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1 Introduction
This short paper gives a brief survey on the results in the authors’ previous papers
[16, 17], which concern singular limits from a heat-conductive hydrodynamic model
of semiconductors to an energy-transport and a drift-diffusion models. It also studies
a singular limit from the energy-transport model to the drift-diffusion model. These
limits are called “relaxation time limits” or “relaxation limits” in short. In order to
discuss them, we study the existence and the asymptotic stability of a stationary so-
lution to the above models. In all results of this paper, we do not need any smallness
assumptions on the initial data provided that relaxation times are sufficiently small
since the drift-diffusion model, a limited system, consists of a uniformly parabolic
equation and the Poisson equation.

The heat-conductive hydrodynamic model is important to design the semicon-
ductor device with a high performance since it accounts for a hot carrier problem,
which is caused by high temperature and make the devices unstable. It is formulated
as the system of equations, corresponding to a conservation low of mass, a balance
low of momentum, a thermal equation and the Poisson equation,

$\rho_{s}+m_{x}=0$ , (l.la)

$m_{s}+( \frac{m^{2}}{\rho}+p(\rho, \theta))_{x}=\rho\phi_{x}-\frac{m}{\tau_{m}}$ , (l.lb)

$\rho\theta_{s}+m\theta_{x}+\frac{2}{3}(\frac{m}{\rho}I_{x}^{\rho\theta-\frac{2}{3}}(\kappa\theta_{x})_{x}=\frac{2\tau_{e}-\tau_{m}m^{2}}{3\tau_{m}\tau_{e}\rho}-\frac{\rho}{\tau_{e}}(\theta-\overline{\theta}),$ (l.lc)

$\phi_{xx}=\rho-D$ . (l.ld)

The unknown functions $\rho,$ $m,$
$\theta$ and $\phi$ denote electron density, electric current,

absolute temperature and electrostatic potential, respectively. The pressure $p$ is
supposed to obey the Boyle-Charle law, that is,

$p=p(\rho, \theta)=\rho\theta$ . (1.2)
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Positive constants $\overline{\theta},$

$\kappa,$ $\tau_{m}$ and $\tau_{e}$ mean ambient device temperature, thermal con-
ductivity, momentum relaxation time and energy relaxation time, respectively. The
relaxation times $\tau_{m}$ and $\tau_{e}$ are small when electron density is dense in semiconduc-
tor. From the physical point of view, we assume $\tau_{m}\leq\tau_{e}$ . Moreover, $D(x)$ means
doping profile, which is distribution of the density of positively ionized impurities
in semiconductor devices. It is a given function in $\mathcal{B}^{0}$ (St) and satisfies

$x\in in_{\frac{f}{\Omega}}D(x)>0$ . (1.3)

The system (1.1) is studied over the bounded domain $\Omega$ $:=(0,1)$ with the initial
and the boundary conditions to the system (1.1) as

$(\rho, m, \theta)(0, x)=(\rho_{0}, m_{0}, \theta_{0})(x)$ . (1.4)
$\rho(t, 0)=\rho_{l}>0$ , $\rho(t, 1)=\rho_{r}>0$ , (1.5)

$\theta_{x}(t, 0)=\theta_{x}(t, 1)=0$, (1.6)
$\phi(t, 0)=0$ , $\phi(t, 1)=\phi_{r}\geq 0$ , (1.7)

where $\rho_{l},$ $\rho_{r}$ and $\phi_{r}$ are given constants. Integrating (l.ld) and using the boundary
condition (1.7), we have an explicit formula of the electrostatic potential

$\phi(t, x)=\Phi[\rho](t, x)$

$:= \int_{0}^{x}\int_{0}^{y}(\rho-D)(t, z)dzdy+(\phi_{f}-\int_{0}^{1}\int_{0}^{y}(\rho-D)(t, z)dzdy)x$ . (1.8)

To construct a classical solution, assume the compatibility condition hold at
$(t, x)=(O, 0)$ and $(t, x)=(O, 1)$ . Namely,

$\rho_{0}(0)=\rho_{l}$ , $\rho_{0}(1)=\rho_{r}$ , (1.9a)
$\theta_{0x}(0)=\theta_{0x}(1)=0$ , (1.9b)

$m_{0x}(0)=m_{0x}(1)=0$ . (1.9c)

Moreover the initial data are supposed to satisfy a subsonic condition and positivity
of density and temperature

$\inf_{x\in\Omega}\rho_{0}>0$ , $\inf_{x\in\Omega}\theta_{0}>0$ , $\inf_{x\in\Omega}(\theta_{0}-\frac{m_{0}^{2}}{\rho_{0}^{2}})>0$.

We construct the solution to problem (1.1) and $(1.4)-(1.7)$ around the above initial
data $(\rho_{0},j_{0}, \theta_{0})$ to satisfy same condition:

$\inf_{x\in\Omega}\rho>0$ , (1.10a)

$\inf_{x\in\Omega}\theta>0$ , (1.10b)

$\inf_{x\in\Omega}(\theta-\frac{m^{2}}{\rho^{2}})>0$ . (1.10c)
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In Sections 3 and 4, we derive the drift-diffusion and the energy-transport models
by the limit procedures to make relaxation times $\tau_{m}$ and$/or\tau_{e}$ . For this purpose,
we introduce new variables

$t:= \frac{s}{\tau_{m}}$ , $j:= \frac{m}{\tau_{m}}$ , $\epsilon:=\tau_{m}^{2}$ , $\zeta:=\tau_{m}\tau_{e}$ , $\kappa_{0}:=\frac{\kappa}{\tau_{m}}$

and substitute these in (1.1). Then the heat-conductive hydrodynamic model is
rewritten as

$\rho_{t}+j_{x}=0$ , (l.lla)

$\epsilon j_{t}+(\epsilon\frac{j^{2}}{\rho}+\rho\theta)_{x}=\rho\phi_{x}-j$ , (l.llb)

$\rho\theta_{t}+j\theta_{x}+\frac{2}{3}(\frac{j}{\rho})_{x}\rho\theta-\frac{2}{3}\kappa_{0}\theta_{xx}=(\frac{2}{3}-\frac{\epsilon}{3\zeta})\frac{j^{2}}{\rho}-\frac{\rho}{\zeta}(\theta-\overline{\theta})$, (l.llc)

$\phi_{xx}=\rho-D$ . (l.lld)
The initial data to (1.11) follows from $(1.12a)$ :

$\rho(0, x)=\rho_{0}(x)$ , (1.12a)
$j(O, x)=j_{0}(x)$ $:=m_{0}/\tau_{m}(x)$ , (1.12b)

$\theta(0, x)=\theta_{0}(x)$ . (1.12c)

The boundary data to (1.11) is given by $(1.5)-(1.7)$ . The subsonic condition (1.10c)
is rewritten as

$\inf_{x\in\Omega}(\theta-\epsilon\frac{j^{2}}{\rho^{2}})>0$, (1.13)

which follows from the positivity of temperature (1.10b) for the suitably small mo-
mentum relaxation $\tau_{m}=\sqrt{\epsilon}$. The time global solvability of the above initial bound-
ary value problem is studied in Section 2.
Notation. For a nonnegative integer $l\geq 0,$ $H^{\iota}(\Omega)$ denotes the l-th order Sobolev
space in the $L^{2}$ sense, equipped with the norm $\Vert\cdot\Vert_{l}$ . We note $H^{0}=L^{2}$ and
$\Vert\cdot\Vert$ $:=\Vert\cdot||_{0}$ . $C^{k}([0, T];H^{l}(\Omega))$ denotes the space of the k-times continuously
differentiable functions on the interval $[0, T]$ with values in $H^{l}(\Omega)$ . $H^{k}(0, T;H^{l}(\Omega))$

is the space of $H^{k}$-functions on $(0, T)$ with values in $H^{\iota}(\Omega)$ . Moreover, $X,$ $\mathfrak{Y}$ and 3
denote the function spaces

$X_{i}^{j}([0,T]):= \bigcap_{k=0}^{i}C^{k}([0, T];H^{j+i-k}(\Omega))$ , $X_{i}([0, T]):=X_{i}^{0}([0, T])$ ,

$\mathfrak{Y}([0, T])$ $:=C^{1}([0, T];L^{2}(\Omega))\cap C^{0}([0, T];H^{2}(\Omega))\cap H^{1}(0, T;H^{1}(\Omega))$ ,
3 $([0, T])$ $:=C([0, T];H^{1}(\Omega))\cap L^{2}(0, T;H^{2}(\Omega))\cap H^{1}(0, T;L^{2}(\Omega))$

for nonnegative integers $i,j\geq 0$ , where $[\mu]$ denotes the largest integer which is less
than or equal to $\mu$ . For a nonnegative integer $k\geq 0,$ $\mathcal{B}^{k}(\overline{\Omega})$ denotes the space of the
functions whose derivatives up to k-th order are continuous and bounded over $\overline{\Omega}$.
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2 Heat-conductive hydrodynamic model
This section is devoted to $considering\sim$ the unique existence and the asymptotic
stability of a stationary solution $(\tilde{\rho},j, \theta,\tilde{\phi})$ to the heat-conductive hydrodynamic
model (1.11). Since the stationary solution is a solution independent of a time
variable $t$ , it satisfies a system of equations

$\tilde{j}_{x}=0$ , (2.la)
$S[\tilde{\rho},\tilde{j},\tilde{\theta}]\tilde{\rho}_{X}+\tilde{\rho}\tilde{\theta}_{X}=\tilde{\rho}\tilde{\phi}_{X}-\tilde{j}$ , (2.lb)

$\tilde{j}\tilde{\theta}_{x}-\frac{2}{3}\tilde{j}\tilde{\theta}(\log\tilde{\rho})_{x}-\frac{2}{3}\kappa_{0}\tilde{\theta}_{xx}=(\frac{2}{3}-\frac{\epsilon}{3\zeta})\frac{\tilde{j}^{2}}{\tilde{\rho}}-\frac{\tilde{\rho}}{\zeta}(\tilde{\theta}-\overline{\theta})$ , (2.lc)

$\tilde{\phi}_{xx}=\tilde{\rho}-D$ (2.ld)

with boundary condition $(1.5)-(1.7)$ . Here the strength of the boundary data
$\delta:=|\rho_{r}-\rho_{l}|+|\phi_{r}|$

plays a crucial role in the discussion about the unique existence and the asymptotic
stability of the stationary solution.

Many mathematicians study the unique existence and the asymptotic stability
of the stationary solution to the isentropic and the isothermal hydrodynamic models
(see [5, 7, 9, 10, 13]). In particular, the papers [7, 13] show the stability theorem
with non-flat doping profile. Recently, the authors in [15] extend the results in
[7, 13] to the heat-conductive hydrodynamic model. Precisely, we discuss the unique
existence and the asymptotic stability of the stationary solution to this model with
the Dirichlet boundary condition $\theta(t, 0)=\theta_{l}$ and $\theta(t, 0)=\theta_{l}$ in place the Neumann
boundary condition (1.6). The above stability results require the smallness of the
initial disturbance. In [17], we succeed in showing the stability theorem to the heat-
conductive hydrodynamic model without any smallness assumption on the initial
disturbance. Instead of it, the parameters $\epsilon$ and $\zeta$ are required to be suitably small
subject to the initial data. This result is summarized in Theorem 2.2. We state the
unique existence of stationary solution in Lemma 2.1.
Lemma 2.1. Let the doping profile and the boundary data satisfy conditions (1.3),
(1.5) and (1.7). For an arbitrary $\rho_{l}$ , there exits a positive constant $\delta_{0},$ $\zeta_{0}$ and $\eta_{0}$

such that if $\delta\leq\delta_{0}$ and $\epsilon<\zeta\leq\zeta_{0z}$ then there exists a unique stationary solution
$(\tilde{\rho},\tilde{j},\tilde{\theta},\tilde{\phi})\in \mathcal{B}^{2}(\overline{\Omega})\cross \mathcal{B}^{2}(\overline{\Omega})\cross \mathcal{B}^{3}(\overline{\Omega})\cross \mathcal{B}^{2}(\overline{\Omega})$ to (2.1) and $(1.5)-(1.7)$ , satisfying the
conditions (1.10c),

$\frac{1}{2}B_{m}\leq\tilde{\rho}\leq 2B_{M}$ , (2.2a)

$B_{m}$ $:= \min\{\rho_{\iota},$ $\rho_{r},\inf_{x\in\Omega}D(x)\}$ , $B_{M}$ $:= \max\{\rho\iota,$ $\rho_{r},$ $\sup_{x\in\Omega}D(x)\}$ ,

$su_{\frac{p}{\Omega}}|\tilde{\theta}-\overline{\theta}|x\in\leq\eta_{0}$ .
$\bigcap_{\iota}$

(2.2b)
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Theorem 2.2. Let $(\tilde{\rho},\tilde{j},\tilde{\theta},\tilde{\phi})$ be the stationary solution to the hydrodynamic model
(2.1). Suppose that the initial data $(\rho_{0},j_{0}, \theta_{0})\in H^{2}(\Omega)\cross H^{2}(\Omega)\cross H^{3}(\Omega)$ and the
boundary data $\rho\iota,$ $\rho_{r}$ and $\phi_{r}$ satisfy the conditions (1.5), (1.7), (1.9), (1.10a), (1.10b)
and (1.13). Then there exist positive constants $\delta_{0}$ and $\zeta_{0}$ such that if $\delta\leq\delta_{0}$ and $\zeta\leq$

$\zeta_{0}$ , there exist a positive constant $\epsilon_{0}$ , depending on $\zeta$ but independent of $\delta$ , such that if
$\epsilon\leq\epsilon_{0\prime}$ the initial boundary value problem $(1.5)-(1.7),$ $(1.11)$ and (1.12) has a unique
solution $(\rho,j, \theta, \phi)$ satisfying $\rho-\tilde{\rho},$ $j-\tilde{j}\in X_{2}([0, \infty))_{f}\theta-\theta,$ $\theta_{x}-\tilde{\theta}_{x}\in \mathfrak{Y}([0, \infty))$ ,
$\phi-\tilde{\phi}\in X_{2}^{2}([0, \infty))$ and the conditions (1.10a), (1.10b) and (1.13). Moreover, the
solution $(\rho,j, \theta, \phi)$ verifies the decay estimate

$\Vert(j-\tilde{j})(t)||_{1}^{2}+\Vert(\rho-\tilde{\rho}, \theta-\tilde{\theta})(t)\Vert_{2}^{2}$

$+\epsilon\Vert(\partial_{x}^{2}\{j-\tilde{j}\}, \partial_{x}^{3}\{\theta-\tilde{\theta}\})(t)\Vert^{2}+\Vert(\phi-\tilde{\phi})(t)\Vert_{4}^{2}\leq Ce^{-\alpha t}$ ,
where $C$ and $\alpha$ are positive constants depending on $\zeta$ but independent of $\delta,$ $\epsilon$ and $t$ .

3 Energy-transport model
The energy-transport model is formally obtained by letting the parameter $\epsilon$ to zero
in (1.11):

$\rho_{t}+j_{x}=0$ , (3.la)

$\rho\theta_{t}+j\theta_{x}+\frac{2}{3}(\frac{j}{\rho})_{x}\rho\theta-\frac{2}{3}\kappa_{0}\theta_{xx}=\frac{2}{3}\frac{j^{2}}{\rho}-\frac{\rho}{\zeta}(\theta-\overline{\theta})$, (3.lb)

$\phi_{xx}=\rho-D$ , (3.lc)

where the electric current is given by

$j=\rho\phi_{x}-(\theta\rho)_{x}$ . (3.ld)

We prescribe the initial and the boundary data (1.12a) and (1.12c) as well as $(1.5)-$
(1.7), respectively. This section statesjustification of this limit procedure rigorously.
Precisely, it is discussed that the solution to the heat-conductive hydrodynamic
model (1.11) converges to that to the energy-transport model (3.1) as $\epsilon$ tends to
zero.
Time global solvability. We introduce the results conceming the time global
solvability to the energy-transport model (3.1). Degond, G\’enieys and J\"ungel [3,
4$]$ analyze the general parabolic system coupled with the Poisson equation, which
covers the energy-transport model, over the multi-dimensional bounded domain with
the Dirichlet-Neumann mixed boundary conditions. They prove the unique existence
and the asymptotic stability of the stationary solution. These results, however,
assume uniform parabolicity. We in [17] obtain the same result without assuming
the uniform parabolicity even only for the one-dimensional problem. These results
are summarized in Lemma 3.1 and Theorem 3.2.
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Lemma 3.1. Let the doping profile and the boundary data satisfy conditions (1.3),
(1.5) and (1.7). For an arbitrary $\rho_{l}$ , there exits a positive constant $\delta_{0},$ $\zeta_{0}$ and $\eta_{0}$

such that if $\delta\leq\delta_{0}$ and $\zeta\leq\zeta_{0}$ , then there exists a unique stationary solution
$(\tilde{\rho},\tilde{j},\tilde{\theta},\tilde{\phi})\in \mathcal{B}^{2}(\overline{\Omega})\cross \mathcal{B}^{2}(\overline{\Omega})\cross \mathcal{B}^{3}(\overline{\Omega})\cross \mathcal{B}^{2}(\overline{\Omega})$ to the energy-transport model (3.1),
satisfying the condition (2.2),

Theorem 3.2. Let $(\tilde{\rho},\tilde{j},\tilde{\theta},\tilde{\phi})$ be the stationary solution to the energy-transport
model (3.1). Suppose that the initial data $(\rho_{0}, \theta_{0})\in H^{1}(\Omega)$ and the boundary data $\rho_{l}$ ,

$\rho_{r}$ and $\phi_{r}$ satisfy (1.5), (1.7), (1.9a), (1.10a) and (1.10b). Then there exist positive
constants $\delta_{0}$ and $\zeta_{0}$ such that if $\delta\leq\delta_{0}$ and $\zeta\leq\zeta_{0}$ , the initial boundary value prob-
lem $(1.5)-(1.7),$ $(1.12a),$ $(1.12c)$ and (3.1) has a unique solution $(\rho,j, \theta, \phi)$ satisfying
$\rho-\tilde{\rho},$ $\theta-\tilde{\theta}\in 3([0, \infty))\cap \mathfrak{Y}_{loc}((0, \infty)),$ $j-\tilde{j}\in C([0, \infty);L^{2}(\Omega))\cap 3_{loc}((0, \infty))$ ,
$\phi-\tilde{\phi}\in C([0, \infty);H^{3}(\Omega))\cap H^{1}([0, \infty);H^{2}(\Omega))$ ; the positivity (1.10a) and (1.10b).
Moreover, it verifies $\sqrt{t}\rho_{xt},$ $\sqrt{t}\theta_{xt}\in L^{2}(0, \infty : L^{2}(\Omega))$ and the decay estimates

$\Vert(j-\tilde{j})(t)\Vert^{2}+\Vert(\rho-\tilde{\rho}, \theta-\tilde{\theta})(t)\Vert_{1}^{2}+\Vert(\phi-\tilde{\phi})(t)\Vert_{3}^{2}\leq Ce^{-\alpha t}$ ,

il $(j_{X}- \tilde{j}_{x})(t)\Vert^{2}+\frac{t}{\zeta}\Vert(\theta-\tilde{\theta})(t)\Vert_{1}^{2}+t\Vert(\rho-\tilde{\rho}, \theta-\tilde{\theta})(t)||_{2}^{2}\leq Ce^{-\alpha t}$ ,

where $C$ and $\alpha$ are positive constants independent of $\zeta,$
$\delta$ and $t$ .

Relaxation limit. For the full space $\mathbb{R}$ , the relaxation limit from the hydrodynamic
model to the energy-transport model is justified by Ali, Bini and Rionero [1]. They
assume that the initial data is close enough to the special stationary solution, $\tilde{j}=0$

and $\tilde{\theta}=\overline{\theta}$ . We justify this relaxation limit for the large initial data under the
physically admissible boundary condition.

Theorem 3.3. Suppose that the initial data $(\rho_{0},j_{0}, \theta_{0})\in H^{2}(\Omega)\cross H^{2}(\Omega)\cross H^{3}(\Omega)$

and the boundary data $\rho_{l},$ $\rho_{r}$ and $\phi_{r}$ satisfy the conditions (1.5), (1.7), (1.9), (1.10a),
(1.10b) and (1.13). Then there exist positive constants $\delta_{0}$ and $\zeta_{0}$ such that if $\delta\leq\delta_{0}$

and $\zeta\leq\zeta_{0}$ , there enists a positive constant $\epsilon_{0}$ , depending on $\zeta$ but independent of $\delta$ ,
such that if $\epsilon\leq\epsilon_{0}$ , the time global solution $(\rho_{\zeta}^{\epsilon},j_{\zeta}^{\epsilon}, \theta_{\zeta}^{\epsilon}, \phi_{\zeta}^{\epsilon})$ for the problem $(1.5)-(1.7)$ ,
(1.11) and (1.12) converges to the time global solution $(\rho_{\zeta}^{0},j_{\zeta}^{0}, \theta_{\zeta}^{0}, \phi_{\zeta}^{0})$ for the problem
$(1.5)-(1.7),$ $(1.12a),$ $(1.12c)$ and (3.1) as $\epsilon$ tends to zero. Precisely, the following
estimates hold for an arbitrary $t\in(0, \infty)$ .

$\Vert(\rho_{\zeta}^{\epsilon}-\rho_{\zeta}^{0}, \theta_{\zeta}^{\epsilon}-\theta_{\zeta}^{0})(t)\Vert_{1}^{2}+\Vert(\phi_{\zeta}^{\epsilon}-\phi_{\zeta}^{0})(t)\Vert_{3}^{2}\leq C\epsilon^{\gamma}$, (3.2)
$\Vert(j_{\zeta}^{\epsilon}-j_{\zeta}^{0})(t)\Vert^{2}\leq\Vert(j_{0}-j_{\zeta}^{0})(0)\Vert^{2}e^{-t/\epsilon}+C\epsilon^{\gamma}$ , (3.3)

$|I(\partial_{x}^{2}\{\rho_{\zeta}^{\epsilon}-\rho_{\zeta}^{0}\}, \partial_{x}^{1}\{j_{\zeta}^{\epsilon}-j_{(}^{0}\}, \partial_{x}^{2}\{\theta_{\zeta}^{\epsilon}-\theta_{(}^{0}\}, \partial_{x}^{4}\{\phi_{\zeta}^{\epsilon}-\phi_{\zeta}^{0}\})(t)\Vert^{2}\leq C\epsilon^{\gamma}(t^{-2}+1)$ , (3.4)

where $\gamma$ and $C$ are positive constants depending on $\zeta$ but independent of $\epsilon,$

$\delta$ and $t$ .
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Remark 3.4. Three initial conditions in (1.12) are required for (1.11) while we
prescribe two initial conditions for (3.1) only. On the other hand, the initial value
$j_{\zeta}^{0}(0, x)$ to (3.1) is explicitly written as

$j_{\zeta}^{0}(0, x)=(-(\theta_{0}\rho_{0})_{x}+\rho_{0}\{\Phi[\rho_{0}]\}_{x})(x)$. (3.5)

thanks to (1.8) and (3.ld). Here it is not necessary that the initial data $j_{0}(x)$ equals
(3.5). Hence, in the justification of the relaxation limits, the difference between
$j_{0}(x)-j_{\zeta}^{0}(0, x)$ gives rise to the initial layer. However, by the estimate (3.3), the
layer is shown to decay as time $t$ tends to infinity $and/or$ the parameter $\epsilon$ tends to
zero.

4 Drift-diffusion model
Letting the parameter $\zeta$ tend to zero in (3.1) or letting the parameters $\epsilon$ and $\zeta$ tend
to zero in (1.11), we have the drift-diffusion model

$\rho_{t}+j_{x}=0$ , (4.la)
$\phi_{xx}=\rho-D$ , (4.lb)

where the electric current is given by

$j=\rho\phi_{x}-(\overline{\theta}\rho)_{x}$ . (4.lc)

The initial and the boundary data to (4.1) are (1.12a) as well as (1.5) and (1.7),
respectively. We state the results on rigorous justification of the above two limits.
To this end, we begin brief discussion about the time global solvability of the drift-
diffusion model (4.1).

Time global solvability. Mock [11, 12] proves the existence and the asymptotic
stability of the stationary solution over the multi-dimensional bounded domain with
a special boundary condition, which does not allow any electron flow through the
boundary. After that, Gajewski and Gr\"oger in [6] obtain the same results in adopting
more general boundary conditions, which covers the case electric current permeates
the boundary. However, the research in [6] analyze the special stationary solution,
in which no electron flows. We extend it to the general stationary solution even
only over the one-dimensional bounded domain. These results are summarized in
the next two lemmas.

Lemma 4.1. Let the doping profile and the boundary data satisfy conditions (1.3),
(1.5) and (1.7). Then there exists a unique stationary solution $(\tilde{\rho},\tilde{j},\tilde{\phi})\in \mathcal{B}^{2}(\overline{\Omega})$ to
the drifl-diffusion (4.1), satisfying the condition (1.10a).
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Lemma 4.2. Let $(\tilde{\rho},\tilde{j},\tilde{\phi})$ be the stationary solution to the drift-diffusion (4.1).
Suppose that the initial data $\rho_{0}\in H^{1}(\Omega)$ and the boundary data $\rho_{l},$ $\rho_{r}$ and $\phi_{r}$

satisfy (1.5), (1.7), (1.9a) and (1.10a). Then there exists a positive constant $\delta_{0}$

such that if $\delta\leq\delta_{0}$ , the initial boundary value problem (1.5), (1.7), (1.12a) and
(4.1) has a unique solution $(\rho,j, \phi)$ satisfying $\rho-\tilde{\rho}\in 3([0, \infty))\cap \mathfrak{Y}_{loc}((0, \infty))$ ,
$j-j\in C([0, \infty);L^{2}(\Omega))\cap \mathfrak{Y}([0, \infty)),$ $\phi-\tilde{\phi}\in C([0, \infty);H^{3}(\Omega))\cap H^{1}(0, \infty;H^{2}(\Omega))$

and the positivity (1.10a). Moreover it verifies the estimate

$\Vert(\rho-\tilde{\rho})(t)\Vert_{l}^{2}+\Vert(j-\overline{j})(t)\Vert^{2}+\Vert(\phi-\tilde{\phi})(t)\Vert_{3}^{2}\leq Ce^{-\alpha t}$ ,

where $C$ and $\alpha$ are positive constants independent of $t$ and $\delta$ .

Relaxation limit. Chen, Jerome and Zhang [2] justify the relaxation limit from
the hydrodynamic model to the drift-diffusion model with the flat doping profile and
the Dirichlet zero boundary condition on electric current, which makes no current
$\tilde{j}=0$ . However the typical doping profile have steep slops. Thus we study this limit
under the physically admissible conditions. The result is summarized in Corollary
4.5. The corollary immediately follows from Theorem 3.3, once we show the next
theorem, concerning the relaxation limit from the energy-transport model (3.1) to
the drift-diffusion model (4.1).

Theorem 4.3. Suppose that the initial data $(\rho_{0}, \theta_{0})\in H^{1}(\Omega)$ and the boundary
data $\rho_{l},$ $\rho_{r}$ and $\phi_{r}$ satisfy (1.5), (1.7), (1.9a), (1.10a) and (1.10b). Then there
exist positive constants $\delta_{0}$ and $\zeta_{0}$ such that if $\delta\leq\delta_{0}$ and $\zeta\leq\zeta_{0}$ , then the time
global solution $(\rho_{\zeta}^{0},j_{\zeta}^{0}, \theta_{\zeta}^{0}, \phi_{\zeta}^{0})$ for the problem $(1.5)-(1.7),$ $(1.12a),$ $(1.12c)$ and (3.1)
converges to the time global solution $(\rho_{0}^{0},j_{0}^{0}, \phi_{0}^{0})$ for the problem (1.5), (1.7), (1.12a)
and (4.1) as $\zeta$ tends to zero. Precisely, the following estimates hold for an arbitrary
$t\in[0, \infty)$ .

$\Vert(\rho_{\zeta}^{0}-\rho_{0}^{0})(t)\Vert^{2}+\Vert(\phi_{(}^{0}-\phi_{0}^{0})(t)\Vert_{2}^{2}\leq C\zeta^{\gamma}$ , (4.2)
$\Vert(\theta_{\zeta}^{0}-\overline{\theta})(t)\Vert^{2}\leq C\Vert\theta_{0}-\overline{\theta}\Vert^{2}e^{-\nu t/\zeta}+C\zeta^{\gamma}$, (4.3)

$\Vert(\{\rho_{\zeta}^{0}-\rho_{0}^{0}\}_{x}, \{\theta_{\zeta}^{0}\}_{x},j_{\zeta}^{0}-j_{0}^{0})(t)||^{2}\leq C\zeta^{\gamma}(1+t^{-1})$ , (4.4)

where $\nu,$ $\gamma$ and $C$ are positive constants independent of $\zeta,$
$\delta$ and $t$ .

Remark 4.4. As we can not impose the initial data (1.12c) for (4.1), the difference
$\theta_{0}(x)-\overline{\theta}$ gives rise to the initial layer similarly as in the relaxation limit from (1.11)
to (3.1). The estimate (4.3) shows the layer decays as time $t$ tends to infinity $and/or$

the pammeter $\zeta$ tends to zero.

Theorems 3.3 and 4.3 immediately give the next corollary, which asserts the
justification of the relaxation limit from the hydrodynamic model (1.11) to the
drift-diffusion model (4.1).
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Corollary 4.5. Assume the same conditions as in Theorems 3.3 and 4.3. Then
the time global solution $(\rho_{\zeta}^{\epsilon}, j_{\zeta}^{\epsilon}, \theta_{\zeta}^{\epsilon}, \phi_{\zeta}^{\epsilon})$ for the problem $(1.5)-(1.7),$ $(1.11)$ and (1.12)
converges to the time global solution $(\rho_{0}^{0},j_{0}^{0},\overline{\theta}, \phi_{0}^{0})$ for the problem (1.5), (1.7), (1.12a)
and (4.1) as $\epsilon$ tends to zero. Precisely, the following estimates hold for an arbitrary
$t\in(0, \infty)$ .

$|1(\rho_{\zeta}^{\epsilon}-\rho_{0}^{0})(t)\Vert^{2}+\Vert(\phi_{\zeta}^{\epsilon}-\phi_{0}^{0})(t)\Vert_{2}^{2}\leq\overline{C}\zeta^{\overline{\gamma}}+C\epsilon^{\gamma}$ ,
$\Vert(\theta_{\zeta}^{\epsilon}-\overline{\theta})(t)\Vert^{2}\leq\overline{C}\Vert\theta_{0}-\overline{\theta}\Vert^{2}e^{-\overline{\nu}t/\zeta}+\overline{C}\zeta^{\overline{\gamma}}+C\epsilon^{\gamma}$,

$|1(j_{\zeta}^{\epsilon}-j_{0}^{0})(t)||^{2}\leq\overline{C}\Vert(j_{0}-j_{0}^{0})(0)\Vert^{2t/\epsilon}\Vert(\{\rho_{\zeta}^{\epsilon}-\rho_{0}^{0}\}_{x},\{\theta_{\zeta}^{\epsilon}\}_{x})(t)\Vert^{2}\leq^{\frac{e^{-}}{C}}\zeta^{\overline{\gamma}}(:_{+t^{-1})+C\epsilon^{\gamma}}^{\overline{C}\zeta^{\overline{\gamma}}(1+t^{-1}).+C\epsilon^{\gamma}}$

’

Here $\gamma$ and $C$ are positive constants depending on $\zeta$ but independent of $\epsilon,$

$\delta$ and $t$ .
Also $\overline{\nu},$ $\overline{\gamma}$ and $C$ are positive constants independent of $\epsilon,$

$\zeta,$
$\delta$ and $t$ .

5 Isothermal hydrodynamic model
By assuming the temperature $\theta$ is constant in (1.1), we have the isothermal hydro-
dynamic model

$\rho_{t}+j_{x}=0$ , (5.la)

$\epsilon j_{t}+(\epsilon\frac{j^{2}}{\rho}+K\rho)_{x}=\rho\phi_{x}-j$, (5.lb)

$\phi_{xx}=\rho-D$ . (5.lc)

The initial and boundary data are (1.12a) and (1.12b) as well as (1.5) and (1.7),
respectively. This section gives the brief survey on the results in [16]. Precisely,
we study the relaxation limit from the isothermal hydrodynamic model (5.1) to the
drift-diffusion model (4.1).

Time global solvability. The asymptotic stability of the stationary solution
are shown with the non-flat doping profile in [7, 13]. These two results assume
the smallness of the initial disturbance. We obtain the same result without any
smallness assumption on the initial disturbance provided that the parameter $\epsilon$ is
sufficiently small subject to initial data. It is summarized in Theorem 5.2. The
unique existence of the stationary solution is stated in Lemma 5.1.

Lemma 5.1. Let the doping profile and the boundary data satisfy conditions (1.3),
(1.5) and (1.7). Then there exists a positive constant $\delta_{0}$ such that if $\delta\leq\delta_{0}$ , the
isothermal hydrodynamic model has a unique stationary solution $(\tilde{\rho},\tilde{j},\tilde{\phi})\in \mathcal{B}^{2}(\overline{\Omega})$

satisfying the conditions (1.10a) and $\inf(K-\epsilon\tilde{j}^{2}/\tilde{\rho}^{2})>0$ .
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Theorem 5.2. Let $(\tilde{\rho},\tilde{j},\tilde{\phi})$ be the stationary solution to the isothermal hydrody-
namic model (5.1). Suppose that the initial data $(\rho_{0},j_{0})\in H^{2}(\Omega)$ and the boundary
data $\rho_{l},$ $\rho_{r}$ and $\phi_{f}$ satisfy (1.5), (1.7), (1.9a), (1.9c), (1.10a) and $\inf(K-\epsilon\tilde{j}^{2}/\tilde{\rho}^{2})>0$ .
Then there exist positive constants $\delta_{0}$ and $\epsilon_{0}$ such that if $\delta\leq\delta_{0}$ and $\epsilon\leq\epsilon_{0}$ , the
initial boundary value problem (1.5), (1.7), (1.12a), (1.12b) and (5.1) has a unique
solution $(\rho,j, \phi)$ in the space $X_{2}([0, \infty))$ satisfying (1.10a) and $\inf(K-\epsilon j^{2}/ro^{2})>0$ .
Moreover, the solution $(\rho,j, \phi)$ verifies the additional regularity $\phi-\tilde{\phi}\in X_{4}^{2}([0, \infty))$

and the decay estimate

$|1(\rho-\tilde{\rho})(t)$ i12 $+\Vert(i-\tilde{i})(t)\Vert_{1}^{2}+\Vert\sqrt{\epsilon}(i-\tilde{i})_{xx}(t)\Vert^{2}+\Vert(\phi-\tilde{\phi})(t)\Vert_{4}^{2}\leq Ce^{-\alpha t}$ ,

where $C$ and $\alpha$ are positive constants independent of $t,$ $\delta$ and $\epsilon$ .

Relaxation limit. The relaxation limit from the isothermal hydrodynamic model
to the drift-diffusion model is often investigated (for example see $|2,8,16,18]$ ).
Especially, we in [16] justify this limit of the solution with the initial layer for the
large initial data.

Theorem 5.3. Assume same conditions as in Theorem 5. 2. Then there exist posi-
tive constants $\delta_{0}$ and $\epsilon_{0}$ such that if $\delta\leq\delta_{0}$ and $\epsilon\leq\epsilon_{0}$ , then the time global solution
$(\rho^{\epsilon}\}j^{\epsilon}, \phi^{\epsilon})$ for (1.5), (1.7), (1.12a), (1.12b) and (5.1) converges to the time global
solution $(\rho^{0},j^{0}, \phi^{0})$ for (1.5), (1.7), (1.12a) and (4.1) as $\epsilon$ tends to zero. Precisely,
there exists a positive constant $\gamma$ such that the following estimates hold.

$\Vert(\rho^{\epsilon}-\rho^{0})(t)\Vert_{1}^{2}+\Vert(\phi^{\epsilon}-\phi^{0})(t)\Vert_{3}^{2}\leq C\epsilon^{\gamma}$,
$\Vert(j^{\epsilon}-j^{0})(t)\Vert^{2}\leq||(j^{\epsilon}-j^{0})(0)\Vert^{2}e^{-t/\epsilon}+C\epsilon^{\gamma}$ ,

$\Vert(\partial_{x}^{2}\{\rho^{\epsilon}-\rho^{0}\}, \partial_{x}^{1}\{j^{\epsilon}-j^{0}\}, \partial_{x}^{4}\{\phi^{\epsilon}-\phi^{0}\})(t)\Vert^{2}\leq C\epsilon^{\gamma}(t^{-1}+1)$

for an arbitrary $t\in(0, \infty)$ , where $C$ is a positive constant independent of $\epsilon,$

$\delta$ and
$t$ .
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