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1 Introduction

We consider the one-dimensional compressible Navier-Stokes system in Lagrangian
coordinates:

vy — Uy =0,
ur + e = 1 (%), (1.1)
(e+%), + (e = (k% + p2e),

for x € R = (—o00,+00),t > 0, where v(z,t) > 0,u(z,t),0(z,t) > 0,e(z,t) > 0 and
p(x,t) are the specific volume, fluid velocity, internal energy, absolute temperature, and
pressure respectively, while the positive constants p and x denote the viscosity and heat
conduction coefficients respectively. Here we study the ideal polytropic fluids so that p
and e are given by the state equations
p= i = A'u‘"’ejlvi_l“", e= R + const.,
v -1

where s is the entropy, v > 1 is the adiabatic exponent and A, R are both positive
constants. We concern the Cauchy problem to the system (1.1) supplemented with the
following initial and far field conditions:

{ (v,u,0)(z,0) = (vo, ug, ) (x), 1z €R,

(U, u, 6)(i00,t) = (v:t,u:ine:t)a t> 07 (12)

where v+ (> 0), u+ and 64+ (> 0) are given constants, and we assurne infg vy > 0, infg 6y >
0, and (vg, ug, 6p)(£o0) = (v4, us,64) as compatibility conditions.

We are interested in the global solutions in time of the Cauchy problem (1.1)(1.2) and
their large time behaviors in the relations with the spatial asymptotic states (v, us, 6+).
It has been known that these asymptotic behaviors are well characterized by those of the
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solutions of the corresponding Riemann problem for the hyperbolic part of (1) (Euler
system):

Vt — Uy = 01
Uug +p1 = O, . (13)
(e + -"{-)t + (pu), =0

with the initial Riemann data

(v—yu-,0.), =<0,

(U+,U+,0+), x> 0. (14)

(v,u,0)(z,0) = {
The system of conservation laws (1.3) has three distinct real eigenvalues for positive v

and 6
,\]=—\/7p/v<(), A=0, Az3=-A1>0

which implies the first and third characteristic fields are genuinely nonlinear and the
second field is linearly degenerate. Then it is known that the basic Riemann solutions of
the problem (1.3)(1.4) are dilation invariant solutions: shock waves, rarefaction waves,
contact discontinuities, and the linear combinations of these basic waves ( [20]). Since
the inviscid system (1.3) is an idealization when the dissipative effects are neglected. it
is of great importance to study the large-time asymptotic behavior of solutions of the
corresponding viscous system (1.1) toward the viscous versions of these basic waves. In
fact, in the cases the Riemann solution consists of shock waves or rarefaction waves,
there have been intensive studies completed in the theory of viscous conservation laws
since 1985 when the asymptotic stability of the viscous shock waves is studied by a L?
elementary energy method in Goodman [2] and Matsumura-Nishihara {16]. The viscous
shock profiles and viscous rarefaction waves have been shown to be asymptotically stable
for quite general perturbation for the compressible Navier-Stokes system (1.1) and more
general systems of viscous strictly hyperbolic conservation laws( [9,10,12-14,17-19, 21,
22]). In particular, the asymptotics toward the rarefaction waves for (1.1) is established
in Kawashima-Matsumura-Nishihara [10] by using an energy form associated with the
physical total energy and a monotone property of rarefaction waves.

On the other hand, in the case the Riemann solution consists of contact discontinuity,
the problem is more subtle and the progress has been less satisfactory, except for the
studies in [4,5,7,15,23]. The stability of a viscous version of contact discontinuity
(“viscous contact wave”) for systems of viscous conservation laws was first studied by Xin
( [23]) who obtained the metastability of a weak contact discontinuity for the compressible
Euler system with uniform viscosity, that is, the solution tends toward a viscous contact
wave which approximates the contact discontinuity locally in time as zero viscosity limit,
but not uniformly in time. Later Liu-Xin in [15] showed the metastability of contact
discontinuities for a class of general systems of nonlinear conservation laws with uniform
viscosity, and obtained pointwise asymptotic behavior towards viscous contact waves by
approximate fundamental solutions, which also leads to the asymptotic stability of the
viscous contact wave in LP norms for all p > 1. However, the theory in [15,23] does not
apply to the compressible Navier-Stokes system (1.1) since the viscosity matrix in (1.1)
is only semi-positive definite. For a free-boundary value problem for (1.1) on the half
line, the asymptotic stability of a viscous contact wave is proved by an elementary energy
method by Huang-Matsumura-Shi in {4]. However, this approach neither can be applied
to Cauchy problem case of (1) since the analysis in [4] depends crucially on a Poincaré-
type inequality, which cannot be true for Cauchy problem. Recently, Huang-Matsumra-
Xin [5] and Huang-Xin-Yang [7] have made some progresses, that is, they succeeded in



using the anti-derivative method, motivated by the theory of viscous shock waves( [9]),
to obtain not only the stability of the viscous contact wave but also the convergence rate.
However, their method is again not available for the stability of the combination wave of
viscous contact wave with rarefaction waves, since the anti-derivative method has never
worked for the stability of the rarefaction waves.

More recently, Huang-Matsumura-Xin [6] succeeded in obtaining a new estimate on
heat equations which can be applied to the study of the stability of the combination
of viscous contact wave with viscous shock profiles. In this paper, motivated by the
arguments in [6] and [10], we show the asymptotic stability of the linear combination
wave of viscous contact wave and the rarefaction waves for the Cauchy problem of the
compressible Navier-Stokes system (1.1)(1.2) provided the strength of the combination
wave is suitably small.

To state our main results, we first recall the viscous contact wave (V, U, ©) for the com-
pressible Navier-Stokes system (1.1) defined in [7]. For the Riemann problem (1.3)(1.4),
it is known that the contact discontinuity solution takes the form

. o~ _ (v—,u-,6-), £<0,t>0,
(V.0.8)@.5) = { (i t-h 2S00 (19)
provided that
R6_ Ro .
U _ = u+, p_ é e =p+ é _+. (1‘6)
V- vy

In the setting of the compressible Navier-Stokes system (1.1), the corresponding wave
(V,U, ©) to the contact discontinuity (V,,®) becomes smooth and behaves as a diffu-
sion wave due to the dissipation effect. We call this wave “viscous contact wave”. The
viscous contact wave (V,U, ©) can be constructed as follows. Since the pressure for the
profile (V, U, ©) is expected to be almost constant corresponding to the arguments in (5],
i.e., we set

ko _
1% = P+,
which indicates the leading part of the energy equation (1.1)3 is
R e
—O0 U, = == . 1.7
ot nils = (). (17
The equations (1.7) and (1.1); lead to a nonlinear diffusion equation,
6, kp+(y = 1)
(-)Lza(-—é—)w, E')(ﬂ:oo,t)=9i, a = —’YRT- > 0, (18)

which has a unique self similarity solution ©(z,t) = ©(£), £ = Viz—f-_t due to [1,3]. Further-
more, on one hand, ©(£) is a monotone function, increasing if 4 > 6_ and decreasing
if 64 < 6_; On the other hand, there exists some positive constant 8, such that for
0 =104 —6_| <4, O satisfies

2

(1+)[Ops| + (1 + 1)1/2|0,] + |© — 62| < c16e™ T as |z| — o0, (1.9)

where ¢1 and c¢; are both positive constants depending only on 6_ and 8. Once © is
determined, the contact wave profile (V,U, ©)(z, t) is then defined as follows:

V=£8, U:u__+M.€)_z

. e=e. 1.10
s R © (19



It is straightforward to check that (V,U, ©) satisfies
IV = V.U =0.6 -8l =0 (x/) 14+ 6)/@) p > 1,

which means the nonlinear diffusion wave (V,U, ©)(z,t) approximates the contact dis-
continuity (V,U.©)(z,1) to the Euler system (1.3) in LP norm, p > 1 on any finite time
interval as the heat conductivity coefficient k tends to zero. More importantly, the contact
wave (V,U, ©) solves the compressible Navier-Stokes system (1.1) time asymptotically,
ie.,

Vi - U, _0.
Ur+ (5R)e =#(Qz‘) + Ry,
V(-))+%—) (P(V,0)U), = (x8 + uYYs) + Ry,
where
Rl = M ((].IIG‘)) t— U ( (lIl @)1 ) )
YR ‘ RO z)
o2
= OO +t)" V2% BT as 2] — oo,
) 2

R, = (n(A;R 1)) ((me),(m(—)),t — (%(me)z(m(—)),x) )

= 001+ t)‘ze_%f; as |z] — oo.
We are now in a position to state our main results. Let
(6,0, {)(a,t) = (v—V,u—U,0 — O)(x,t).
For interval I C [0, oc), we define a function space
X(I)ycy{&c (I;HI(IR))
as
n={(¢.9.¢) €Y()|¢2 € L* (I, L*(R)) , (2, Gz) € L* (I; H'(R)) } -
Our first main result is as follows:

Theorem 1 For any given (v_,u_,0_), suppose that (vi.u4,0:) satisfies (1.6). Let
(V,U,©) be the viscous contact wave defined in (1.10) with strength § = |04 — 0_| < 3.
Then there erist positive constants 6y and g, such that if § < &y and the initial data
(vo-up, Bp) satisfies

[(wo(-) = V(,0), uo(:) = u—,60(-) — O(:,0))|| g1 < eo,

then the Cauchy problem (1.1)(1.2) admits a unique global solution (v,u,0) satisfying
(v—-V,u—-U,6-0)e X(|0,00)) and
lim sup (v — Viu —u_,0 — ©)(x,t)| = 0. (1.11)
t—00 reR
Remark 1 Theorem 1 doesn’t give the convergence rate of (1.11) as in [5, 7]. However,
cornpare to the anti-derivative method used in [5, 7], our energy method is elementary
and much simpler, and more importantly, it can be used to investigate the asymptotic

behavior of the solutions toward the combination of viscous contact wave with rarefaction
ones (see Theorem 2 below).



When the relation (1.6) fails, the basic theory of hyperbolic system of conservation laws
(e.g., see [20]) implies that for any given constant state (v_,u_,6_) with v_ > 0,6_ > 0
and u— € R, there exists a suitable neighborhood Q(v_,u_,8_) of (v_,u_,6_) such that
for any (v4, u4,604) € Q(v_,u_,6_) the Riemann problem of the Euler sysytem (1.3)(1.4)
has a unique solution. In this paper, we only consider the stability of the superposition
of viscous contact wave and rarefaction ones. In this situation, we assume that

(v up,84) € RICR3(v—,u—,0_-) C Qv-,u_,6-)
where

RiCRy(v—,u—,6-) é{ (u,v,8) € Q(v_,u_,ﬁ_)l s# s_,

~ejR—71(h’_-h)v v
u>u. — / Ao(mys)dn, u > u_ — /7_1 A+(n, s)dn}
Ju_ e Ry TA)y,
with
R# R (7
s=7_11n—A——+—Rlnv, si=:y-:—1—1nRAi+Rluvi,
and

Ar(v,8) = :}:\/A'yv—“/—le(’Y“l)s/R.
It is well-known ( [20]) that there exists some suitably small §; > 0 such that for
(1,'+,u+,9+) € RlcR;}('U._,U_,e_), |0_ —9+| 561, (112)

there exist a positive constant C = C(6_,48;) and a unique pair of points (v™,u™, ™)
and (v, u™,07) in Q(v_,u_,0_) satisfying

RY™ _ ROY

o

T
7

M
U
and

0T — vg| + [u™ — ug| + |67 — 62| < C|0- - 6.];
Moreover, the points (v, u™,6™) and (v}, u™,67) belong to the l-rarefaction wave

curve R_(v_,u_,6_) and the 3-rarefaction wave curve Ry (v4,uq, 6, ) respectively, where

v
8= 8$4,u=1us — / Ax(7, 82)dn,v > 7-’:!:} .
v

vt

R:i:(U:‘ta u:l:ye:t) - {(Ua u, 6)

The 1-rarefaction wave (v, u”,07)(%) (resp. the 3-rarefaction wave (v}, u7,67%)(%))
connecting (v—,u—_,6_) and (v, u™,0™) ( resp. (v, u™,67) and (vi,uy,04)) is the
weak solution of the Riemann problem of the Euler system (1.3) with the following
initial Riemann data

(v, u™.07), +x <0,

(v, us,64), =£z>0. (1.13)

(vi,ul,01)(z,0) = {



Since the rarefaction waves (v}, u}, 6% ) are not smooth enough solutions, it is convenient
to construct smooth approximate ones of them. Motivated by [17], the smooth solutions
of Euler system (1.3), (VI,UL, ©%), which approximate (v}, u7,67%), are given by

’\:E(Vjv:(aﬂ t)5 S:i:) = ’U):t(.’E, t)y

Vi(z,t)
Ul =uy — / A+ (7, s4)dr), (1.14)
v

+
OL = 04 (vs) H(VD)' ™,

where w_ (resp. wy ) is the solution of the initial problem for the typical Burgers equation:

{ wy + ww, =0, (z,t) € R x (0,00). (1.15)

w(z,0) = (w, + w)/2 + ((wr — wy)/2) tanh z,

with w) = A_(v-,s-),w, = A4 (v, 5_) (resp. wy = Ay (VT s4), wr = Ay (v, 84)).
Let (Ved, U, ©%)(z,t) be the viscous contact wave constructed in (1.10) and (1.8)
with (vt,u+,6041) replaced by (v, 0,07) respectively. We define

1% Ve 4L vr+ vy v T
U |(xt)y=| U9+UT +UT | (2,t) - u™ , (1.16)
e 04+ 07 +67, 6™ + 67

and
(0.9, ¢)(z,t) = (v~ V,u-U,0 — 6)(x,t).
Our second main result is as follows:

Theorem 2 For any given (v_,u_,6_), suppose that (1.12) holds for some small §; > 0.
Let (V,U.©) be as in (1.16) with strength § = |6, — 6_| < 8. Then there exist positive
constants 8o(< min{dy,d}) and eo, such that if § < & and the initial data (vo, ug, o)
satisfies

lI(o(-) = VI(,0),u0(-) = U(-,0),60(-) = ©(,0))|I 1 < eo,

then the Cauchy problern (1.1)(1.2) admits a unique global solution (v,u,) satisfying
(v-V,u-U,0-0)e X([0,00)) and

|(v =0T — Ve — T + 0™ +0T)(z, t)]
Jim sup [(u —ul —ul} +u™)(x,t)] =0, (1.17)
TR\ (8- 67 — 0% — g + 6™ + 67 (2, t)]

where the (v7 . u” , 07 )(x,t) and (v, v, 0% )(x, t) are the I-rarefaction wave and 3-rarefaction
one uniquely determined by (1.3)(1.13) respectively.

We now make some comments on the analysis of this paper. To show our ideas clearly,
we first consider the stability of the wave only consisting of viscous contact one. As
mentioned above, the elementary energy estimate of [4] cannot be applied directly to
study the asymptotic behavior of viscous contact waves for solutions to Cauchy problems
of (1.1) due to their analysis depending crucially on the availability of a Poincaré-type
inequality, which cannot be true for Cauchy problems. To overcome this difficulty, mo-
tivated by the arguments in [6], we first derive an elementary inequality concerning the

estimate of the term
/ / h2(-)id:rdt,



which can be controlled essentially by some estimates of h; (see (2.3) for details). Sec-
ondly, by using the special structure of the viscous contact wave and the compressible
Navier-Stokes system (1.1), we translate the third equation of (1.1) to another form whose
advantage is that we can use the first equation of (1.1) and the new form of (1.1)3, to-
gether with the Sobolev inequality to get the desired estimates. Finally, for the stability
of the combination of viscous contact wave with rarefaction waves, combining with the
arguments in [10] to use the monotonicity of the rarefaction waves UL w.r.t. =, we can
modify our method slightly to overcome the difficulties caused by the rarefaction waves.

Notations. Throughout this article, several positive generic constants are denoted by
C, ¢ without confusions. For functional spaces, H!(R) denotes the I—th order Sobolev
space with its norm

l .
(62f1l, where || || £ |- |l 2(m)-

Ifle=>
j=0
2 Key Lemma
For a > 0, let
oa? T
= - = (1 t‘1/2/ dy. 2.1
wexr){ 1+t},g (1+1) W (2.1)
It is easy to check that
1090 = oo = (1+ )2y, |lg( )| = Vra~ V2, (2.2)

Lemma 1 For 0 < T < +00, suppose that h(z,t) satisfies
h e L*(0,T; L*(R)), hgy € L*0,T;L*([R)), h, € L*(0,T; H"Y(R)).

Then the following estimate holds for any t € (0, T},
¢
/ (1+s)7! / h2w?dxds
0 R
t t
< 47 ||h(0)||? + 4ma~? / / h2dzds + 8():/ (hy, h,g2>H_1xH1 ds. (2.3)
0 JR 0
Proof. By standard arguments, we get
t
2/0 <ht, h92>H*1xH1 ds
t
= / higtdx — / h?(x,0)g*(z,0)dx — —1—/ 1+ s)“1/2/ h*gw,dxds
R R 2a Jy R
t
= / h2g2dx — / h?(z,0)g?(z,0)dz + —1—/ 1+t / h?w?dzds
Jr R 2a Jo R

t
+l/ (1+s)'1/2/h,h.zgwdwds
a Jo R

T 1/t . n [t
> —= [ h¥(z,0)dz —/ 1+ —I/H 2d~d-——,—//i2d~d,
> Q/Rh(.c,()).L+4a 0( s) sz rds 2z J, RLI.LS

which yields (2.3) directly.



3 Sketch Proof of Theorem 1

We will establish the following main a priori estimate.

Proposition 1 (A priori estimate) There ezist positive constants g < min{d;,d, 1},
€0 <1 and C, such that for T > 0 and (¢,v,¢) € X([0,T)) satisfying

N(T) = sup [[(¢,9,Q)()II} <eo, |0- — 64| =38 < éy, (3.1)
0<t<T
it follows the estimate
. t ‘
(6w, Q)OI + /0 (e o) (8) 1 2ds
-t
<c (51/2 + 6o 0. I+ 672 [ ||¢1-(s)||2ds) .

Proof. We rewrite the Cauchy problem (1.1)(1.2) as

P — Yz =0,
7§—1Ct +puy —peUs =k (%—ﬁf - %"‘)I + G, (3.2)

(6,4, ¢)(£o0,t) =0,
(¢1 1/)? C)(xs ()) = (¢0’ 'l/l(), (())

where

Uy + ¢,)?
F=-U+up (v-’Uw)x,(;:u%.

Multiplying (3.2); by —RO(v~! = V1), (3.2), by ¢» and (3.2)3 by ¢6~!, then adding the
resulting equations together, we have

low e+ [ 18 €))%
< Cll (0, %0, o) I* + C/Ut HFH4L/13dS
+C /Ot/m (¢ + ¢°) (122 + O2) dxds
< Cll (60,0 |2 + €8+ €8 [ ol
+C6 /OL(I + s)71 /m (¢% + ¢?) e~ 2= /0+8) g, (3.3)
We claim that
/Ot(l + )7t /}R (¢* +¥* + ¢?) w?dads
<C+C [ (aall + 1l + 1Ga1P) ds. (3.4

Proposition 1 thus follows directly from (3.3) and (3.4) by choosing § suitably small.



Now we are supposed to prove (3.4). Multiplying (3.2)s by (R¢—p+¢)v(1+t) ! JZ widy,
integrating the resulting equation over R leads to

/0 1+’S/§(RC—P+¢) wdxds-i—/o 1+S/R¢Wdl‘d~5
")
gC+C’/U (162l + a2 + l1Ge2) ds

‘1 2 2y 20, 5
+Ct5/(; 1+3-/IR(¢ + ¢*) widzds. (3.5)

With (3.5) at hand, we are supposed to use Lemma 1 to get

t -
/0 14 s /IR? (RC+ (v - 1)P+<f))zwzd1:d.s

L C [
<O+ T [ (10all + 10l + 16I17) ds
nJo
t oy
+C(6+n) / —_— / (¢* + ¢*) wdzds, (3.6)
0 145 R
which together with (3.5) thus implies (3.4) by taking first 7 then § suitably small.
To get (3.6), we take h = R( + (v — 1)p4+¢ in Lemma 1 and use

hi _  RC—pso Ve — 96,
Py S Yz +Uz) + 5 7o fG’

to derive

<ht’ hg2>H‘1xH1

= —(y— 1)/ Mﬁwzg‘idm —(y— 1)/ MiLUzg%z
R v R v
k(- 1)/ Ve = ¢0 (hg?), dz + (v — 1)/ Ghgda
R R

Vo
¢ p . C(6+
<O+ 2 (ol el + Neal?) + S22 [ (2 4 ) e
7 1+s Jr

—(’7'— I)Ja (38)

with
2J = 2A’v"l(h2—7p+h¢)wzg2dw
= 2 /R v H(h? — ypyhe)prgPda
= /R (2v™h2g ¢y — ypyvhg?(6%),) dx
= ( /m v hg®¢ (2h — P4 @) dw) - /m v 1g?p(4h — ypi @) hudz
t

1 -1
—— hgep(2h — . d.
2a\/m ./l; v gd)( 7p+¢)w T

+ [ ot ug?ho(2h ~ yp. )z, (3.9)
R
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Estimate (3.6) thus holds due to (3.7).
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