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‘The aim of this paper is to sketch our ideas of a simple ordinal-free
proof of the cut-elimination theorem for a subsystem of II}-analysis
with w-rule.

The aim of this paper is to sketch our ideas of a simple ordinal-free proof
of the cut-elimination theorem for a subsystem of I1}-analysis with w-rule.

The motivation is that use of heavy ordinal notation systems sometimes
obscures our intuitive understanding of cut-elimination theorems. In the
case of predicative systems, it is easy to understand why the cut-elimination
procedure terminates. For example, the proof of the cut-elimination the-
orem for PA with w-rule proceeds by induction on cut-degree. But the
matter is not very transparent in the case of impredicative systems. Our
proof of the cut-elimination theorem for a subsystem of IIi-analysis with
w-rule proceeds just by transfinite induction on the height of a derivation.
Moreover our proof involves only reasoning about well-founded trees.

The present paper consists of 5 sections. After recalling basic definitions
in section 1, we introduce infintary systems Blg, BI? (section 2). BI{? is
just cut-free arithmetic with w-rule and Mints’s “Repetition Rule”. BIi2
is obtained by adding cut-rule, a rule for second-order universal quantifier,
and Buchholz’s €2, Q-rules to BIf)z. In section 3 we define operators R, &,
and &, on derivations in BI?. Moreover we define the collapsing operator
Do which eliminates SALV x 4. Finally we define the substitution operator
SX.

In section 4 we introduce BIT, which is a subsystem of IIi-analysis. BI;
is obtained by adding Ra, E, E,,, Do, Suby . These rules correspond to op-
erations R, £, £, Do, and Si¥ respectively. The idea of introducing these



devices is due to Buchholz[Buc91] to give a finite term rewriting system for
continuous cut-elimination.

In section 5 we sketch our ideas of an ordinal-free proof of the cut-
elimination theorem for BI;. We define an embedding map g from deriva-
tions in BI; into the derivations in BI{ (5.1). Next we define for each
derivation d in BI; functicns tp(d) and d[¢] (5.2). Finally we explain our
ideas of an ordinal-free proof of the cut-elimination theorem for BI; (6.3).
Our main observation is that g(r(d)) is a prope: subderivation of g(d) if

r(d) can be obtained from d by the proof-theoretic reduction for derivations

in BIll

Bl,:d - rd)

i o
BIY : g"(d) —— ¢"(r(d))
where g*(d) > g*(r(d)) means that the height of g*(d) is strictly less

than the height of g*(r(d)). Therefore the cut-elimination theorem for BI;
is proved by transfinite induction on |d| (the height of d).

1 Preliminaries

First we define a language L which is the formal language of all systems
considered below.

Definition 1 Language L

1. Ois a term.
2. If t is a term, then S(t) is a term.

3. If R is an n-ary predicate symbol for an mn-ary primitive recursive
relation, and t,...,t, are terms, then R(ty,...,t,) is a formula. If X
is unary predicate variable, and ¢ is a term, then X (t) is a formula.
These formulas are called atomic formulas.

4. If A is an atomic formula, then —A is a formula. A and —A where A
is atomic are called literals.

5. If A and B are formulas, then A A B, AV B are formulas.
6. If A(0) is a formula. then VzA(z), and 3zA(x) are formulas.

7. If A is formula, and .4 does contain no second order quantifier and no
predicate variable except X, then VX A and 3X A are formulas.



If A is a formula which is not atomic, then its negation —A is defined using
De Morgan’s laws. The set of true literals is denoted as TRUE. T denotes
an expression Ax.A where A(0) is a formula (called abstraction). Formulas
which does not contain any second order quantifier are called arithmetical.

Remark 1 By the restriction, A(X) is arithmetical if VX A(X), or 3IX A(X)
is a formula.

Definition 2 rk(A)

1. 7k(A) :=01if A is a literal , VX A(X), or IXA(X).
2. rk(AA B) :==rk(AV B) = sup(rk(A),rk(B)) + 1.
3. rk(vVzA(x)) := rk(3xA(z)) = rk(A(0)) + 1.

Remark 2 We remark that rk(4) = 0 if 4 is VX A(X), or IXA(X).

2 The Systems BI{, BI}

We define BI$, BIY using Buchholz’s notation in [Buc01]. Only the minor
formulas which occur in the premises of the rules, and the principal formulas
which occur in the conclusions of the rules are explicitly shown. Any rule
below is supposed to be closed under weakening, and contains contraction.

Let I be an inference symbol of a system. Then we write A([), and |I| in
order to indicate the set of principal formulas of I, and the index set of I asin
[Buc01], respectively. Moreover, |J;¢(/(Ai(I)) denotes the set of the minor
formulas of I. If d = I(d;)is), then d; denotes the subderivation of d indexed
by 4. If d is a derivation, I'(d) denotes its last sequent. Eigenvariables may
occur free only in the premises, but not in the conclusions.

Definition 3 The systems BI}, B}

The inference symbols of BIf are
(Axa) A where A = {A}< TRUEor A={C,~C}

Ao A Ay

k
(Aaonar) Ao A A, (Viaova,) VA where k € {0,1}

...A(z/n)... foralln A(z/k)
(Moo (z/n) o ralnew (vng) BZA

where k € w



¢
(Rep)g

The inference symbols of BISI2 are obtained by adding the following infer-
ence symbols to those of BIf.

- . A(Y
(Cutp) 4 -4 ( /\3/ ) 93((—;42 where Y is an eigenvariable
LAYAR) (g e VX A(X)))
(Q-vxa) VXA

. AY) AV (g e VX AX)))

(x4 p where Y is an eigenvariable
with
L ATSE™Y = T(d)\ {A(X)},
2. T'(d) is arithmetical,
3. WX A(X)|:= {(d. X)| d € BIf, X ¢ FV(A[;$™)) }, and
4. ¢ =(d. X).

3 Cut-elimination Theorem for BI

Definition 4 dg(I),dg(d)

Let I be an inference symbol, and d be a derivation in BI;. Then dg(I),
and dg(d) are defined by

1. dg(I) :=rk(C)+1if I = Cutc.
2. dg(I) := 0 otherwise.
3. dg(I(d-)re)) = sup({dg(I)} U {dg(d,)|r € |I]}).

We write d F,, T if I'(d) = T, and dg(d) < m. Then we can prove the
following theorems.

Theorem 1 There ezists an operator Rg on derivations in BI! such that

Ifdo b T,C, dy by T, =C, and 7k(C') < m, then Re(do,d1) Fm T.



Theorem 2 There is an operator £ on derivations in BI¥ such that
If dbpqq T, then £(d) b, T

Theorem 3 There is an operator £, on derivations in B such that
Ifdk, T, then &£,(d) ¢ T.

Theorem 4 There is an operator Dy on derivations in BI§2 such that

Ifdo T, and T is arithmetical, then BIY 3 Dg(d) - T.

Corollary 1 Ifd e BI? and I'(d) is arithmetical, then there exists d’ such
that d’ € BIS.

Theorem 5 There is an operator S such that

If BIY 5 d + T, then BI§ 5 S¥ (d) - T[X/T].

4 The Systems BI;.BI;

We define BI;, BI;. Eigenvariables may occur free only in the premises,
but not in the conclusions.

Definition 5 The systems BI, BL,
The inference symbols of BI{ are
(Axa) A where A = {A} C TRUEor A= {C,-C}

Ap A k Ak
ANaonad) Ao nd,  Vaovay) gy a; Where k€ {01}

.. A(z/n)... foralln € w A(z/k) ’

(Aves) vz A (ngA) 374 where k € w
- AY . ~A(X/T)
(Avxa) 7%—}% where Y is an eigenvariable (VZVXA) T

A, -A
(Cuta) =5



The inference symbols of BI; are obtained by adding the following infer-
ence symbols to those of BIT .

= ¢
ROSFE (B

¢ ¢
(E.)g  (Do)g

L
IX/T)

(Subd)

Remark 3 These rules E, E_, Doy, Sub:}' , Rc correspond to the operations
£.£.,Do.S83,Rc in the previous section.

5 Cut-elimination Theorem for BI;

In this section, we sketch our idea of an ordinal-free proof of the cut-
elimination theorem for BI; using one for BI{.

We will define an embedding function g from derivations in BI; into the
derivations in BI(5.1). Next we define functions tp(d), d[i] where d is a

derivation in BI;(5.2). Finally we explain our idea of an ordinal-free proof
of the cut-elimination theorem for BI;(5.3).

5.1 Interpretation of BI, in BI}
Definition 6 Embedding fuction g

Let d be a derivation in BI;. Then we define the function g by induction
on d as follows.

P

. 9(Axa) = Axa.

2. 9(Aagra, (dord1)) = A agna, (9(do). 9(dr)).
3. 9(Vhova, (o)) = Vi, (9(do))-

4. 9(Avza(dn)new) = Avea(9(dn))new).

5. 9(V5,4(do)) = V5, 4(9(do)).

6. 9(Avx.a(do)) = Avx a(g(do))-

7. 9(VEyx4(do)) := QR 41)(SE (dg). 9(do)))qevx a(x) Where (dg, X) =
g € VX A(X)|.



8. g(Cutc(do,d1)) = Cutc(g(do), g(dr)).
9. g(E(do)) := E(g(do))-

10. g(Ew(do)) := £,(g(do))-

11. g(Do(do)) :=

(a) Do(g(dp)) if g(dy) satisfies the conditions in the collapsing theo-
rem.

(b) g(do) otherwise.
12. g(Sub¥ (do)) :=

(a) S (g(do)) if g(do) satisfies the conditions in the substitution the-
orem.

(b) g(do) otherwise.

13. g(Rc(do,d1)) := Re(g(do), g(d1))-
Remark 4

1. Let d = VZ:VX A( x(do). Then g(d) is the following derivation:

Ay A(X)

VX :
A, AT) 5T T-A@),VXAX) o
T A, WXAX) AT
T, VXA(X) :

2. g replaces rules E, E,, Dy, Sub¥, Rc by the corresponding oper-
' ations £, &,, Do, Si’f, Rc respectively. But it preserves Cuto :
g(Cutc(do,d1)) = Cutc(g(do), g(d1)).

Definition 7 dg(d)

Let d be a derivation in BI;. Then dg(d) is defined by
1. dg(d) 1= max(rk(A(T)), dg(do)) if T = VIyxacx)-
2. dg(d) := maz(rk(C) + 1,dg(do), dg(d1)) if I = Cutc.
3. dg(d) := dg(do)-1if I = E.

4. dg(d) :=0if I = E,.



5. dg(d) := maz(rk({). dg(dp), dg(dy)) f I = Re.
6. dg(I(d;),¢ 1)) = sup{dg(d.)|T € |I|} otherwise.

We write d t,, ' if I'(d) = T, and dg(d) < m. Next we define the
notion of proper derivations such that the operations D,,, and S:,)f have to

be applied to only subderivations satisfying the conditions in Theorems 4,
5 respectively.

Definition 8 A derivation d in Bl is called proper if

1. for each subderivation Dqg(ho) of d, dg(ho) = 0, and I'(hg) is arith-
metical,

2. for each subderivation Sub3 (h) of d, h is of the form Dg(ho).

Theorem 6 Let d be o proper derivation of I in BI,. Then g(d) Fgga) T-

5.2 Definition of tp(d), and dfi]

Now we can define tp(d), and d[¢] where i € |tp(d)|* for each proper
derivation d € BI; such that

1. tp(d) is the last inference symbol of g(d).
2. d[t] is also a proper derivation in BI;.
3. g(d[i]) is the i-th immediate subderivation of g(d).

In fact the situation is more complicated because for d with tp(d) = Q or
Q) elements of the index set may be themselves derivations.

Definition 9 |[VXA|*,|I|*.g(q)

We define [VX A[*, |T|* where [ is an inference symbol of BI{ and g{y) where
q=(d,X) € VX A|* as follows:

1. VX A|* := {(d, X)| dis of the form Dy(d’) where d is a proper derivation in BI;, X ¢

FV(AL X))} with

() AL =T(d)\ {A(X)}, and
(b) AY;\;;?)(X) is arithmetical.

2. |Qowx|* := VX A",

3. 19 x| = {0} U VX A",



4.

5.

" = |I] if T # Q_yx or QX

9(q) := (9(d), X) where ¢ = (d, X) € VX A|*.

Definition 10 tp(d), d[i]

By primitive recursion on d, we define tp(d) € BI{, and derivations d[i]
where i € [tp(d)|*. We assume that separation of eigenvariables: all eigen-
variables in d are distinct and none of them occurs below the inference in
which it is used as an eigenvariable.

1.

2.

10.

11.

12.

13.

d = Axa : tp(d) i= Axa.

d = Asgna, (o d1) s tp(d) = N gopa,» dli) i= .
d =\, va,(do) : tp(d) == % 4., d[0] == do.

d = Avza(di)icw : tp(d) = Ay 4, dli] := ds.

d = V4, 1(do) : tp(d) == V&_ 4, d[0] := do.

d = Ayxa(do) : tp(d) := Ayxa.d[0] := do.

s d= VZVXA(X)(dO) s tp(d) = Q-vxa,d[(h, X)] := RA(T)(SUb¥(h),d0)~

d = Cuta(de,dr) : tp(d) := Cuta,d[t] := d;.

d = E(dy) :
(a) tp(do) = Cutc : tp(d) := Rep, d[0] := Rc(E(do[0]), E(do[1])).
(b) otherwise: tp(d) = tp(do), d[i] ;== E(do[i]).

d=E,(dy) :

(a) tp(dy) = Cutc : tp(d) := Rep, d[0] := E"*1(Cutc(EL(do[0}), Eu(do[1])))
where rk(C) = n, and E™*! denotes n + 1-times applications of
E-rule.

(b) otherwise: tp(d) := tp(dp), d[i] := E. (do[}).
d = Do(dp) :

(a) tp(do) = QY : tp(d) := Rep, d[0] := Do(do[(Do(do[0]), Y)])-
(b) otherwise: tp(d) := tp(dp), d[i] := Do(doli])-

d = Sub¥ (do) : tp(d) := tp(do)[X/T], d[i] := SubF (doli]).

d = Ra(do,dy) :
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(a) A ¢ Altpldy) - tp(d) = tp(do), dli] == Ra(dol]. dy).
(b) —A ¢ A(tp(di)) : tp(d) := tp(d1),d[i] := Ra(do,d:1[i]).
(c) A e A(tp(dg)), and ~A € A(tp(dy)) :

i. tp(do) = Axa : tp(d) := Rep, and d[0] := d,.

ii. tp(d1) = Axa : tp(d) := Rep, and d[0] := d,.

iii. A=AgAA;:tp(do) = Ay pn, and tp(dr) = Vl—c\on‘wA; for
some k € {0,1}. tp(d) := Cuta,,d[0] := Ra(dolk],d1),d[1] :=
R(do,d1[0]).

iv. A= AgV A, VzA, or 3z A : similarly to the case of Ag A A;.

V. é = VXA : tp(dy) = /\\y/'xm and tp(di1) = Q-vxa. tp(d) :=
Qyx4,d[0] := Ryxa(do[0],d1),dlg] ;= Rvxa(do,di[q]) for
g € VXA~

vi. A =3X 4 : similarly to the case of VX A.

Theorem 7 Assume that BI; > d b, T is a proper derivation, and i €
itp(d)|*. Then the following properties hold:

1. d[i] is also a proper derivation in BI;.
2. dfi) b T, A (tp(d)).
3. dg(dli]) < dg(d).

4. If tp(d) = Cut 4, then rk(A) < dg(d).

5.3 Cut-elimination Theorem for BI;

In this section, we explain our ideas of the cut-elimination theorem for
BI,. Let red be a suitable reduction relation between derivations in BI;.
Instead of defining red explicitly, we explain it using examples. Define
|T(ds)ieir|| := sup(|di]+1);e)1;- Then |d| < |d'| if d is a proper subderivation
d.

Lemma 1 Assume thatd = E(Cutc(dg,d1)), andr(d) = Rc(E(do), E(dy)).
Then |g(a)| > |g(r(d))].

Proof. g(r(d)) = Rc(E(g(do)),E(g(d1))). On the other hand g(d) =

9(E(Cutc(do,d1))) = E(Cutc(g(do), g(d1))) = Rep(Rc(E(g(do)), E(g(d1))))
(note that g preserves Cutc). Therefore |g(d)| > |g(r(d))|. O

Next we see |g(d)| > |g(r(d))| in the case of axiom-reduction.
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Lemma 2 Assume that d = Rc(dp, dy), do is an axiom C,—=C, and r(d) =
dy. Then |g(d)] > |g(r(d))I.

Proof.

9(Rc(do,d1)) = Re(9(do), 9(d1))) = Ro(Axc,-c,9(d1)) = Rep(g(dy)).
Therefore |g(d)| > |g(r(d))]. O

Lemma 3 Assume that d = E(Rconcy (Acync, (dooos doot ), VE oy -, (d010)))
andr(d) = Rc, (E(Rc(dook, do1)), E(Rc(doo, do10))). Then |g(d)| > |g(r(d))].

Proof.

9B\, ., (dooo,doos), \/- ., ,_ (d010))))

= ERo(/\, o, (9300, 9(doo), V-, (9(do10)))
= &(Cutc, (Reo(g(dook), 9(dor)), Re(g(doo), 9(doro))))
= Rep(Ra, (E(Ro(g(dook)» 9(don))), E(Ro(g(doo)s 9(do10)))))-

On the other hand, g(r(d)) = Re, (E(Rc(g(dook), 9(do1))), £E(Re(g(doo), 9(do10))))-
Therefore |g(d)| > |g(r(d))|. O

Lemma 4 Assume thatd = E’"‘*l(Ro(/\VXCO(X)(dooo), \/gx..co(x)(dom))),
and Em+1(RC'(/\VXCO(X)(dooo)* RCO(T) (Subq"f (dglq), g(d()lo)))). Then |g(d)| >
lg(r(d))|. |

Proof.
According to the definition of g,

9B R, o (80000 Vo oy [@o10))

= gan(RC"(/\vxco(x_) (9(d000))s QR ey(1) (87 (do1g)» 9(do10))gevx 4x)))))

= Q(E™ 1 (Re(g(dooo), 9(do1))), E™FH(Re (N (9(d000))s Reo(r) (ST (dorg)s 9(d010)))))q-
On the other hand,

g9(r(d))

=™ (Re(N

VX Co(X)

vxco(X)(g(dOOO))’Rc°(T) (8F (Do (E™ (R (9(dooo)s 9(do1)))), 9(d010)))))-

with Do(E™*(Re(g(dooo), 9(do1)))) € [VXCo(X)|. Therefore |g(d)| >
lg(r(d))]- O

Remark 5 Using Q or Q-rule, we can list up all possible cuts in the cut-
elimination process. Lemma 4 shows that the result of Takeuti’s reduction

is one of such cuts.



From these lemmas., we can see the following diagram in the essential
reductions which we have considered:

d -, r(d)
°| |
g(d) —=— g(r(d))
where g(r(d)) is a subderivation of g(d). A derivation d in BI, is cut-free if

d does not contain Cut 4, R4. Therefore we can prove the cut-elimination
theorem for BI; by transfinite induction on the height of g(d).

Theorem 8 Let d be a proper derivation of ' in BI; such that T' is arith-

metical, and dg(d) = 0. Then there ezists a cut-free derivation d' of the
same sequent I

Corollary 2 Let d be a proper derivation of T in BI, such that T is arith-
metical. Then there exists a cut-free derivation d' of the same sequent T'.

A derivation d in BI] is cut-free if d does not contain Cuts. Then we
can prove the following corollary.

Corollary 3 Let d be a derivation of I in BI] such that T is arithmetical.
Then there exists a cut-free derivation d' in BI] of the same sequent I'.

Remark 6 The full version of this paper is [AkiO8]. Our proof can be
extended into the full [1}-CA [AMO8].
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