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1 Introduction
In this communication we are concerned with the initial value problem for two types

of water waves and their shallow water approximations. The first type of the water wave
is the standard one, that is, the fluid is bounded from above by a free surface and from
below by a rigid boundary, and is subject to a uniform gravity in the vertical direction
as an external force. This type of problem will be referred as Problem I in the following.
The second type of the water wave corresponds to the ocean around the earth, that is,
we take an effect of the curvature into account on the surface of the earth. Therefore, the
free surface and the bottom are nearly spheres and the fluid is subject to the gravitation
due to the earth. This type of problem will be referred as Problem II in the following.

The water wave is a model for an irrotational flow of an incompressible ideal fluid
with a free surface under the gravitational field. The analysis of this problem is very hard
because of the nonlinearity of the equations together with the presence of an unknown free
surface. In order to understand various phenomena of water waves, one has approximated
the equations by simple ones and analyzed the approximated equations. The simplest
approximation is the linear one around the trivial flow by assuming that the amplitude of
the free surface and the motion of the fluid are infinitesimal. However, this approximation
could not explain the existence of solitary waves nor the breaking of water waves. In
order to explain such phenomena we have to includc nonlinear effects of the waves in the
approximation. The shallow water equations are one of such approximations and derived
from the water wave by assuming that the water depth is sufficiently small compared to the
wave length. The aim of this communication is to report a recent result of mathematically
rigorous justification of the shallow water approximation for water waves, especially a
justification in Sobolev spaces.
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Mathematically, the problem is formulated as a free boundary problem for incompress-
ible Euler equation with the irrotational condition. By rewriting the equations for water
waves in a non-dimensional form, we have a non-dimensional parameters $\delta$ the ratio of the
water depth $h$ to the wave length $\lambda$ in Problem I and to the mean radius $R$ of the earth
in Problem II, respectively, in the equations. The shallow water equations are derived
from the water wave in the limit $\deltaarrow+0$ . In the case of a flat bottom in Problem I,
they are of the same form as the compressible Euler equation for a barotropic gas and
the solution generally has a singularity in finite time even if the initial data are suffi-
ciently smooth. Therefore, this approximation is used to explain the breaking of water
waves. The derivation of the shallow water equations goes back to G.B. Airy [1]. Then,
K.O. Friedrichs [3] derived systematically the equations from the water wave problem
by using an expansion of the solution with respect to $\delta^{2}$ , which is called the Friedrichs
expansion. A mathematically rigorous justification of the shallow water approximation
for 2-dimensional water waves was given by L.V. Ovsjannikov [11, 12] under the periodic
boundary condition with respect to the horizontal spatial variable, and then by T. Kano
and T. Nishida [6]. A mathematical justification of the Friedrichs expansion was investi-
gated by T. Kano and T. Nishida [7] and the justification in the 3-dimensional case by
T. Kano [5]. In order to guarantee the existence of solutions for water waves, they used
an abstract Cauchy-KowalevskI theorem in a scale of Banach spaces so that analyticity of
the initial data was required. It is natural to ask if the approximation is valid in Sobolev
spaces. However, this question was not resolved for long time.

In connection with the well-posedness of the initial value problem for water waves, the
solvability in Sobolev spaces was given by several authors. In his pioneering work [10],
V.I. Nalimov investigated the initial value problem in the case where the motion of the
fluid is 2-dimensional and the fluid has infinite depth. He showed that if the initial data
are sufficiently small in a Sobolev space, that is, if the initial surface is almost flat and
the initial movement of the fluid is sufficiently small, then there exists a unique solution
of the problem locally in time in a Sobolev space. H. Yosihara [16] extended this result to
the case of presence of an almost flat bottom. S. Wu [14] studied the problem in exactly
the same situation as Nalimov’s and gave the existence theorem locally in time without
assuming the initial data to be small. It is known that the well-posedness of the problem
may be broken unless a generalized Rayleight-Taylor sign condition $-\partial p/\partial N\geq c_{0}>0$

on the free surface is satisfied, where $p$ is the pressure and $N$ is the unit outward normal
to the free surface. She showed that this condition always holds for any smooth nonself-
intersecting surface. S. Wu [15] also succeeded in giving an existence theory in Sobolev
spaces for 3-dimensional water waves of infinite depth. Note that all of the three authors
mentioned above used the Lagrangian coordinates. D. Lannes [8] studied the initial value
problem for water waves of finite depth in arbitrary space dimensions. One of interesting
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features of his paper is that he did not use the Lagrangian coordinates but the Euler
coordinates although the surface tension on the free surface was neglected. Another
interesting feature is that he obtained a good expression of the Fr\’echet derivative of
the Dirichlet-to-Neumann map for Laplace’s equation with respect to a function which
represents the surface elevation. As a result, he derived nice linearized equations and
succeeded in giving an existence theory in Sobolev spaces.

The existence theories in Sobolev spaces were based on the energy method. In calcula-
tion of the time evolution of an energy function, we need to estimate commutators of the
Dirichlet-to-Neumann map and differential operators. S. Wu [15] obtained precise com-
mutator estimates by using the theory of singular integral operators and Clifford analysis,
whereas D. Lannes [8] used the theory of pseudo-differential operators and obtained com-
mutator estimates by imposing much differentiability on the coefficients. This is one of
the reasons why a Nash-Moser implicit function theorem was used to obtain the solution
of the nonlinear equations in [8]. A relation between the generalized Rayleight-Taylor
sign condition and the bottom topography was also analyzed in [8]. Under a shallow
water regime $\delta\ll 1$ , such techniques in [15, 8] in estimating commutators do not give
nice uniform estimates with respect to small $\delta$ . In this communication, to obtain the
uniform estimates, we only use the standard technique in estimating the solution of a
boundary value problem for elliptic differential equations, so that the proof may become
much simpler and more elementary than the previous ones. We adopt the formulation
of the problem used in [8]. However, thanks to a precise energy estimate for linearized
equations and a reduction of the full nonlinear equations to a system of quasilinear equa-
tions, we do not use the Nash-Moser implicit function theorem to obtain the solution of
the nonlinear equations.

Recently, Y.A. Li [9] considered a shallow water approximation for 2-dimensional water
waves over a flat bottom and gave a mathematical justification of the approximation by
the Green-Naghdi equations in Sobolev spaces. His method depends deeply on the use
of a conformal map, so that it is restricted to the 2-dimensional case. Then, B. Alvarez-
Samaniego and D. Lannes [2] and the author [4] gave a justification of the shallow water
approximation for 3-dimensional water waves in Sobolev spaces. In [2] they gave also
justifications of several asymptotic models for 3-dimensional water waves including the
Kadomtsev-Petviashvili (KP) equation. However, they still used the Nash-Moser implicit
function theorem, whereas we do not use the theorem in this communication. All of the
results mentioned above were concerned with Problem I and it seems to the author that
there is no mathematically rigorous result on Problem II.
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2 Formulation of Problem I
The first type of the water wave is the standard one and the shape of the fluid region

is shown in the following illustration.

Let $x=(x_{1}, x_{2}, \ldots, x_{n})$ be the horizontal spatial variables and $x_{n+1}$ the vertical spatial
variable. We denote by $X=(x, x_{n+1})=(x_{1}, \ldots, x_{n}, x_{n+1})$ the whole spatial variables.
We will consider a water wave in $(n+1)$-dimensional space and assume that the domain
$\Omega(t)$ occupied by the fluid at time $t\geq 0$ , the free surface $\Gamma(t)$ , and the bottom $\Sigma$ are of
the forms

$\Omega(t)=\{X=(x, x_{n+1})\in R^{n+1};b(x)<x_{n+1}<h+\eta(x, t)\}$ ,
$\Gamma(t)=\{X=(x, x_{n+1})\in R^{n+1};x_{n+1}=h+\eta(x, t)\}$ ,
$\Sigma=\{X=(x, x_{n+1})\in R^{n+1};x_{n+1}=b(x)\}$ ,

where $h$ is the mean depth of the fluid. The functions $b$ and $\eta$ represent the bottom
topography and the surface elevation, respectively. In this problem $b$ is a given function,
while $\eta$ is the unknown. In fact, our main interest is the behavior of the free surface, so
that we have to study the behavior of this function $\eta$ .

We assume that the fluid is incompressible and inviscid, and that the flow is irrotational.
Then, the fluid motion is described by the velocity potential $\Phi=\Phi(X, t)$ satisfying the
equation

(2.1) $\triangle_{X}\Phi=0$ in $\Omega(t)$ , $t>0$ ,

where $\Delta_{X}$ is the Laplacian with respect to $X$ , that is, $\Delta_{X}=\Delta+\partial_{n+1}^{2}$ and $\Delta=\partial_{1}^{2}+\cdots+\partial_{n}^{2}$.
The boundary conditions on the free surface are given by

(2.2) $\{\begin{array}{l}\eta_{t}+\nabla\Phi\cdot\nabla\eta-\partial_{n+1}\Phi=0,\Phi_{t}+\frac{1}{2}|\nabla_{X}\Phi|^{2}+g\eta=0 on \Gamma(t), t>0,\end{array}$
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where $\nabla=(\partial_{1}, \ldots, \partial_{n})^{T}$ and $\nabla_{X}=(\partial_{1}, \ldots, \partial_{n}, \partial_{n+1})^{T}$ are the gradients with respect to
$x=(x_{1}, \ldots, x_{n})$ and to $X=(x, x_{n+1})$ , respectively, and $g$ is the gravitational constant.
The first equation is the kinematical condition and the second one is what is known as
Bernoulli’s law restricted on the free surface. The boundary condition on the bottom is
given by

(2.3) $N\cdot\nabla_{X}\Phi=0$ on $\Sigma$ , $t>0$ ,

where $N$ is the normal vector to the bottom $\Sigma$ . Finally, we impose the initial conditions

(2.4) $\eta(x, 0)=\eta_{0}(x)$ , $\Phi(X, 0)=\Phi_{0}(X)$ .

It should be assumed that the initial data satisfy the compatibility conditions, that is,
$\triangle_{X}\Phi_{0}=0$ in $\Omega(0)$ and $N\cdot\nabla_{X}\Phi_{0}=0$ on $\Sigma$ .

Remark 2.1. In a derivation of the second equation in (2.2) we first integrate the
conservation of momentum, that is, the Euler equation $0=\rho(v_{t}+(v\cdot\nabla_{X})v)+\nabla_{X}p+$

$\rho ge_{n+1}=\rho\nabla_{X}(\Phi_{t}+\frac{1}{2}|\nabla_{X}\Phi|^{2}+\frac{1}{\rho}(p-p_{0})+g(x_{n+1}-h))$ and obtain

$\Phi_{t}+\frac{1}{2}|\nabla_{X}\Phi|^{2}+\frac{1}{\rho}(p-p_{0})+g(x_{n+1}-h)=f(t)$ in $\Omega(t)$ , $t>0$ ,

where $v=\nabla_{X}\Phi$ is a velocity, $\rho$ is a constant density, $Po$ is a constant atmospheric pressure,
$e_{n+1}$ is the unit vector in the vertical direction, and $f(t)$ is an arbitrary function of time
$t$ . This equation expresses what is called Bernoulli’s law. Replacing $\Phi$ by $\Phi+\int f(t)dt$ ,
restricting the above equation on the free surface $\Gamma(t)$ , and using the dynamical boundary
condition $p=p_{0}$ on $\Gamma(t)$ , we get the second equation in (2.2).

We proceed to rewrite the equations $(2.1)-(2.4)$ in an appropriate non-dimensional form.
Let $\lambda$ be the typical wave length and $h$ the mean depth. We introduce a non-dimensional
parameter

$\delta:=\frac{h}{\lambda}$

that represents the shallowness of the water, and rescale the independent and dependent
variables by

$x=\lambda\tilde{x}$ , $x_{n+1}=h\tilde{x}_{n+1}$ , $t= \frac{\lambda}{\sqrt{gh}}\tilde{t}$ , $\Phi=\lambda\sqrt{gh}\tilde{\Phi}$ , $\eta=h\tilde{\eta}$ , $b=h\tilde{b}$ .

Putting these into $(2.1)-(2.4)$ and dropping the tilde sign in the notation we obtain

(2.5) $\delta^{2}\Delta\Phi+\partial_{n+1}^{2}\Phi=0$ in $\Omega(t)$ , $t>0$ ,

(2.6) $\{\begin{array}{ll}\delta^{2}(\eta_{t}+\nabla\Phi\cdot\nabla\eta)-\partial_{n+1}\Phi=0, \delta^{2}(\Phi_{t}+\frac{1}{2}|\nabla\Phi|^{2}+\eta)+\frac{1}{2}(\partial_{n+1}\Phi)^{2}=0 on \Gamma(t), t>0,\end{array}$
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(2.7) $\partial_{n+1}\Phi-\delta^{2}\nabla b\cdot\nabla\Phi=0$ on $\Sigma$ , $t>0$ ,

(2.8) $\eta(x, 0)=\eta_{0}^{\delta}(x)$ , $\Phi(X, 0)=\Phi_{0}^{\delta}(X)$ ,

where
$\Omega(t)=\{X=(x, x_{n+1})\in R^{n+1};b(x)<x_{n+1}<1+\eta(x, t)\}$ ,
$\Gamma(t)=\{X=(x, x_{n+1})\in R^{n+1};x_{n+1}=1+\eta(x, t)\}$ ,
$\Sigma=\{X=(x, x_{n+1})\in R^{n+1};x_{n+1}=b(x)\}$ .

Since we are interested in asymptotic behavior of the solution when $\deltaarrow+0$ , we always
assume $0<\delta\leq 1$ in the following.

As in the usual way, we transform equivalently the initial value problem $(2.5)-(2.8)$ to
a problem on the free surface. To this end, we introduce new unknown function $\phi$ by

(2.9) $\phi(x, t):=\Phi(x, 1+\eta(x, t), t)$ ,

which is the trace of the velocity potential on the free surface. Then, we see that

(2.10)
$\phi_{t}=\Phi_{t}|_{\Gamma(t)}+\partial_{n+1}\Phi|_{\Gamma(t)\eta_{t}}$ ,
$\nabla\phi=\nabla\Phi|_{\Gamma(t)}+\partial_{n+1}\Phi|_{\Gamma(t)}\nabla\eta$ .

It follows from (2.5), (2.7), and (2.9) that

(2.11) $\Lambda(\eta, b, \delta)\phi=(\delta^{-2}\partial_{n+1}\Phi-\nabla\eta\cdot\nabla\Phi)|_{\Gamma(t)}$ ,

where $\Lambda=\Lambda(\eta, b, \delta)$ is a linear operator called the Dirichlet-to-Neumann map for Laplace’s
equation. More precisely, the Dirichlet-to-Neumann map is defined in the following way.

Deflnition 2.1. Under appropriate assumptions on $\eta$ and $b$ , for any function $\varphi$ on the
free surface in some class there exists a unique solution $\Phi$ of the boundary value problem

$\{\begin{array}{ll}\delta^{2}\triangle\Phi+\partial_{n+1}^{2}\Phi=0 in b(x)<x_{n+1}<1+\eta(x),\Phi=\varphi on x_{n+1}=1+\eta(x),\partial_{n+1}\Phi-\delta^{2}\nabla b\cdot\nabla\Phi=0 on x_{n}=b(x).\end{array}$

Using the solution $\Phi$ we define a linear operator $\Lambda=\Lambda(\eta, b, \delta)$ by

$\Lambda(\eta, b, \delta)\varphi:=(\delta^{-2}\partial_{n+1}\Phi-\nabla\eta\cdot\nabla\Phi)|_{\Gamma(t)}$ .

This operator $\Lambda$ maps the Dirichlet data to the Neumann data on the free surface, so that
it is called the Dirichlet-to-Neumann map. Hereafter, the solution $\Phi$ is denoted by $\varphi^{\hslash}$ .

The second equation in (2.10) and (2.11) imply that

(2.12)
$\partial_{n+1}\Phi|_{\Gamma(t)}=\delta^{2}(1+\delta^{2}|\nabla\eta|^{2})^{-1}(\Lambda\phi+\nabla\eta\cdot\nabla\phi)$ ,
$\nabla\Phi|_{\Gamma(t)}=\nabla\phi-\delta^{2}(1+\delta^{2}|\nabla\eta|^{2})^{-1}(\Lambda\phi+\nabla\eta\cdot\nabla\phi)\nabla\eta$.
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It follows from the first equation in (2.6) and (2.11) that $\eta_{t}-\Lambda\phi=0$ , so that by the first
equation in (2.10) wc get

$\Phi_{t}|_{\Gamma(t)}=\phi_{t}-\delta^{2}(1+\delta^{2}|\nabla\eta|^{2})^{-1}(\Lambda\phi+\nabla\eta\cdot\nabla\phi)\Lambda\phi$ .

Putting this and (2.12) into the second equation in (2.6) we obtain

(2.13)
$\phi_{t}+\eta+\frac{1}{2}|\nabla\phi|^{2}-\frac{1}{2}\delta^{2}(1+\delta^{2}|\nabla\eta|^{2})^{-1}(\Lambda(\eta, b, \delta)\phi+\nabla\eta\cdot\nabla\phi)^{2}=0$ ,
$\eta_{t}-\Lambda(\eta, b, \delta)\phi=0$ for $t>0$ ,

(2.14) $\eta=\eta_{0}^{\delta}$ , $\phi=\phi_{0}^{\delta}$ at $t=0$ ,

where $\phi_{0}^{\delta}=\Phi_{0}^{\delta}(\cdot, 1+\eta_{0}^{\delta}(\cdot))$ . This is one of the initial value problems that we are going
to investigate in this communication. The following theorem asserts the existence of the
solution to the above initial value problem with uniform bounds of the solution on a time
interval independent of small $\delta>0$ .

Theorem 2.1 ([4]). Let $\Lambda^{1}I_{0},$ $c_{0}>0$ and $s>n/2+1$ . There $e$ nist a time $T>0$ and
constants $C_{0},$ $\delta_{0}>0$ such that for any $\delta\in(0, \delta_{0}],$ $\nabla\phi_{0}^{\delta}\in H^{s+3},$ $\eta_{0}^{\delta}\in H^{s+3+1/2}$ , and
$b\in H^{s+4+1/2}$ satisfying

$\{\begin{array}{l}\Vert\nabla\phi_{0}^{\delta}\Vert_{s+3}+\Vert\eta_{0}^{\delta}\Vert_{s+3+1/2}+\Vert b\Vert_{s+4+1/2}\leq h’1_{0},1+\eta_{0}^{\delta}(x)-b(x)\geq c_{0} for x\in R^{n},\end{array}$

the initial value problem (2.13) and (2.14) has a unique solution $(\eta, \phi)=(\eta^{\delta}, \phi^{\delta})$ on the
time interval $[0,$ $T]$ satisfying

$\{\begin{array}{l}\Vert\eta^{\delta}(t)\Vert_{s+3}+\Vert\nabla\phi^{\delta}(t)\Vert_{s+2}+\Vert(\eta_{t}^{\delta}(t), \phi_{t}^{\delta}(t))\Vert_{s+2}\leq C_{0},1+\eta^{\delta}(x, t)-b(x)\geq c_{0}/2 for x\in R^{n}, 0\leq t\leq T, 0<\delta\leq\delta_{0}.\end{array}$

Remark 2.2. We cannot expect that the velocity potential $\Phi$ and its trace $\phi$ on the
free surface vanish at spatial infinity even if so does the velocity $v=\nabla_{X}\Phi$ . Hence, it is
natural to consider the initial value problem (2.13) and (2.14) in a class $\nabla\phi\in H^{s}$ (not a
class $\phi\in H^{s}$ ). However, if we impose additional conditions $\phi_{0}^{\delta}\in L^{2}$ and $\Vert\phi_{0}^{\delta}\Vert\leq\Lambda I_{0}$ , then
we have $\phi^{\delta}\in C([0, T];H^{s+3})$ with a uniform estimate $\Vert\phi^{\delta}(t)\Vert_{s+3}\leq C_{0}$ .

3 Shallow water approximation for Problem I
We proceed to study formally asymptotic behavior of the solution $(\eta^{\delta}, \phi^{\delta})$ to the initial

value problem (2.13) and (2.14) when $\deltaarrow+0$ and derive the shallow water equations,
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whose solution approximates $(\eta^{\delta}, \phi^{\delta})$ in a suitable sense. Then, we will give a theorem
which ensures a rigorous approximation of the water wave by the shallow water equations.

It follows from the first equation in (2.13) that

$\phi_{t}+\eta+\frac{1}{2}|\nabla\phi|^{2}=O(\delta^{2})$ .

By (2.5) and (2.7),

(3.1) $( \partial_{n+1}\Phi)(x, x_{n+1}, t)=(\partial_{n+1}\Phi)(x, b(x), t)+\int_{b(x)}^{x_{n+1}}(\partial_{n+1}^{2}\Phi)(x, y, t)dy$

$= \delta^{2}\nabla b(x)\cdot\nabla\Phi(x, b(x), t)-\delta^{2}\int_{b(x)}^{x_{n+1}}(\Delta\Phi)(x, y, t)dy$ ,

which implies that $(\partial_{n+1}\Phi)(X, t)=O(\delta^{2})$ . Therefore,

$\nabla\Phi(x, x_{n+1}, t)=\nabla\Phi(x, 1+\eta(x, t), t)+\int_{1+\eta(x,t)}^{x_{n+1}}(\nabla\partial_{n+1}\Phi)(x, y, t)dy$

$=\nabla\Phi(x, 1+\eta(x, t), t)+O(\delta^{2})$ .
Moreover, by the definition (2.9) it holds that

$\nabla\phi(x, t)=\nabla\Phi(x, 1+\eta(x, t), t)+\nabla\eta(x)(\partial_{n+1}\Phi)(x, 1+\eta(x)_{:}t)$

$=\nabla\Phi(x, 1+\eta(x, t), t)+O(\delta^{2})$

$=\nabla\Phi(X, t)+O(\delta^{2})$ .
Similarly, we have

$\Delta\phi(x, t)=\triangle\Phi(X, t)+O(\delta^{2})$ .
These relation and (3.1) imply that

$( \partial_{n+1}\Phi)(x, 1+\eta(x, t), t)=\delta^{2}\nabla b(x)\cdot\nabla\phi(x, t)-\delta^{2}\int_{b(x)}^{1+\eta(x,t)}\triangle\phi(x, t)dy+O(\delta^{4})$

$=-\delta^{2}(1+\eta(x, t))\triangle\phi(x, t)+\delta^{2}\nabla\cdot(b(x)\nabla\phi(x, t))+O(\delta^{4})$.
Hence, by (2.11) we have

(3.2) $(\Lambda\phi)(x, t)=-\nabla\cdot((1+\eta(x, t)-b(x))\nabla\phi(x, t))+O(\delta^{2})$ .
This formal expansion of the operator $\Lambda=\Lambda(\eta, b, \delta)$ with respect to $\delta^{2}$ can be justified
mathematically by the following lemma.

Lemma 3.1 ([4]). Let $M,$ $c>0$ and $s>n/2$ . There exist positive constants $C$ and $\delta_{1}$

such that for any $\delta\in(0, \delta_{1}]$ and $\eta,$ $b\in H^{s+2+1/2}(R^{n})$ satisfying

$\Vert b\Vert_{s+2+1/2}+\Vert\eta\Vert_{s+2+1/2}\leq M$, $1+\eta(x)-b(x)\geq c$ for $x\in R^{n}$ ,

we have
$\Vert\Lambda(\eta, b, \delta)\phi+\nabla\cdot((1+\eta-b)\nabla\phi)\Vert_{s}\leq C\delta^{2}\Vert\nabla\phi\Vert_{s+2}$ .
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The second equation in (2.13) and (3.2) imply that

$\eta_{t}+\nabla\cdot((1+\eta-b)\nabla\phi)=O(\delta^{2})$ .

To summarize, we have derived the partial differential equations

$\{\begin{array}{l}\eta_{t}+\nabla\cdot((1+\eta-b)\nabla\phi)=O(\delta^{2}),\phi_{t}+\eta+\frac{1}{2}|\nabla\phi|^{2}=O(\delta^{2}),\end{array}$

which approximate the equations in (2.13) up to order $\delta^{2}$ . Letting $\deltaarrow 0$ in the above
equations we obtain

$\{\begin{array}{l}\eta_{t}^{0}+\nabla\cdot((1+\eta^{0}-b)\nabla\phi^{0})=0,\phi_{t}^{0}+\eta^{0}+\frac{1}{2}|\nabla\phi^{0}|^{2}=0.\end{array}$

Finally, putting $u^{0}$ $:=\nabla\phi^{0}$ and taking the gradient of the second equation, we are led to
the shallow water equations

(3.3) $\{\begin{array}{l}\eta_{t}^{0}+\nabla\cdot((1+\eta^{0}-b)u^{0})=0,u_{t}^{0}+(u^{0}\cdot\nabla)u^{0}+\nabla\eta^{0}=0.\end{array}$

Moreover, $u^{0}$ satisfies the irrotational condition

(3.4) rot $u^{0}=0$ ,

where rot $u$ is the rotation of $u=(u_{1}, \ldots, u_{n})^{I^{\urcorner}}$
’

defined by rot $u=(\partial_{j}u_{i}-\partial_{i}u_{j})_{1\leq i,j\leq n}$ .
The following theorem gives a mathematically rigorous justification of the shallow water

equations for water waves.

Theorem 3.1 ([4]). In addition to hypothesis of Theorem 2.1 we assume that as $\deltaarrow+0$

the initial data $(\eta_{0}^{\delta}, \nabla\phi_{0}^{\delta})$ converge to $(\eta_{0}^{0}, u_{0}^{0})$ in $H^{s+3}\cross H^{s+2}$ . Then, as $\deltaarrow+0$ the
solution obtained in Theorem 2.1 satisfies

$(\eta^{\delta}, \nabla\phi^{\delta})arrow(\eta^{0}, u^{0})$ $weakly^{*}in$ $L^{\infty}(O, T;H^{s+3}\cross H^{s+2})$ ,
strongly in $C([0, T];H^{s+3-\epsilon}\cross H^{s+2-\epsilon})$

for each $\epsilon>0$ , where $(\eta^{0}, u^{0})$ is a unique solution of the shallow water equations (3.3) with
initial conditions $(\eta^{0}, u^{0})|_{t=0}=(\eta_{0}^{0}, u_{0}^{0})$ and $u^{0}$ satisfies the irrotational condition (3.4).

Moreover, if we also assume that $\Vert\eta_{0}^{\delta}-\eta_{0}^{0}\Vert_{s}+\Vert\nabla\phi_{0}^{\delta}-u_{0}^{0}\Vert_{s}=O(\delta^{2})$, then for any
$\delta\in(0, \delta_{0}]$ and $t\in[0, T]$ we have

$\Vert\eta^{\delta}(t)-\eta^{0}(t)\Vert_{s}+\Vert\nabla\phi^{\delta}(t)-u^{0}(t)\Vert_{s}\leq C\delta^{2}$

with a constant $C$ independent of $\delta$ and $t$ .
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4 Formulation of Problem II
The second type of the water wave corresponds to the ocean around the earth, that is,

we take an effect of the curvature into account on the surface of the earth, and the shape
of the fluid region is shown in the following illustration.

More precisely, we will consider a water wave around a 3-dimensional obstacle subject
to the gravitation due to the obstacle. In this case, it would be better to use the radial
coordinate $r$ and the spherical coordinates $\omega$ , which moves on the unit sphere $S^{2}$ , rather
than the CartesIan coordinates. We assume that the domain $\Omega(t)$ occupied by the fluid
at time $t\geq 0$ , the free surface $\Gamma(t)$ , and the rigid boundary $\Sigma$ of an obstacle are of the
forms

$\Omega(t)=\{x=r\omega\in R^{3};R+b(\omega)<r<R+h+\eta(\omega, t),$ $\omega\in S^{2}\}$ ,
$\Gamma(t)=\{x=r\omega\in R^{3};r=R+h+\eta(\omega, t),$ $\omega\in S^{2}\}$ ,
$\Sigma=\{x=r\omega\in R^{3};r=R+b(\omega),$ $\omega\in S^{2}\}$ ,

where $R$ and $h^{-}are$ the mean radius of the obstacle and the mean depth of the fluid,
respectively. The functions $b$ and $\eta$ represent the bottom topography and the surface
elevation, respectively. In this problem $b$ is a given function, while $\eta$ is the unknown.

We assume that the fluid is incompressible and inviscid, and that the flow is irrotational.
Then, the fluid motion is described by the velocity potential $\Phi=\Phi(r, \omega, t)$ satisfying
Laplace’s equation in the spherical polar coordinates

(4.1) $(r^{2}\Phi_{r})_{r}+\triangle_{S^{2}}\Phi=0$ in $\Omega(t)$ , $t>0$ ,

where $\triangle_{S^{2}}$ is the Laplace-Beltrami operator on the unit sphere $S^{2}$ . The boundary condi-
tions on the free surface are given by

(4.2) $\{\begin{array}{ll}\eta_{t}+_{r}\pi^{1}\nabla_{S^{2}}\Phi\cdot\nabla_{S^{2}}\eta-\Phi_{r}=0, \Phi_{t}+\frac{1}{2}(\Phi_{r}^{2}+\pi_{r}^{1}|\nabla_{S^{2}}\Phi|^{2})-MG(\frac{1}{r}-\frac{1}{R+h})=0 on \Gamma(t), t>0,\end{array}$
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where $\lrcorner\eta_{/I}$ is the total mass of the obstacle and $G$ is the gravitational constant. It is assumed
that the center of the gravity is located at the origin of coordinates. The gradient of a
scalar field $f$ and the divergence of a vector field $u$ are denoted by $\nabla_{S^{2}}f$ and $\nabla_{S^{2}}\cdot u$ ,
respectively. The first equation is the kinematical condition and the second one is what
is known as Bernoulli’s law restricted on the free surface. The boundary condition on the
bottom is given by

(4.3) $\Phi_{r}-\frac{1}{r^{2}}\nabla_{S^{2}}\Phi\cdot\nabla_{S^{2}}b=0$ on $\Sigma$ , $t>0$ .

Finally, we impose the initial conditions

(4.4) $\eta(\omega, 0)=\eta_{0}(\omega)$ , $\Phi(r, \omega, 0)=\Phi_{0}(r, \omega)$ .

It should be assumed that the initial data satisfy the compatibility conditions, that is,
$(r^{2}\Phi_{0r})_{r}+\Delta_{S^{2}}\Phi_{0}=0$ in $\Omega(0)$ and $\overline{r}^{7}1\nabla_{S^{2}}\Phi_{0}\cdot\nabla_{S^{2}}b-\Phi_{0r}=0$ on $\Sigma$ .

We proceed to rewrite the equations $(4.1)-(4.4)$ in an appropriate non-dimensional
form. In this type of the water wave, a non-dimensional parameter $\delta$ that represents the
shallowness of the water is defined by

$\delta:=\frac{h}{R}$ .

We rescale the independent and dependent variables by

$r=R\tilde{r}$ , $t= \frac{R^{2}}{\sqrt{A/IGh(1+\delta)^{-1}}}\tilde{t}$, $\Phi=$ � 6$\sqrt{}\sim$7K(鴎$+\delta$): $1\tilde{\Phi}$ , $\eta=h\tilde{\eta}$ , $b=h\tilde{b}$ .

Putting these into $(4.1)-(4.4)$ and dropping the tilde sign in the notation we obtain

(4.5) $(r^{2}\Phi_{r})_{r}+\triangle_{S^{2}}\Phi=0$ $in$ $\Omega(t)$ , $t>0$ .

(4.6) $\{\begin{array}{ll}\delta(\eta_{l}+r^{-2}\nabla_{S^{2}}\Phi\cdot\nabla_{S^{2}}\eta)-\Phi_{r}=0, \Phi_{t}+\frac{1}{2}(\Phi_{r}^{2}+r^{-2}|\nabla_{S^{2}}\Phi|^{2})+r^{-1}\eta=0 on \Gamma(t), t>0,\end{array}$

(4.7) $\Phi_{r}-\delta r^{-2}\nabla_{S^{2}}\Phi\cdot\nabla_{S^{2}}b=0$ $on$ $\Sigma$ , $t>0$ .

(4.8) $\eta(\omega, 0)=\eta_{0}^{\delta}(\omega)$ , $\Phi(r, \omega, 0)=\Phi_{0}^{\delta}(r, \omega)$ ,

where

$\Omega(t)=\{x=r\omega\in R^{3};1+\delta b(\omega)<r<1+\delta(1+\eta(\omega, t)),$ $\omega\in S^{2}\}$ ,
$\Gamma(t)=\{x=r\omega\in R^{3};r=1+\delta(1+\eta(\omega, t)),$ $\omega\in S^{2}\}$ ,
$\Sigma=\{x=r\omega\in R^{3};r=1+\delta b(\omega),$ $\omega\in S^{2}\}$ .
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Since we are interested in asymptotic behavior of the solution when $\deltaarrow+0$ , we always
assume $0<\delta\leq 1$ in the following.

As before, we transform equivalently the initial value problem $(4.5)-(4.8)$ to a problem
on the free surface. To this end, we introduce new unknown function $\phi$ by

(4.9) $\phi(\omega, t):=\Phi(1+\delta(1+\eta(\omega, t)),$ $\omega,$ $t)$ ,

which is the trace of the velocity potential on the free surface. Then, we see that

$($ 4.10$)$ $\{\begin{array}{l}\phi_{t}=\Phi_{t}|_{\Gamma(t)}+\Phi_{r}|_{\Gamma(t)}\delta\eta_{t},\nabla_{S^{2}}\phi=\nabla_{S^{2}}\Phi|_{\Gamma(t)}+\Phi_{r}|_{\Gamma(t)}\delta\nabla_{S^{2}}\eta.\end{array}$

It follows from (4.5), (4.7), and (4.9) that

(4.11) $\Lambda(\eta, b, \delta)\phi=\delta^{-1}r^{2}(\Phi_{r}-\delta r^{-2}\nabla_{S^{2}}\eta\cdot\nabla_{S^{2}}\Phi)|_{\Gamma(t)}$ ,

where $\Lambda=\Lambda(\eta, b, \delta)$ is a linear operator called the Dirichlet-to-Neumann map for Laplace’s
equation. In this case, the map $\Lambda=\Lambda(\eta, b, \delta)$ is defined as follows.

Deflnition 4.1. Under appropriate assumptions on $\eta$ and $b$ , for any function $\varphi$ on the
free surface in some class there exists a unique solution $\Phi$ of the boundary value problem

$\{\begin{array}{ll}(r^{2}\Phi_{r})_{r}+\triangle_{S^{2}}\Phi=0 in 1+\delta b(\omega)<r<1+\delta(1+\eta(\omega, t)),\Phi=\varphi on r=1+\delta(1+\eta(\omega, t)),\Phi_{r}-\delta r^{-2}\nabla_{S^{2}}\Phi\cdot\nabla_{S^{2}}b=0 on r=1+\delta b(\omega).\end{array}$

Note that in the Cartesian coordinates this boundary value problem can be written in the
form

$\{\begin{array}{ll}\Delta\Phi=0 in \Omega(t),\Phi=\varphi on \Gamma(t),N\cdot\nabla\Phi=0 on \Sigma.\end{array}$

Using the solution $\Phi$ we define the Dirichlet-to-Neumann map $\Lambda=\Lambda(\eta, b, \delta)$ by

$\Lambda(\eta, b, \delta)\varphi:=\delta^{-1}r^{2}(\Phi_{r}-\delta r^{-2}\nabla_{S^{2}}\eta\cdot\nabla_{S^{2}}\Phi)|_{\Gamma(t)}$

$(=\delta^{-1}r^{2}\sqrt{1+\delta^{2}r^{-2}}N\cdot\nabla\Phi|_{\Gamma(t)})$ .

The second equation in (4.10) and (4.11) imply that

(4.12) $\{\begin{array}{l}\Phi_{r}|_{\Gamma(t)}=\delta(r^{2}+\delta^{2}|\nabla_{S^{2}}\eta|^{2})^{-1}(\Lambda\phi+\nabla_{S^{2}}\eta\cdot\nabla_{S^{2}}\phi),\nabla_{S^{2}}\Phi|_{\Gamma(t)}=\nabla_{S^{2}}\phi-\delta^{2}(r^{2}+\delta^{2}|\nabla_{S^{2}}\eta|^{2})^{-1}(\Lambda\phi+\nabla_{S^{2}}\eta\cdot\nabla_{S^{2}}\phi)\nabla_{S^{2}}\eta.\end{array}$

It follows from the first equation in (4.6) and (4.11) that $\eta_{t}-r^{-2}\Lambda\phi=0$ , so that by the
first equation in (4.10) we get

$\Phi_{t}|_{\Gamma(t)}=\phi_{t}-\delta^{2}r^{-2}(r^{2}+\delta^{2}|\nabla_{S^{2}}\eta|^{2})^{-1}(\Lambda\phi+\nabla_{S^{2}}\eta\cdot\nabla_{S^{2}}\phi)\Lambda\phi$ .
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Putting this and (4.12) into the second equation in (4.6) we obtain

(4.13)

$\phi_{t}+r^{-1}\eta+\frac{1}{2}r^{-2}|\nabla_{S^{2}}\phi|^{2}$

$- \frac{1}{2}\delta^{2}r^{-2}(r^{2}+\delta^{2}|\nabla_{S^{2}}\eta|^{2})^{-1}$ $($ A $(\eta, b, \delta)\phi+\nabla_{S^{2}}\eta\cdot\nabla_{S^{2}}\phi)^{2}=0$ ,
$\eta_{t}-r^{-2}\Lambda(\eta, b, \delta)\phi=0$ for $t>0$ ,

(4.14) $\eta=\eta_{0}^{\delta}$ , $\phi=\phi_{0}^{\delta}$ at $t=0$ ,

where $r=1+\delta(1+\eta)$ and $\phi_{0}^{\delta}=\Phi_{0}^{\delta}(1+\delta(1+\eta_{0}^{\delta}(\cdot)),$ $\cdot)$ . This is another initial value
problem that we are going to investigate in this communication.

5 Shallow water approximation for Problem II
We proceed to study formally asymptotic behavior of the solution $(\eta^{\delta}, \phi^{\delta})$ to the initial

value problem (4.13) and (4.14) when $\deltaarrow+0$ and derive the shallow water equations on
the sphere $S^{2}$ , whose solution approximates $(\eta^{\delta}, \phi^{\delta})$ in a suitable sense.

It follows from the first equation in (4.13) that

$\phi_{t}+\eta+\frac{1}{2}|\nabla_{S^{2}}\phi|^{2}=O(\delta)$ .

By (4.7),

(5.1) $\Phi_{r}(r, \omega, t)=\Phi_{r}|_{r=1+\delta b(\omega)}+\int_{1+\delta b(\omega)}^{r}\Phi_{rr}(s, \omega, t)ds$

$=\delta r^{-2}\nabla_{S^{2}}\Phi|_{r=1+\delta b(\omega)}$ . $\nabla_{S^{2}}b+\int_{1+\delta b(\omega)}^{r}\Phi_{rr}(s, \omega, t)ds$.

Since $1+\delta b(\omega)<r<1+\delta(1+\eta(\omega, t)),$ $(5.1)$ implies that $\Phi_{r}(r, \omega, t)=O(\delta)$ . Therefore,

$\Phi(r, \omega, t)=\phi(\omega, t)+\int_{1+\delta(1+\eta(\omega,t))}^{r}\Phi_{r}(s, \omega, t)ds=\phi(\omega, t)+O(\delta)$ ,

so that by (4.5),

$\Phi_{rr}(r, \omega, t)=-2r^{-1}\Phi_{r}(r, \omega, t)-r^{-2}\triangle_{S^{2}}\Phi(r, \omega, t)=-\Delta_{S^{2}}\phi(\omega, t)+O(\delta)$ .

Putting these into (5.1) we see that

$\Phi_{r}|_{r=1+\delta(1+\eta(\omega,t))}=\delta\nabla_{S^{2}}\eta\cdot\nabla_{S^{2}}b-\delta(1+\eta-b)\Delta_{S^{2}}\phi+O(\delta^{2})$ .

Hence, by (4.11) we have

(5.2) $\Lambda\phi=-\nabla_{S^{2}}\cdot((1+\eta-b)\nabla_{S^{2}}\phi)+O(\delta)$.
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This and the second equation in (4.13) imply that

$\eta_{t}+\nabla_{S^{2}}\cdot((1+\eta-b)\nabla_{S^{2}}\phi)=O(\delta)$ .

To summarize, we have derived the partial differential equations

$\{\begin{array}{l}\eta_{t}+\nabla_{S^{2}}\cdot((1+\eta-b)\nabla_{S^{2}}\phi)=O(\delta),\phi_{t}+\eta+\frac{1}{2}|\nabla_{S^{2}}\phi|^{2}=O(\delta),\end{array}$

which approximate the equations in (4.13) up to order $\delta$ . Letting $\deltaarrow 0$ in the above
equations we obtain

$\{\begin{array}{l}\eta_{t}^{0}+\nabla_{S^{2}}\cdot((1+\eta^{0}-b)\nabla_{S^{2}}\phi^{0})=0,\phi_{t}^{0}+\eta^{0}+\frac{1}{2}|\nabla_{S^{2}}\phi^{0}|^{2}=0.\end{array}$

Finally, putting $u^{0}$ $:=\nabla_{S^{2}}\phi^{0}$ and taking the gradient of the second equation, we are led
to the shallow water equations on the sphere $S^{2}$

(5.3) $\{\begin{array}{l}\eta_{t}^{0}+\nabla_{S^{2}}\cdot((1+\eta^{0}-b)u^{0})=0,u_{t}^{0}+\nabla_{u^{0}}u^{0}+\nabla_{S^{2}}\eta^{0}=0,\end{array}$

where $\nabla_{u^{0}}u^{0}$ is the covariant derivative of the vector field $u^{0}$ with respect to $u^{0}$ . These
have exactly the same form as the compressible Euler equations on the manifold $S^{2}$ , so
that this shallow water limit gives the necessity to the analysis of the compressible Euler
equations not only in the Euclidean space but also on general manifolds.

6 Linearized equations and energy estimates
The most difficult part to give a mathematically rigorous justification of the shallow

water approximations for water waves is to establish an existence theory for the initial
value problems (2.13) and (2.14), and (4.13) and (4.14) together with uniform boundedness
of the solution with respect to the small parameter $\delta$ . Such uniform boundedness are
obtained by the energy methods together with a precise analysis of the Dirichlet-to-
Neumann map $\Lambda$ for Laplace’s equation. In the analysis, we transform the boundary
value problem for Laplace’s equation in the fluid domain $\Omega(t)$ to a problem on the simple
fixed domain $\Omega_{0}=R^{n}\cross(0,1)$ in the case of Problem I and $\Omega_{0}=\{x=r\omega\in R^{3};1<$

$r<1+\delta,$ $\omega\in S^{2}\}$ in the case of Problem II, respectively, by using an appropriate
diffeomorphism $\Theta$ : $\Omega_{0}arrow\Omega(t)$ . This is one of the crucial parts of this communication.
We will construct such a diffeomorphism $\Theta$ which is conformal in the tangential and the
normal directions on the boundary in some sense.

In order to explain how to apply the method to our problem, we will focus on the
initial value problem (2.13) and (2.14) and consider linearized equations of (2.13) around

89



an arbitrary flow $(\eta, \phi)$ and give an energy estimate of the solution to the linearized
equations. The energy estimate for the problem (4.13) and (4.14) can be carried out
in almost the same way. Following D. Lannes [8], we linearize the equations in (2.13)
around $(\eta, \phi)$ . To this end, we need to calculate the Fr\’echet derivative of the Dirichlet-
to-Neumann map $\Lambda(\eta, b, \delta)$ with respect to $\eta$ .

Lemma 6.1 ([8]). The Frechet derivative of $\Lambda(\eta, b, \delta)$ with respect to $\eta$ has the form
$D_{\eta}\Lambda(\eta, b, \delta)[\zeta]\phi=-\delta^{2}\Lambda(\eta, b, \delta)(Z\zeta)-\nabla\cdot(v\zeta)$,

where

$\{\begin{array}{l}Z=(1+\delta^{2}|\nabla\eta|^{2})^{-1}(\Lambda(\eta, b, \delta)\phi \text{十} \nabla\eta\cdot\nabla\phi),v=\nabla\phi-\delta^{2}Z\nabla\eta.\end{array}$

By this lemma, setting

$\zeta:=\partial\eta$ , $\psi:=\partial\phi-\delta^{2}Z\partial\eta$ ,

we see that the linearized equations have the form

$\{\begin{array}{l}\psi_{t}+v\cdot\nabla\psi+(1+\delta^{2}Z_{t}+\delta^{2}v\cdot\nabla Z)\zeta=0,\zeta_{t}+\nabla\cdot(v\zeta)-\Lambda\psi=D_{b}\Lambda[\partial b]\phi.\end{array}$

Here, we note that the function $1+\delta^{2}Z_{t}+\delta^{2}v\cdot\nabla Z$ is positively definite for sufficiently
small $\delta$ . In view of this, we will consider the following system of linear equations for
unknowns $(\psi, \zeta)$ .

(6.1) $\{\begin{array}{l}\psi_{t}+b_{1}\cdot\nabla\psi+a\zeta=f_{1},\zeta_{t}+b_{2}\cdot\nabla\zeta-\Lambda\psi=f_{2},\end{array}$

where $a,$ $b_{1}=(b_{11}, \ldots, b_{1n}),$ $b_{2}=(b_{21}, \ldots, b_{2n}),$ $f_{1},$ $f_{2}$ are given functions of $x$ and $t$ and
may depend on $\delta$ , and $\Lambda=\Lambda(\eta, b, \delta)$ is the Dirichlet-to-Neumann map. We assume that
the function $a$ satisfies the following positivity condition.

$a(x, t)\geq c_{0}>0$ for $x\in R^{n},$ $0\leq t\leq T$.

In order to define an energy function to the system (6.1), we need more information on
the Dirichlet-to-Neumann map $\Lambda$ .

Introducing a $(n+1)\cross(n+1)$ matrix $I_{\delta}$ by

$I_{\delta}=(\begin{array}{ll}E_{n} 00 \delta^{-1}\end{array})$ ,

where $E_{n}$ is the $n\cross n$ unit matrix, we can rewrite the boundary value problem in Definition
2.1 as the following form.

(6.2) $\{\begin{array}{ll}\nabla_{X}\cdot I_{\delta}^{2}\nabla_{X}\Phi=0 in \Omega,\Phi=\phi on \Gamma,N\cdot I_{\delta}^{2}\nabla_{X}\Phi=0 on \Sigma.\end{array}$
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Lemma 6.2. The Dirichlet-to-Neumann map $\Lambda=\Lambda(\eta, b, \delta)$ is symmetric in $L^{2}(R^{n})$ ,
that is, for any $\phi,$ $\psi\in H^{1}(R^{n})$ it holds that

$(\Lambda\phi, \psi)=(\phi, \Lambda\psi)$ .

Proof. Set $\Phi$ $:=\phi^{\hslash}$ and $\Psi$ $:=\psi^{\hslash}$ . By Green’s formula we have

$0= \int_{\Omega}((\nabla_{X}\cdot I_{\delta}^{2}\nabla_{X}\Phi)\Psi-\Phi(\nabla_{X}\cdot I_{\delta}^{2}\nabla_{X}\Psi))dX$

$= \int_{\Gamma}((N\cdot I_{\delta}^{2}\nabla_{X}\Phi)\Psi-\Phi(N\cdot I_{\delta}^{2}\nabla_{X}\Psi))dS$,

where $N$ is the unit outward normal to the boundary $\partial\Omega$ . In the above calculation we used
the boundary condition on the bottom $\Sigma$ . Since $\Phi=\phi,$ $\Psi=\psi,$ $\sqrt{1+|\nabla\eta|^{2}}N\cdot I_{\delta}^{2}\nabla_{X}\Phi=$

$\Lambda\phi,$ $\sqrt{1+|\nabla\eta|^{2}}N\cdot l_{\delta}^{2}\nabla_{X}\Psi=\Lambda\psi$, and $dS=\sqrt{1+|\nabla\eta|^{2}}dx$ on $\Gamma$ , we obtain the desired
identity. ロ

Lemma 6.3. For any $\phi\in H^{1}(R^{n})$ , it holds that $(\Lambda\phi, \phi)=\Vert I_{\delta}\nabla_{X}\Phi\Vert_{L^{2}(\Omega)}^{2}$ , where $\Phi=\phi^{\hslash}$ .

Proof. By Green’s formula we see that

$0= \int_{\Omega}(\nabla_{X}\cdot I_{\delta}^{2}\nabla_{X}\Phi)\Phi dX=\int_{\partial\Omega}(N\cdot I_{\delta}^{2}\nabla_{X}\Phi)\Phi dS-\int_{\Omega}|I_{\delta}\nabla_{X}\Phi|^{2}dX$.

This together with the boundary conditions yields the desired identity. ロ

These two lemmas imply that the Dirichlet-to-Neumann map $\Lambda$ is a positive operator in
$L^{2}(R^{n})$ . For simplicity, we first consider the linear equations (6.1) in the case $b_{1}=b_{2}=0$ ,
that is, the equations

$\{\begin{array}{l}\psi_{t}+a\zeta=fi,\zeta_{t}-\Lambda\psi=f_{2},\end{array}$

which can be written in the matrix form

$(\begin{array}{l}\psi\zeta\end{array})+(\begin{array}{ll}0 a-\Lambda 0\end{array})(\begin{array}{l}\psi\zeta\end{array})=(\begin{array}{l}f_{l}f_{2}\end{array})$

or
娩 $U_{t}+$ 嫡 $U=F$

where $U=(\psi, \zeta)^{T},$ $F=(\Lambda f_{1}, af_{2})^{T}$ and

$d_{0}=(\begin{array}{ll}\Lambda 00 a\end{array})$ , X $=(\begin{array}{ll}0 \Lambda a-a\Lambda 0\end{array})$ .
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Here, we note that $d_{0}$ is positively definite and $d_{1}$ is skcw-symmetric, that is, $d_{1}^{*}=-d_{1}$ .
This means that the matrix operator $\ovalbox{\tt\small REJECT}_{0}$ is a symmetrizer for the system (6.1), so that
the corresponding energy function is defined by

$E(t):=(d_{0}U, U)=(\Lambda\psi, \psi)+(a\zeta, \zeta)$ .

In fact, for any smooth solution $(\psi, \zeta)$ to the system (6.1) we see that

$\frac{d}{dt}E(t)=([\partial_{t}, \Lambda]\psi, \psi)+2(\psi_{t}, \Lambda\psi)+(a_{t}\zeta, \zeta)+2(a\zeta_{t}, \zeta)$

$=([\partial_{t}, \Lambda]\psi, \psi)-2(b_{1}\cdot\nabla\psi, \Lambda\psi)+2(f_{1}, \Lambda\psi)$

$+(a_{t}\zeta, \zeta)+((\nabla\cdot(ab_{2}))\zeta, \zeta)+2(af_{2}, \zeta)$ .

Crucial terms in the right hand side are $([\partial_{t}, \Lambda]\psi, \psi)$ and $(b_{1}\cdot\nabla\psi, \Lambda\psi)$ .

Lemma 6.4. Let $r>n/2,$ $c_{0},$ $M>0$ . There exist positive constants $C_{1}$ and $\delta_{1}$ such that
if $0<\delta\leq\delta_{1},$ $b\in H^{r+1}$ and $\eta\in C^{1}([0, T];H^{r+1})$ satisfy the conditions

$\{\begin{array}{ll}\Vert b\Vert_{r+1}+\Vert\eta(t)\Vert_{r+1}+\Vert\eta_{t}(t)\Vert_{r+1}\leq M, 1+\eta(x, t)-b(x)\geq c_{0} for x\in R^{n}, 0\leq t\leq T,\end{array}$

then we have
$|([\partial_{t}, \Lambda]\phi, \phi)|\leq C_{1}(\Lambda\phi, \phi)$ .

Proof. Taking an appropriate diffeomorphism $\Theta$ : $\Omega_{0}=R^{n}\cross[0,1]arrow$ St $(t)$ , we put
$\Phi$ $:=\phi^{\hslash}$ and $\tilde{\Phi}$

$:=\Phi\circ\Theta$ . Then, the boundary value problem (6.2) is transformed into

$\{\begin{array}{ll}\nabla_{X}\cdot I_{\delta}PI_{\delta}\nabla_{X}\tilde{\Phi}=0 in 0<x_{n+1}<1,\tilde{\Phi}=\phi on x_{n+1}=1,\partial_{n+1}\tilde{\Phi}=0 on x_{n+1}=0,\end{array}$

where $P=P(x, y, t;\delta)$ is positively definite and satisfies

$\{\begin{array}{l}|P|+|P^{-1}|+|P_{t}|\leq C,P(x, 0)=[Matrix], P(x, 1)=[Matrix].\end{array}$

Moreover, it holds that

(6.3) $C^{-1}\Vert I_{\delta}\nabla_{X}\Phi\Vert_{L^{2}(\Omega)}\leq\Vert I_{\delta}\nabla_{X}\tilde{\Phi}\Vert_{L^{2}(\Omega_{0})}\leq C\Vert I_{\delta}\nabla_{X}\Phi\Vert_{L^{2}(\Omega)}$.

In fact, we can construct such a diffeomorphism $\Theta$ if we take $\delta_{1}$ sufficiently small. Then,
by Lemma 6.3 we have

$( \Lambda\phi, \phi)=\int_{\Omega(t)}|I_{\delta}\nabla_{X}\Phi|^{2}dX=\int_{\Omega_{0}}PI_{\delta}\nabla_{X}\tilde{\Phi}\cdot I_{\delta}\nabla_{X}\tilde{\Phi}dX$ ,

92



so that

$([ \partial_{t}, \Lambda]\phi, \phi)=\frac{d}{dt}(\Lambda\phi, \phi)=2\int_{\Omega_{0}}PI_{\delta}\nabla_{X}\tilde{\Phi}\cdot I_{\delta}\nabla_{X}\tilde{\Phi}_{t}dX+\int_{\Omega_{0}}P_{t}I_{\delta}\nabla_{X}\tilde{\Phi}\cdot I_{\delta}\nabla_{X}\tilde{\Phi}dX$.

Since $\tilde{\Phi}(\cdot, 1)=\phi$ , we have $\tilde{\Phi}_{t}(\cdot, 1)=0$ . Therefore, by Green’s formula we see that

$\int_{\Omega_{0}}PI_{\delta}\nabla_{X}\tilde{\Phi}\cdot I_{\delta}\nabla_{X}\tilde{\Phi}_{t}dX$

$=- \int_{\Omega_{0}}(\nabla_{X}\cdot I_{\delta}PI_{\delta}\nabla_{X}\tilde{\Phi})\tilde{\Phi}_{t}dX$

$+(e_{n+1}\cdot I_{\delta}^{2}\nabla_{X}\tilde{\Phi}(\cdot, 1),\tilde{\Phi}_{t}(\cdot, 1))-(e_{n+1}\cdot I_{\delta}^{2}\nabla_{X}\tilde{\Phi}(\cdot, 0),\tilde{\Phi}_{t}(\cdot, 0))$

$=0$ .
Hence, we obtain

$|([\partial_{t}, \Lambda]\phi, \phi)$ I $\leq\Vert P_{t}\Vert_{L(\Omega_{0})}\infty\Vert I_{\delta}\nabla_{X}\tilde{\Phi}\Vert_{L^{2}(\Omega_{0})}^{2}$.
This together with (6.3) and Lemma 6.3 implies the desired estimate. ロ

Lemma 6.5. Let $r>n/2,$ $c_{0},$ $M>0$ . There exist positive constants $C_{1}$ and $\delta_{1}$ such that
if $0<\delta\leq\delta_{1},$ $b,$ $\eta\in H^{r+2}satisfy$ the conditions

$\{\begin{array}{l}\Vert b\Vert_{r+2}+\Vert\eta\Vert_{r+2}\leq\Lambda\prime I,1+\eta(x)-b(x)\geq c_{0} for x\in R^{n},\end{array}$

then we have
$|(\Lambda\phi, v\cdot\nabla\phi)|\leq C_{1}\Vert v\Vert_{r+1}(\Lambda\phi, \phi)$.

Proof. We set $\Phi;=\phi^{\hslash}$ and construct a vector field $V=(V_{1}, \ldots, V_{n}, V_{n+1})^{T}$ on $\Omega$

satisfying

$\{\begin{array}{l}V_{j}|_{\Gamma}=v_{j} (1 \leq j\leq n), V_{n+1}|_{\Gamma}=\delta v\cdot\nabla\eta,V_{n+1}|_{\Sigma}=\delta(V_{1}|_{\Sigma}, \ldots, V_{n}|_{\Sigma})^{T}\cdot\nabla b,\end{array}$

and

(6.4) $\Vert I_{\delta}\nabla_{X}V_{1}\Vert_{L(\Omega)}\infty+\cdots+\Vert I_{\delta}\nabla_{X}V_{n+1}\Vert_{L(\Omega)}\infty\leq C\Vert v\Vert_{r+1}$.

Then, it is easy to see that

$V\cdot I_{\delta}\nabla_{X}\Phi|_{\Gamma}=v\cdot\nabla\phi$ , $V\cdot I_{\delta}N|_{\Gamma}=V\cdot I_{\delta}N|_{\Sigma}=0$ .

By these relations and Green’s formula we see that

$( \Lambda\phi, v\cdot\nabla\phi)=\int_{\Gamma}(N\cdot I_{\delta}^{2}\nabla_{X}\Phi)(V\cdot I_{\delta}\nabla_{X}\Phi)dS=\int_{\Omega}\nabla_{X}\cdot((I_{\delta}^{2}\nabla_{X}\Phi)(V\cdot I_{\delta}\nabla_{X}\Phi))dX$

$= \int_{\Omega}I_{\delta}\nabla_{X}\Phi\cdot(I_{\delta}\nabla_{X}V)I_{\delta}\nabla_{X}\Phi dX+\frac{1}{2}\int_{\Omega}V\cdot I_{\delta}\nabla_{X}|I_{\delta}\nabla_{X}\Phi|^{2}dX$

$= \int_{\Omega}(I_{\delta}\nabla_{X}\Phi\cdot(I_{\delta}\nabla_{X}V)I_{\delta}\nabla_{X}\Phi-\frac{1}{2}(I_{\delta}\nabla_{X}\cdot V)|I_{\delta}\nabla_{X}\Phi|^{2})dX$,
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where $I_{\delta}\nabla_{X}V=(I_{\delta}\nabla_{X}V_{1}, \ldots, I_{\delta}\nabla_{X}V_{n+1})$ . Therefore, we obtain

$|(\Lambda\phi, v\cdot\nabla\phi)|\leq C\Vert I_{\delta}\nabla_{X}V\Vert_{L^{\infty}(\Omega)}\Vert I_{\delta}\nabla_{X}\Phi\Vert_{I_{\lrcorner}^{2}(\Omega)}^{2}=C\Vert I_{\delta}\nabla_{X}V\Vert_{L^{\infty}(\Omega)}(\Lambda\phi, \phi)$ ,

which together with (6.4) implies the desired estimate. ロ

Lemma 6.6. For the Dirnchlet-to-Neumann map $\Lambda=\Lambda(\eta, b, \delta)$ it holds that

$|(\phi, \Lambda\psi)|\leq\sqrt{(\phi,\Lambda\phi)}\sqrt{(\psi,\Lambda\psi)}$.

Proof. Set $\Phi$ $:=\phi^{\hslash}$ and $\Psi$ $:=\psi^{\hslash}$ . By Green’s formula we see that

$( \Lambda\phi, \psi)=\int_{\Gamma}(N\cdot I_{\delta}^{2}\nabla_{X}\Phi)\Psi dS=\int_{\Omega}\nabla_{X}\cdot((I_{\delta}^{2}\nabla_{X}\Phi)\Psi)dX=\int_{\Omega}I_{\delta}\nabla_{X}\Phi\cdot I_{\delta}\nabla_{X}\Psi dX$.

Therefore, by Lemma 6.3 we obtain

$|(\Lambda\phi, \psi)|\leq\Vert I_{\delta}\nabla_{X}\Phi\Vert_{L^{2}(\Omega)}\Vert I_{\delta}\nabla_{X}\Psi\Vert_{L^{2}(\Omega)}=\sqrt{(\phi,\Lambda\phi)}\sqrt{(\psi,\Lambda\psi)}$.

This shows the desired estimate. ロ

By these Lemmas 6.4-6.6, we obtain

$\frac{d}{dt}E(t)\leq CE(t)+\{(\Lambda f_{1}(t), f_{1}(t))+\Vert f_{2}(t)\Vert^{2}\}$,

which together with Gronwall’s inequality implies that

$E(t) \leq Ce^{Ct}E(0)+\int_{0}^{t}e^{C(t-\tau)}\{(\Lambda f_{1}(\tau), f_{1}(\tau))+\Vert f_{2}(\tau)\Vert^{2}\}d\tau$.

Similarly, for a high order energy function $E_{s}(t)$ defined by

$E_{s}(t):=(AJ^{s}\psi(t), J^{s}\psi(t))+(aJ^{s}\zeta(t), J^{8}\zeta(t))$ ,

where $J=1+|D|$ (we use the standard notation of Fourier multipliers), we can obtain a
high order energy estimate

(6.5) $E_{s}(t) \leq Ce^{Ct}E_{s}(0)+\int_{0}^{t}e^{C(t-\tau)}\{(\Lambda J^{s}f_{1}(\tau), J^{s}f_{1}(\tau))+\Vert f_{2}(\tau)\Vert_{s}^{2}\}d\tau$

with a constant $C$ independent of $\delta$ .
Now, we need to convert the energy function $E_{s}(t)$ into the norm of a Sobolev space

uniformly with respect to $\delta$ .

Lemma 6.7. Under the same hypothesis of Lemma 6.4, for any $\phi\in H^{1}$ we have

$C^{-1}\Vert\Lambda_{0}^{1/2}\phi\Vert^{2}\leq(\Lambda\phi, \phi)\leq C\Vert\Lambda_{0}^{1/2}\phi\Vert^{2}$

with a constant $C\geq 1$ independent of $\delta$ , where $\Lambda_{0}=\Lambda(0,0, \delta)=\frac{1}{\delta}|D|\tanh(\delta|D|)$ .
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Proof. By using the diffeomorphism $\Theta$ in the proof of Lemma 6.4, we set $\Phi$ $:=\phi^{\hslash}$ and
$\tilde{\Phi}$

$:=\Phi\circ\Theta$ , and decompose $\tilde{\Phi}=\tilde{\Phi}_{1}+\tilde{\Phi}_{2}$ , where $\tilde{\Phi}_{1}$ and $\tilde{\Phi}_{2}$ are solutions of the boundary
value problems

$\{\begin{array}{ll}\nabla_{X}\cdot I_{\delta}^{2}\nabla_{X}\tilde{\Phi}_{1}=0 in 0<x_{n+1}<1,\tilde{\Phi}_{1}=\phi on x_{n+1}=1,\partial_{n+1}\tilde{\Phi}_{1}=0 on x_{n+1}=0\end{array}$

and

$\{\begin{array}{ll}\nabla_{X}\cdot I_{\delta}^{2}\nabla_{X}\tilde{\Phi}_{2}=\nabla_{X}\cdot I_{\delta}(I_{1}-P)I_{\delta}\nabla_{X}\tilde{\Phi} in 0<x_{n+1}<1,\tilde{\Phi}_{2}=0 on x_{n+1}=1,\partial_{n+1}\tilde{\Phi}_{2}=0 on x_{n+1}=0,\end{array}$

respectively. Then, it holds that

$\Lambda\phi=\delta^{-2}\partial_{n+1}\tilde{\Phi}(\cdot, 1)=\delta^{-2}\partial_{n+1}\tilde{\Phi}_{1}(\cdot, 1)+\delta^{-2}\partial_{n+1}\tilde{\Phi}_{2}(\cdot, 1)=\Lambda_{0}\phi+\delta^{-2}\partial_{n+1}\tilde{\Phi}_{2}(\cdot, 1)$

and, by Lemma 6.3, that

$(\Lambda\phi, \phi)=\Vert I_{\delta}\nabla_{X}\Phi\Vert_{L^{2}(\Omega)}^{2}$ , $\Vert\Lambda_{0}^{1/2}\phi\Vert^{2}=(\Lambda_{0}\phi, \phi)=\Vert I_{\delta}\nabla_{X}\tilde{\Phi}_{1}\Vert_{L^{2}(\Omega_{0})}^{2}$.

By Green’s formula we see that
$(\delta^{-2}\partial_{n+1}\tilde{\Phi}_{2}(\cdot, 1),$ $\phi)=(\delta^{-2}\partial_{n+1}\tilde{\Phi}_{2}(\cdot, 1),\tilde{\Phi}_{1}(\cdot, 1))$

$= \int_{\Omega_{0}}I_{\delta}\nabla_{X}\tilde{\Phi}_{2}\cdot I_{\delta}\nabla_{X}\tilde{\Phi}_{1}dX+\int_{\Omega_{0}}(\nabla_{X}\cdot I_{\delta}^{2}\nabla_{X}\tilde{\Phi}_{2})\tilde{\Phi}_{1}dX$

$= \int_{\Omega_{0}}I_{\delta}\nabla_{X}\tilde{\Phi}_{2}\cdot I_{\delta}\nabla_{X}\tilde{\Phi}_{1}dX+\int_{\Omega_{0}}(\nabla_{X}\cdot I_{\delta}(I_{1}-P)I_{\delta}\nabla_{X}\tilde{\Phi})\tilde{\Phi}_{1}dX$

$= \int_{\Omega_{0}}I_{\delta}\nabla_{X}\tilde{\Phi}_{2}\cdot I_{\delta}\nabla_{X}\tilde{\Phi}_{1}dX-\int_{\Omega_{0}}(I_{1}-P)I_{\delta}\nabla_{X}\tilde{\Phi}\cdot I_{\delta}\nabla_{X}\tilde{\Phi}_{1}dX$ .

Therefore,

$|(\delta^{-2}\partial_{n+1}\tilde{\Phi}_{2}(\cdot, 1),$ $\phi)|\leq C(\Vert I_{\delta}\nabla_{X}\tilde{\Phi}_{2}\Vert_{L^{2}(\Omega_{0})}+\Vert I_{\delta}\nabla_{X}\tilde{\Phi}\Vert_{L^{2}(\Omega_{0})})\Vert I_{\delta}\nabla_{X}\tilde{\Phi}_{1}\Vert_{L^{2}(\Omega_{0})}$ .

Similarly, by the equations for $\tilde{\Phi}_{2}$ we see that

$\Vert I_{\delta}\nabla_{X}\tilde{\Phi}_{2}\Vert_{L^{2}(\Omega_{0})}^{2}=-\int_{\Omega_{0}}(\nabla_{X}\cdot I_{\delta}^{2}\nabla_{X}\tilde{\Phi}_{2})\tilde{\Phi}_{2}dX=-\int_{\Omega_{0}}(\nabla_{X}\cdot I_{\delta}(I_{1}-P)I_{\delta}\nabla_{X}\tilde{\Phi})\tilde{\Phi}_{2}dX$

$= \int_{\Omega_{0}}(I_{1}-P)I_{\delta}\nabla_{X}\tilde{\Phi}\cdot I_{\delta}\nabla_{X}\tilde{\Phi}_{2}dX\leq C\Vert I_{\delta}\nabla_{X}\tilde{\Phi}\Vert_{L^{2}(\Omega_{0})}\Vert I_{\delta}\nabla_{X}\tilde{\Phi}_{2}\Vert_{L^{2}(\Omega_{0})}$,

so that
$\Vert I_{\delta}\nabla_{X}\tilde{\Phi}_{2}\Vert_{L^{2}(\Omega_{0})}\leq C\Vert I_{\delta}\nabla_{X}\tilde{\Phi}\Vert_{L^{2}(\Omega_{0})}\leq C\Vert I_{\delta}\nabla_{X}\Phi\Vert_{L^{2}(\Omega)}$,

where we used (6.3). Summarizing the above estimates we obtain

$|(\Lambda\phi, \phi)-(\Lambda_{0}\phi, \phi)|\leq C_{1}\Vert I_{\delta}\nabla_{X}\Phi\Vert_{L^{2}(\Omega)}\Vert I_{\delta}\nabla_{X}\tilde{\Phi}_{1}\Vert_{L^{2}(\Omega_{0})}\leq C_{1}\sqrt{(\Lambda\phi,\phi)}\sqrt{(\Lambda_{0}\phi,\phi)}$,

which easily yields the desired inequalities. ロ
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Lemma 6.8. For any real $s$ , we have

$\{\begin{array}{l}\Vert\nabla\phi\Vert_{s}\leq\sqrt{2(1+\delta)}\Vert\Lambda_{0}^{1/2}\phi\Vert_{s+1/2},\Vert\Lambda_{0}^{1/2}\phi\Vert_{s}\leq\min\{\Vert\nabla\phi\Vert_{s}, \delta^{-1/2}\Vert\phi\Vert_{s+1/2}\}.\end{array}$

Proof. By the inequalities $(1+ \sqrt{\alpha})^{-1}\alpha\leq\sqrt{\alpha\tanh\alpha}\leq\min\{\alpha, \sqrt{\alpha}\}$ for $\alpha\geq 0$ , it holds
that

$(1+ \sqrt{\delta|\xi|})^{-1}|\xi|\leq\sqrt{\delta^{-1}|\xi|\tanh(\delta|\xi|)}\leq\min\{|\xi|, \delta^{-1/2}|\xi|^{1/2}\}$ for $\xi\in R^{n},$ $\delta>0$ ,

which yields the desired estimates. ロ

It follows from (6.5) and Lemmas 6.7 and 6.8 that for any smooth solution $(\psi, \zeta)$ to the
system (6.1) of linear equations we have

$\Vert\nabla\psi(t)\Vert_{s-1/2}^{2}+\Vert\zeta(t)\Vert_{s}^{2}$

$\leq Ce^{Ct}(\Vert\nabla\psi(0)\Vert_{s}^{2}+\Vert\zeta(0)\Vert_{s}^{2})+C\int_{0}^{t}e^{C(t-\tau)}(\Vert\nabla f_{1}(\tau)\Vert_{s}^{2}+\Vert f_{2}(\tau)\Vert_{s}^{2})d\tau$

with a constant $C$ independent of $\delta$ .
For the nonlinear problem (2.13), we reduce the problem to a system of quasilinear

equations by introducing new functions $\zeta_{ijk}:=\partial_{ijk}\eta$ and $\psi_{ijk}:=\partial_{ijk}\phi-\delta^{2}Z\partial_{ijk}\eta$ , where
$\partial_{ijk}=\partial_{i}\partial_{j}\partial_{k}$ and $Z$ is given in Lemma 6.1. Then, the system has the form

$\{\begin{array}{l}\partial_{t}\zeta_{ijk}+v\cdot\nabla\zeta_{ijk}-\Lambda\psi_{ijk}=f_{1}^{ijk},\partial_{t}\psi_{ijk}+v\cdot\nabla\psi_{ijk}+a\zeta_{ijk}=f_{2}^{ijk},\end{array}$

where $v$ is given in Lemma 6.1, $a=1+\delta^{2}Z_{t}+\delta^{2}v\cdot\nabla Z$ , and $f_{1}^{ijk}$ and $f_{2}^{ijk}$ are corrections of
lower order terms. Applying the energy estimate to this system of quasilinear equations,
we obtain the uniform boundedness of the solution stated in Theorem 2.1.

The details will be published elsewhere.
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