dz) + f(z)dz (8)

ZoES

ast T T in M(R™U {o0}) provided that T' < +o00 and
up = ul,_g € X = L}(R?, (1 + |z|*)dz) N L (R?) N HY(R?),

where T is the blowup time, R2uU {0} is the one-point compactification of
R?, ‘
S = {xo € R2U {0} | there exist z, — z¢ and t; T T
such that u(zg,tx) — +oo} (9)

the blowup set actually contained in R?, and 0 < f = f(z) € L}(R?) N
C(R2\ S), see [15, 18].

"The solution to (5) which we handle with is the weak solution formulated
by [20]. First, given the initial value

0<w € L{R™NL®R") with uf'e H(R"), (10)
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we take the approximate solution u. = uc(z,t) satisfying

Uet = T—EA(% +e)™ =V - (ue VI * ug) in R® x (0,T)
Ulg—g = Uoe in R"
for 0 < € « 1, where
OSuOEELlﬂWZ’p(Rn) for any p € [=%5,n + 3]

lucells < lluollp, ~ for any p € [1, oq]
[Vugell2 < [[Vug'|l2
Uge — UQ - strongly in L”(R") as € | 0 for some p € [-2+, 00).

Then we obtain the following theorem, passing to the limit ¢ | 0.

Theorem 1 Assume that (10) holds. Then, there erists 0 < T < 1
such that (5) has a weak solution in the sense that

/f m_lvum.vg—'uvr*u-vg—ugtd:cdtzf upé dz
R"’X[O,T] m n
provided with the properties

u € C.([0,T), LP(R")), 1 <p<oo,
regarding LP(R™) = LP'(R"Y, 7+i=1,

ueﬁwmiﬂL%Rﬂwu%AmT>vwnﬂ>
Vu™ e L*(0,T; L*(R™))
Bu™ € L*(0,T; L*(R™))
VI *u € L%(0,T); L*(R™), | (11)
and _
lu@lls = lluolls  for a.e. t € [0,T), (12)
where £ € H*(0,T; L2(R™))NL2(0,T; H(R™)) is the test function satisfying
£(-,t) =0 for 0 < T —t < 1. Furthermore, it holds that
ue — u in L®(0,T; LYR")  for all g € (1,00}, (13)

regarding L(0,T; L4(R™)) = L'(0,T; LY (R™))', & + L =1, for some sub-
sequence of the approzimate solutions. If the exzstence time of the weak
solution u, denoted Ty ax, 1S finite, then

Jim [[u(®) o = +o0. (14)
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Henceforth we put T' = Thax. We take the case
/ 122 uo(z)dz < +00 (15)
Rn

to control the behavior of the solution at z = co. The next theorem assures
a threshold of A\ = ||ugl|1 for T = +00 to occur. The threshold value A, will
be prescribed in the next section.

Theorem 2 There is a constant A, > 0 determined by the dimension
n > 3 such that if up = uo(x) is the initial value satisfying (10), (15), and
lluoll < Ax, then T = 400 holds in (5) form =2— 2. Each A > A, on the
other hand, takes ug = ug(x) such that (10), (15), ||luoll1 = A, and T < +o0.

The blowup set is now defined by § = R™ \ B,

B = {xo € R" | there exists r > such that limsup sup u(z,t) < +oo}
tTT IEEB(IBO,"”)

which is non-empty because the weak solution u = u(x, t) satisfies the stan-
dard blowup criterion (14) for T' < +o0. Here and henceforth, we write sup,,
for ess. sup,. Next, we confirm the blowup rate. Thus we write (5) as

Up = mulAum—Vu-VI‘*u—f—uQ,
m
and take the ODE part
¢=¢
It follows that ,
¢ty =(T-t)™ (16)

and we see that the type I blowup rate is O((T — t)™!). Then we say that
xo € S is type L if liminfyp (T — t)||u(t)|| Lo (B(zo,ro)) < +00 for some rg > 0
and type II in the other case. The next theorem assures the finiteness of
type II blowup points.

Theorem 3 Let ug = ug(x) be the initial value satisfying (10) and (15),
and assume T < +oo for the above described weak solution u = u(zx,t) to
(5) with m =2 — 2. Then, S is bounded and Sy; is finite, where

n

Sir = {cvo € § | Um(T = t)[u(t)l| Lo (B(zo,ro)) = +00 for any o > 0} :
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In the case of the Smolchowski-Poisson equation in two-space dimensions

(7), any zg € S is type II. More strongly, it holds that

Itig}(T = ) W)l Lo (B(ao,b(T—t)1/m) = +00 (17)
for any b > 0, see [11]. The finiteness of Sr7, and consequently that of S, is
also proven in this case, but the proof of Theorem 3 is quite different. This
difference comes from essentially that of the roles of the second moment
of u. We have, more precisely, z - VI' = —517; for I'(z) = ﬁ%r-'log T%(, while
x+ VI = —(n — 2)I" arises for (6) which results in (26) below.

This paper is composed of four sections. In §§2 and 3, we describe the
proof of Theorems 2 and 3, respectively. In section 4, we argue related topics
such as the formation of collapse, blowup rate, and mass quantization. We
emphasize that the argument developed in this paper is formal.

2 Proof of Theorem 2

The first observation is that it is a model B equation, see [18], associated
with the free energy

Flu) = / N AP (18)
o RrRn. M 2 ’ )
In fact, we have

= <v,um’i —Txu),
s=0

- where ( , ) denotes the L2-inner product. Identifying F(u) with u™~1 —Txu,
we can write (5) as

SF ()] = adg.?-'(u + sv)

us =V - (mn-; IVum —-uVI‘*u) =V - uViF(u) in R"® x (0,T). .

From this form, we have the total mass conservation
lu@)l1 = lluollr = A (19)

and the decrease of the free eneygy
d - 2
—F(u) = — [ u|VéF(u)|“dx
dt Rn

= -/ u|V(um_1——F*u)|2da:§0. (20)
R’I’L
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Regarding (19)-(20), we formulate the stationary state by

u™ 1 — ' % u = constant in {u > 0}, /n udzr = A (21)

If the above constant is denoted by ¢, then v = I' * u + ¢ satisfies
—Av =9 inR", /n vidz = ), (22)
where m = 1+ %. Problem (22) is invariant under the scaling transformation
v(z) = vu(z) = pv(pz) (23)
ifand onlyif y=n—2and g = le——l'_‘ B, thatism=2-—%, where 4 > 0

is a constant. If this exponent is the case, conversely, problem (23) admits
a family of solutions each of which is necessarily radially symmetric and w?
has a compact support, see [21]. Then, we define the normalized solution
vs = vs() to (22) and the threshold A, > 0 of Theorem 2 by

—Ave =v],, v« <(0)=0 inR" and e = / ) v, dz,

respectively. The scaling propery of the free energy
Fluy) = u"2F(u) (24)
now implies the following lemma.

Lemma 1 It holds that
jo = inf{F(u) | 0 < u € L™RY), /R u=M\}=0 (25)
ifm=2-— %
We can justify that the function
te[0,T) — /R al? u(z, t)dz € [0, +00)
is locally absolutely continuous and that

d 2 _ m-—1 m _ _
pr Rnlxl udr = — 2nLnu dr — (n — 2) (T * u,u)

= 2(n-—2)F(u). (26)

Then the following lemma is proven [20].
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Lemma 2 If the initial value ug satisfies F(ug) < 0 and (15), then
T < 400 arises.

'To show Theorem 2, first, we note that Wang-Ye’s Trudinger-Moser in-
equality (25) is sharp. Thus it holds that

inf{F(u) | u >0, suppuCBR,/ u=A}=—00

n

for any R > 0 and A > A,. Next if A = [Jug||y < A« is the case, we obtain

sup ||u(t)||lm < C1 (27)
te[o,T)

by (20) and (25). Then Moser’s iteration scheme guafantees

Csup JJu() floo < 400
te[0,T)

and then T = 400 follows from (14).

3 Proof of Theorem 3

The first step to prove Theorem 3 is the e-regularity stated below [20]. It is
done by a standard argument of the localization of Lemma 1.

Theorem 4 We have eg > 0 and Cy > 0 z’ndepend‘ent of o € R™ and
0 < R« 1 such that

lim sup/ u(z, t)dx < gg
11T B(zo,R)

implies ,
1intlT§}1P lu(®)ll Loo (B(zo,R/2)) < Co-

For the proof, we note

v=I%u=wv] + v

v1(z,t) = /y—~:c]21 'z — y)u(y, t)dy

vo(z, t) = -/ly——a:|<1 'z — y)u(y,t)dy.
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Since
lvallg < flulliliT - x&llq

for B = B(0,1) we obtain
[v1lloo + llvz2lly < Ca(g)llully
for 1 < ¢ < 7%5. Next, we introduce v by
—-AV+V=v
and obtain U = U1 + U2 with

”'DQHWZ,Q(Rn) < C4(q) forl <qg< ;Lﬂ:i
o1 )lw2r(B(o,r)) < Cs(R,T) forany R>0and 1 <r < oo, (28)

using the above v;, 1t = 1,2. Then, v = U + w holds with w solving
-Aw+w=u.

For this w we can apply the estimates of [14]. Thus we obtain Lemma 4
because estimate (28) is applicable to v.
Lemm 4 implies the boundedness of the blowup set S.

Lemma 3 It holds that

lim sup ||u(?)| Leo(j2)>R) < Co (29)
1T
for R> 1.
Proof: We have
/ 2 u(z, t)dz < Cr(T, uo) (30)
Rn

for
C7(T,uo) = 2(n — 2)TF(uo) + / |z|? wodz,
. R"

and hence it follows that

1
sup / u(z,t)dr < —5C7(T, uo).
te[0,T) J|z|>R R

Taking R > 1 as C7(T, ug)R™2 < €0, we obtain (29) by Lemma 3. . 1
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Given ¢g € S and 0 < R < 1, we take 0 < ¢ = ¢z, r(z) € C’°°(R”)
satisfying supp ¢ C B(zo,2R) and ¢ =1 on B (zo, R) and put

A(t) = /Rn o(x)u(z, t)dz.

We justify the formal calculation

d
il d
dt /Rn puaz

2 2

= ’/ uV(u™ ! —T'*u) - Vodr

< / u|V(um"1—I‘*u)|2d:c-/ u|V|? dz
n Rn '

< - IVelE A Fw) (31)
which means | ” :
N2 < |V<P 0 " -
(4 < Pl (32)
If
ngr,_,r,l F(u(t)) > —o0 (33)

is the case, therefore, it follows that

— udx|dt < T / —/ udzx
/o dt /Rngo o |dt Jan”

9 1/2
dt} < 400

exists. Since Lemma 3 guarantees

hm inf A(t) = limsup A(t) > lim Sup/ u(zx, t)dz = €y,

we obtain
lim inf u(z,t)dxr > e
81T JB(zo,R) |
for any xp € S, and hence the finiteness of S by the total mass conservation
(19).
In the other case of

Lim 7 (u(t)) = - (35)
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we have F(u(tg)) < 0 for some tg € [0,T). We may assume tp = 0 without
loss of generality. Inequality (26) then implies

dH

for
H(t) = / |z|? u(z, t)dz
R

and hence there is H(T') = limyr H(t) > 0. If H(T) = 0 is the case, then

lim u(z,t)de =0

1T lx|>€e
for any € > 0 which implies S C {0} by Lemma 2. Thus we may assume
H(T) > 0 furthermore.

Lemma 4 It holds that

sup A(t') < A(¢) + Cs(H(t) — H(T))"?. (37)

t'eft, T

Proof: Inequality (32) implies
¢ Voll2 A
t' — s)A'(s)?%d <ﬂ-—‘p& t) — H(t
(¢ - o) (e)7ds < Pl (H () - HE)
for 0 <t <t <T by H'(t) <0, and therefore, it holds that

2

2 t4t!

’A(t—_;i,)——A(t) - /tz A'(s)ds
'~ 8) ds - ' — 5)A'(s)%ds
s/t (¢ —s)ds- | (= 5)4/()7

2

< 1o§2 . “Zf“z‘” - (H() — H®))
2

< lo§2 . ”Zf"; X (H(t) — H(T))

for ¢’ € [t,T). This implies

AL < ) + Co(H () — HI)Y?
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for ¢’ € [t,T) and hence (37). | I

In the following proof the scaling property of (5), m = 2 — % takes a role.
In fact, if v = u(z,t) is a solution, then u,(z,t) = u"u(uz, u™t) satisfies

m—1

/‘ 'U/'udw = / udx for ¢ € [0, TIJ,.)’ (38)
7 Rn'

where 1 > 0 is a constant and T, = u~"T.

Lemma 5 There is to € [0,T) and Cs > 0 such that if

/ u(z,t1)dxr < g9/2
B(zo,4(T—t1)1/™)

then it follows that

Sup (T = tyu(z, t) < Co, (39)
B(wo,(T—t1)Y/™)x [t1+§(T~t1),81+§ (T—t1)]

where zo € R™ and t; € [to, T).
Proof: We have
A(tl) < 50/2
for

Alt) = /R o (et (@)ule, )z

from the assumption and hence

sup A(t) <eo (40)

T
tle[tla_%l]

if0<T -ty <1, t) € [to, T) by Lemma 4.
Here we use the scaling property (38) and put
T+t

u(z,t) = ptu(pz + 2o, p "t + 1), Pt b= o

It hold’s that

- m—1
Uy =

AT —V - (GVT*4), 4>0, inR"Px(0,1)  (41)
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with

pt = (42)

and

sup ||a(?)|lz1(B0,2)) < €0 (43)
te(0,1)

by (40). In this case, we can argue similarly to [12] using the parabolic
regularity concerning the local L™ norm uniformly in » > 1 and Moser’s
iteration scheme. The analogous result to Lemma 4,

sup  [|@(t)||zeo(B(0,1)) < Cho,
te[1/4,3/4]

is obtained. This inequality means

sup (T — t1)u(z,t) < Cro
B(zo,(T—t1)Y/")x [t1+ §(T—t1),t1+ & (T~t1))

and hence (39) for Cy = %C’lo. 5
Proof of Theorem 3: The finiteness of S will follow from

inf limlim inf/ u(z,t)dr > £o/2
zo€S1r 0 T JB(zo,r)

* because of the total mass conservation (19). Assuming the contrary, we have
zo € Sy1, To > 0, and t; T T such that

/ u(z, t;)dzr < £0/2
B(.’L‘o,27‘0)

for j=1,2,---. Then we obtain

sup / u(x,tj)der < g9/2
y€B(zo,r0) Y B(y,4(T~t;)1/n)
for j sufficiently large, and, therefore,

sup (T - t)u(z,t) < Cy
B(y,(T—t;)2/ ™) x[tj+ 5 (T—t;),t;+3 (T—t;)]

by Lemma 5, where y € B(xo,rg) is ‘arbitrary. Then, it follows that

sup (T - t)u(z,t) < Co
B(zo,r0) X [t;+3(T—1t;),t;+ 3 (T—t;)]

and hence liminf (T — ¢)||u(t)|| Lo (B(zo,r0)) < +00, & contradiction. 1
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4 Further Discussions

Using a compactness property of a solution sequence, we are able to show
another aspect of the finiteness of type II blowup points. It is obvious
that S, C S for Si defined in the following theorem. This theorem may
be compared with a non-degeneracy of the blowup point ‘concerning the
semilinear parabolic equation with sub-critical nonlinearity [5].

Theorem 5 The set

_ n . . . _ .
Sy ={zo € R"| hrtl%%“nfB(mo,b?ql"f—t)lln)(T Hu(-,t) >0 for any b > 0}

is finite.

Proof: 1f

inf limliminf u(z,t)dz > 0
ToE€ESK |0 1T B(zo,r)

is not the case, we have zj € Su, T > 0,0 < T —tj, < 3—.1,5, g k=12---
such that

. £0 1
, u(x,t; da:<m1n{-—-—,—}. 44
/B(ivk,QTk) ( Jk) ' 272k o
Given k, we have j; such that
sup / u(z, tjr)de < £
YEB (k) I B,AT—t;)1/) B
for j > ji which implies
sup (T — t)u(z,t) < Cy (45)

B(2i,ri) X [tin+5 (T—tix) tin+ 3 (T—t;5)]

by Lemma 5 with ji replaced larger if necessary. We obtain, also,
1

sup ”u(t)”Ll(B(:vk,Zrk)) < A (46)
t€ltjr, 5 (T+t;x)]
by (44) and Lemma 4 under the same agreement.
Inequalities (45)-(46) imply
sup  |uik(8)ll oo (B0 pziry)) < C11
B(xk,rr)%[1,3] ’ £ (BOwime)
1
sup ““jk(t)||L1(B(0,2u;k1rk)) <z

B(&'k,?‘k) X [Oal]
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for
1
Hik = 5 (T = tjk)
ujk (@, t) = piu(pse + ok, uipt + tik)-
Then passing to a subsequence of {j} denoted by the same symbol, we have
Ujk — Uk locally uniformly in R™ x [2, 8] (47)

asj — oo for k= 1,2, .- by a diagonal argument and a parabolic regularity,
where ur = ui(z,t) is a solution to (5) satisfying

sup |luk(t)|lLeo@mn) < Cu1

te[$,3]
1
sup |luk(t)llz1rn) < -
te2,2]
This relation implies
ur — 0 | locally uniformly in R™ x [-g-, -g-]

as k — oo. Given b > 0 and n > 0, therefore, we have

n
lukll oo (0,200 x(2,81) < 5

for a k sufficiently large, and, then, we have Jbm,k such that
||“jk||Loo(B(o,2b)x[g,g]) <n (48)
for any j > jpn k- This inequality implies

sup (T — t)u(z,t) < n
B(Zk,5k0) X [tik+ & (T~tk),tik+ 5 (T—t;x)]

and hence
lilg,_},nf(T — Ol Lo (B(ag b(T—t)1/m)) < M5

by sending j — o0, so that
lilﬁ}nf(T — Ol[u(®) || oo (B(zr p(T—t)1/my) = 0
because 7 > 0 is arbitrary. This relation contradicts zr € Sk. 2

We say that z(t) € R" attains a positive local maximum if u(.,t) is
positive in a neighborhood of z(¢) and z(¢) is its local maximizer.
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Theorem 6 If{S = 400, there are infinite number of xo € S satisfying
that each b > 0 admits tg € [0,T) such that x(t) € B(zo, (T —t)1/™) for any
t € [to,T), provided that z(t) attains a positive local mazmimum of u(-,t)
such that ‘

lim sup u(z(¢),t) = +o0 (49)
t1T
and
lim inf inf u(+,t) >0 (50)
T B(zo,b(T-t)1/n)
for any b > 0.

Proof: If §§ = +o0 is the case, there are infinite number of zp € S\ S..
Since z(t) attains a positive local maximum of u(,t), it follows that

m < m?
for m(t) = u(z(t),t), see [4], and hence
m(t) = u(z(t),t) > (T —t)7?!

holds by (49). From this inequality if |z(tx) — zo| < C(T — t)/™, t 1T,
then we have zg € S., a contradiction. The proof is complete. )

A natural question evoked by Theorem 6 is the existence a radially sym-
metric shock wave concentrating toward a blowup point. A formal dimension
analysis of [7] applies to formulate such a solution. Thus we assume a radi-
ally symetric bulk moving to the origin of which distance from the origin,

the hight, and the thickness are R(t), h(t), and u(t), respectively, provided
with the property 0 < u(t) < R(t) = o(1). At this bulk we have % ~ %,

7 ~ R, and u ~ h so that |%=| ~ u_}}i <& |upp| ~ Ehg We have |v.| < |vpr]
similarly. Then (5) is reduced to

ug = uyy — (uvp)r, —Upp = U (51)

which implies .
~VUrrt = U;’:‘ + E(Ug)rr,

and, hence
1
(vr)e + [u™ + 5”3]7‘ = 0. (52)
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Since r = R(t) is regardes as a wavefront of u, the propagation speed of
this wave is formulated by ¢ = R(t). Then the Rankine-Hugoniot condition
to equation (52) describing a conservation law reads

1
clvrlrey = [u™ + 5”3]3(1:) = [EUf]R(t),

where

[Kre = lim ¢(r) = lm {(r) = C(R()™) — C(R($)7),

rlR(t) TTR(t)

see [13]. Using the second equation of (43) assumed for u = ;;;—ll%n—_er R
with M = ||u(t)||1, we can readily derive

M
n_lR(t)n—l ’

v (R(#)T,t) = — vr(R(t)™,t) = 0.

Therefore, it follows that

M
2wn_1R(t)"—1

R(t) = —

and hence
R(t)~ (T —8t)Y",  ¢1T.

Next, we plug in u ~ h and r ~ p to (43), which should be valid at
the bulk. Then we obtain v ~ u?h from the second equation, and hence
(uvr ), ~ h?. Now the first eqation assures

i 2
— ~h
12

and hence h ~ u™™ by m = 2 — ‘72'; We have, on the other hand,
wn—1R* tuh ~ M.
Therefore, it follows that
p~ (T =), h~(T—-1)71, t 1T

This case contradicts the ansatz 0 < y < R. What we actually do is to
replace == by u,r since u ~ R. Then all the above formal asymptotlc rates
are Justlﬁed

This blowup rate is type I and hence o € S;;. Whether zg € S, or
not is delicate due to the condition (50). Actually this condition is violated
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in the case of the higher-dimensional Smoluchowski-Poisson equation, see
- [7]. In this connection, we remind that the non-existence of the non-tirivial
(backward) self—sumlar solution with a finite mass to (5) is proven s1m11arly
to [9].

The type II blowup point, on the other hand, will be realized using the
stationary state provided with the quantized mass. Such a blowup pattern
is also examined in the higher-dimensional Smoluchowski-Poisson equation
[8]. According to these study, we expect also that these type I and type II
blowup patterns will be stable and unstable, respectively.

Any local mass is of bounded variation in time around the above de-
scribed type I and type II blowup points, so that will be totally finite by
the e-regularity. Thus it seems to be difficult to realize an infinite nummber
of blowup points to (5) by a combination of essentially radially symmetric
blowup profiles. _

The next theorem, see [16] for the proof, shows that any blowup point
is type II if the free energy is bounded. A similar fact is shown to the
semilinear parabolic equation with critical Sobolev growth, see [17]. We
mention also that the Herrero-Veldzquez solution [6] for the two-dimensional
Smoluchowski-Poisson equation (7) has the same profile, boundedness of the
free energy and type II blowup rate.

Theorem 7 If (83) holds, then each xg € S is type II. We have, more
precisely, the formation of collapse

u(z, t)de — Y m(w0)dz,(dr) + f(z)dz (53)

XoES

as t T T in M(R") z with m(zg) > 0, 70 € S and 0 < f = f(z) €
LY(R")\ C(R™\ S) and also (17) for any b > 0.

The scaling (38) induces the backward self-similar transformation

v(y,s) = (T — t)u(x, t)

y = (z = 0)/(T — )/

s = —log(T —t). (54)
It follows that

_ 2
m— 1 -V ’L)V(F*U-Flgl , v>0

in R™ x (—logT, +00). (55)

Vg =
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Then there arises the decrease of the free energy and its recursive relation
between the second moment. They are, formally, given by

-El—f'(v)=—-/ v |V vm*l—F*v-—M-z- 2dy<0

ds R 2n -

d n

2 [ wivdy=2n-2F@)+ [ ey, 50)
S Jrn Rn

where

ﬁ(v)={/n ('—’T;—%";v)dy—%(r*v,v)}.

Equation (55) is actually written as
vy =V - vVEF (v) in R™ x (—log T, +00)

and hence the first equality of (56) reads
< 2 V6E W) d
2P0 == [ v[vsrw)| v

Relation (56) now implies

d .
[ wiudy < 20— 2F o) + [ Jyledy, (57)
S JRn R"

The assumption

2(n — 2).7:'('00) + / |y|2vody <0
Rn

induces the contradiction, [g. |y|*vdy < 0 for s > 1 by (57). Thus, it holds
that

2(n — 2).7:'(1)0) + / |y|2vody >0,
Rn
which must be translated in s

%g- =2(n—2)F(v) + H >0, s > —logT, - (58)

where H = [g. |y|*v(y, s)dy. Inequality (58) means

d H(t)
98 g} 2

see [16] for a direct proof.
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The notion of regular blowup points arises in accordance with the mass
quantization, m(xzg) = A« in (53). First, we shall show the estimate of col-
lapse mass from below. A blowup point zg is called isolated if SNB(xg, R) =
{zo} and non-degenerate if

liminf inf wu(z,t) >0,
11T zeB(zo,R)

where 0 < R < 1. The following lemma is proven in [16].

Lemma 6 If T < +o0 occurs to (5) and g € S is an isolated non-
degenerate blowup point, then it holds that

lim sup F (¢ ™u(t)) < +oo, (59)
1T

where ¢ = Pz r With 0 < R K 1.

Theorem 8 If (53) holds and o € S is isolated and non-degenerate,
then we obtain m(zo) > M. in (53).

Proof: Since zg € S is non-degenerate, we have 0 < R<K 1land 0 < f =
f(z) € LY(B(zo,2R)) N C(B(x0,2R) \ {xo}) such that any t;, 1 T admits
{ti} C {tx} and m(zo) > O satisfying

u(z, ty)dz — m(0)dz, (dz) + f(z)dz.
If m(zo) < A« is the case, we obtain

lw(t) llLm (B(zo.R)) < C11-

Using (53), we follow the argument of [1 1] and obtain the result. 5
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