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abstract

This paper shows that the A—3V fragment of classical logic is equivalent to the
same fragment of intuitionistic logic, where V and 3 are second order quantifiers
for propositional variables. '

1 Introduction and Definition

1.1 Introduction

This paper shows that the A—3V fragment of classical logic is equivalent to the same

fragment of intuitionistic logic, where V and 3 are second order quantifiers for propo-
sitional variables. Since our framework is the sequent calculus, it can be written as

follows.
LK, s3vyF= A <= LJr-avFr= A

Tatsuta, Fujita, Hasegawa and Nakano showed the case of the A—3 fragment by using
the natural deduction in [1]. Recently they showed also the case of A—3V fragment

independently in [2].

In this paper, we show the case of the A—3 fragment in the section 2. We construct
a tree which is associated with a proof of LK -3 and translate it to a proof of LJ-3.
Next, we show the case of the A—3V fragment in the section 3. Finally, we consider
the case of AV -3V fragment in the section 4. In this case, LKAy-3v and LJAy-3v are
not equivalent.We show partial equivalency of them. If formulas are restricted properly,

LK y-3v and LJy-3v are equivalent.
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1.2 Notation

In this paper, p, g, r, ... denote propositional variables. T and L are propositional con-
stants. A, B, C, ... denote formulas, and I, A, ¥, ... denote finite multi sets of formulas.

1.3 Formulas

Formulas are defined by
e T,1,p,q,r,... are (prime) formulas.
e If A and B are formulas, AN B,AV B,-A,3pA and VpA are formulas.

A Y B is an abbreviation of ~(—A A =B). VpA is an abbreviation of Vp,Vp,...Vp, A
(n>0). Let ' = Ay,...,Ax(n > 0), then AT = A; A ... A A,. In particular AA = A
and A@=T. \/T = —~(=A; A... A-A,). In particular VA = -—A and V0= L.
-I' = —A,, ..., A,

1.4 Sequent calculus

LK v-3v has the following initial sequents and inference rules. Since I', A, X, II are
multi sets, LK Ay-3v does not have the exchange rules.

LJ Ay-3v is obtained from LKy -3v by restricting right hand of sequent to at most one
formula in all rules. Therefore LJAy-3v does not have (c, 7).

LK-av and LJA_3v are obtained by removing V-rules from LKay-3v and LJay-av
respectively.

LK -3 and LJ -3 are obtained by removing V-rules from LK ,_3v and LJ -3y respec-
tively.

Initial sequents

A=A =T 1l =

Inference rules

ATl'=s A AT = A I'sAA I's> A,B
ArBTSA N pRaTs A MWD T AAAE 7
AT=A BT=A F=AA T=A A

AVBETsAa VY tsaaveVh rsapva (Ve
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F:>A,A( ) A,I‘:>A( )
“AT = AV T=A -4 "

AT =A I'= A, A[B/p] AB/p,T = A I'=AA

3pA,I‘=>A(3’l) T = A, 3pA 37) VAT = A (v,0) TS Avpd ("7
r=A = A AAT=A '=AAA4A

AT=a W) Az AT A (@) T=AaA ©n)
ATl= A (name, 1) I'=>AA (name, ) I'=s>AA AX=1 "
AT = A ’ T= A, A ’ .Y = A (cut)

In (name,l) and (name,r), A’ is obtained by replacing a bound variable p in A by
other variable q.

A[B/p] is the formula obtained from A by replacing all the free occurrences of p in A
by the formula B, avoiding the clash of variables by applying (name,!) and (name,r).
In (3,1) and (V,7), p is not occuring as a free variable in the lower sequent.

2 Equivalency of LK,-5 and LJ,—3

Formulas of this section do not contain V or V.

Definition 1 (Valuation) A valuation v is a mapping from the set of propositional
variables to {T,F}. For each v, we define a mapping M, from the set of formulas to
{T,F} as follows.

e My(p) =T <= v(p)=T

e M,(T)=T

e My(L)=F

o My(AAB) =T <>M,(4) =T and My(B) = T

o M,(~A) = T «=M,(A) =F

* My(3pA) =T <= M,(A[T/p]) =T or My(A[L/p]) =T

Definition 2 M, is extended to a mapping from the set of sequents to {T,F} as
M,IT=A)=T < M,(-(AT)YVA)=T

Lemma 3 (Soundness of LK,_3) If LK,_3+= A4, then M,(A) =T for all v.
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Proof. We show “If LK, 3 T = A, then M,(I' = A) = T for all v”. This is shown
by induction on the height of the proof of I' = A.

Definition 4 For each S( = “I" = A”),

o FV(S) = {p | pis occuring in S as a free variable}

o U ~s v; <= v;(p) = v;(p) for all p € FV(S)

o 77 = {v; | v; ~s v;}

o V(A\S) = {o7 | My,(A(T = A4)) = T and M,,(V A) = F}
o V(5/4) = {9} | My,(AT) =T and M,,(V(A — 4)) = F}

S of ¥7 is omitted when it is obvious. I' — A is defined by removing one formula A from
[. For example, if I' = {A, A, B}, then I’ — A = {A, B}.

From now on, S, denotes a sequent such that M, (S) = T for all v. We will construct
a tree called Sy-tree, whose nodes are associated with sequents. For each node «, the
associated sequent is written as S(«).

Definition 5 (Sp-tree) In the begining, we make only one node ap which satisfies
S(ap) = Sp. After that, we iterate applying the following table. We chose an arbitrary
leaf node . If S() matches the line 7, then we add a new node o’ to a and S(c) is
defined by the line 7. In the line 4, we add also &” to «. If S(a) matches more than one
line, we apply the line of the smallest number.

If S(«) matches | S() is defined by | S(a”) is defined by

1 -AT'= A '=sAA

2 I'= A, -A AT = A

3| ANB,'= A A BT = A

4| I'=sAANB '=AA I'=sA,B
5 IpA T = A Alge/p], T = A

6 I'= A,3pA I'= A, A[G,/p]

In the line 5, ¢, is a fresh variable. In the line 6, G, is defined as follows. Let
FV(S(«)) = {p1,...,pn}. U deontes 5(®, We define g° and G; for each v and then we
define G, by using them.

o g7 = D; (M,(p;) =T)
1 P (Mo(ps) =F)
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oo = d HNANgG (MJ(A[T/p) =T)
B (M,(A[T/p]) = F)

* Go = V{Gs|0 € V(S(a)/3pA)}

The length of G, is finite since |V (S(a)/3pA)| < 2".
In this way, we add a new node until all leaves consists of only prime formulas.

Lemma 6 The construction of the Sp-tree always terminates.

Proof. This is shown by double induction on the number of 3 and the number of logical
symbols in the sequent.

In the line 1,2,3,4 of Definition 5, the number of 3 does not change and the number
of logical symbols decreases. In the line 5,6 of Definition 5, the number of 3 decreases.

Lemma 7 For all v and for all node « in the Sp-tree, M,(S(a)) = T.

Proof. This is shown by induction on definition of Sy-tree. If a is root node, then
obviously So(= S(a)) satisfies M, (Sp) = T for all v. Otherwise, we divide cases according
to the lines of Definition 5.

1. ... 4. It is easy to show if M,(S(«)) = T, then M,(S(<’)) = T.

5. This is the case of S(a) = IpA, T = A and S(o’) = Alq./p],T = A.
Suppose M, (S(a)) = T for all v.
o If 9, € V(IpA\S(a)),
My, (AT) =T and M,,(\/ A) = F.(".- definition of V(3pA\S(a)))
M,,(3pA,T = A) =T.( i.h.)
Therefore M,, (3pA) =
By definition of valuation, M,,(A[T/p]) = M,,(A[L/p]) =F

This means M,,(A[g./p]) = F regardless of valuation of q,. So, M,,(S(c’)) =
T.

e Otherwise(; ¢ V(3pA\S(a))), By definition of V(3FpA\S(a)), M,,(AT) =
or M, (VA) =T. Then M,,(T' = A) = T. Therefore M,,(S(a’)) =T
Consequently M, (S(a’)) = T for all v.

6. This is the case of S(a) =T = A,3pA and S(¢/) =T = A, A[G./p).

If v; ¢ V(S(a)/3pA), then ¥; obviously satisfies M,, (S(a/)) = T. Now, we discuss
about only the case of 7; € V(S(a)/3pA).

First, we show:
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(a) If M,,(A[T/p]) =T, then M, (G4)
(b) If M,,(A[T/p]) = F, then M, (G,) =

I

T.

e Proof of (a).
By definition of G and each g7, M,,(Gs,) = M,, (g7’ A...Ag%) = T. Therefore
M,,(Gy) = T.
e Proof of (b).
We show M, (Gy,) = F for each v; € V(S(c)/3pA).
~ If 4; = 7;, then Gy, = L and M,,,(Gy,) = F.
— Otherwise(v; # ¥;),
* I Gy, = L, M,,(Gy,) =F
* Otherwise(G; = gy’ A...Ag’ ), some px € FV(S()) satisfies M, (px) #
My, (p) (. T # 0;). My, (g,7) = F therefore M,,(Gy,) =F.

Therefore M,, (G3,) = F for all G,. This means M,,(G,) =F.

This is a proof of (a) and (b).

On the other hand, M,,(AT) = T and M,,(\/ A) = F(-. definition of V(S(«)/3pA)).
By ih.,, M,,(I' = A,3pA) = T. Therefore M,,(3pA) = T. This means

(1) My, (A[T/p]) = T or My, (A[L/p]) = T.
Now, we show M, (A[G4/p]) =T for all ; € V(S(a)/3pA).
 If M,,(A[T/p]) =T, then M,,(A[Ga/p]) = M, (A[T/p]) = T.(." (a))
e Otherwise (M,,(A[T/p]) = F), then M, (A[L/p]) = T.(." (1))
By (b), M,,(G,) = F. Therefore M,,(A[G./p]) = M,,(A[L/p]) = T.

Consequently M,, (A[G./p]) = T for all §; € V(S(a)/3pA). Then M,,(S(e/)) =T
for all v.

m
Lemma 8 For all S(a)(= “T' = A”) in the Sp-tree, LIr_3F S*(a)(= “T,~A = ).

Proof.
This is shown by induction on maximum length from S(c) to the leaves in Sp-tree.
e If o is a leaf, ,
S(a) consists of only prime formulas. By Lemma 7, M, (S(a)) = T for all v, then
at least one of the following holds.
- lLel.
- TeA.
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— Some p satisfies p € ' N A.
By applying (w, (), (—,1) to an initial sequent, S*(«) is provable in LJ_3.

e Otherwise(« is not a leaf),

the following numbers correspond to the lines of definition 5.

—

. If S(a) = -A,T = A, then S*(a) = S*(¢’). By i.h., we get LIr-3 + S*(a).
2. If S(a) =T = A, -4,

i.h.(S*(a))

AT, -A=>

T,-A = -A (W‘)( )
S (a) = —AT,-A= '

3. IfS(a) = AANB,I = A,

i.h.(S%())
A BT, A=
AANBT A= (Ai/l\) 5
ANBANBT A= )
5 (@)= AAB,T,-A = \©

4. IfS(@) =T = A, AA B,

A=A B=>1B (
i.h.(S*(a)) i.h.(8%(a)) AB=>ANB
[,-A,-A= (=.7) r,-A,-B=> (oor) A,B,~(AAB) > (5 x 2, (1) X 2
Loa=—4 LoA=~B = 224 B AAD) = ) o (e
T,-A = ——AA B ') ZDAAN-=B,~(AAB) = oo ete
S (a) =T, A, ~(AND) = (cut)

w, 1), (A, 1)

5. If S(a) = 3pA,T = A,

i.h.(S*(e))

Alda/ph T 28 = (o )y
39 Alga/PL D, DA = e
§'(a) = AT, A= "

6. If S(a) = T = A, 3pA,

AlGa/s) = AG/r) 5
AlGa/p] = 3pA N ,l
AlGa/p], ~3pA = (=) .h.(S*(c))
-3pA = -A[G./p] (=:7) I, -A,-A[G./p] =
S*(a) =T,-A,~IpA =

(cut)
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Theorem 9 (Equivalency of LK,_3 and LJ,-3)
LK, 3F= A < LI,abF= A

Proof.

(<)

This is obvious.

(=)

Suppose LK -3 F= A. By Lemma 3, M,(= A) = T for all v. Therefore we can
construct (= A)-tree. LIo-3 F= A is shown by induction on maximum length from
(= A) to the leaves in (= A)-tree.

1. If A is prime formula, (= A) is a leaf of tree and (= A) is an initial sequent(This
means A = T). (= T) is also an initial sequent of LJr-3.

2. fA=BAC,
(= A) is a parent of (= B) and (= C)(." 4 of Definition 5). By i.h., LI\.3 = B
and LI -3 F=> C. Applying (A,7) to (= B) and(= C), we get LIr-3 -= BAC.
3. If A= 3pB,
(= A) is a parent of (= B[G./p])("." 6 of Definition 5). By ih., LIs.3 F=
B[G,/p). Applying (3,7) to (= B[G./p]), we get LIr~3 = 3pB.
4. If A =B, ,
(= A) is a parent of (B =)('." 2 of Definition 5). Applying Lemma 8 to (B =),
we get LIn3+ B =. By (-, 1), LIr-3 F= —-B.
|
Corollary 10 Glivenko’s theorem also holds in LKA-3 and LJ,-3. That is
LK\3FTT=A4 <+= LI\aFT=-4

Proof.

(«=)

This is obvious.

(=)

Suppose LK,-3 F So( =T = A). By Lemma 3, M, (S;) = T for all v. Therefore we can
construct Sp-tree. By Lemma 8, Sj( = I', ~A =) is provable in LJA-3. Applying (-, 7)
to S5, we get LI, g T = ——A.

Remark The following extension of theorem 9 does not hold.
LKysFTT=A <= Li,aFI'=A
A counterexample is =—p = p.
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3 Equivalency of LK -3y and LJ -3y
Formulas of this section do not contain V.
Definition 11 (Valuation) The following definition is added to Definition 1.
* My(VpA) =T <= M,(A[T/p]) =T and M,(4[L/p])) =T
Lemma 12 (Soundness of LK, 3v) If LK,_av F= A, then M,(A) = T for all v.
Proof. Similar to Lemma 3.

Definition 13 A sequent I' = A which satisfies the following conditions is called
semiprime sequent.

e [ consists of prime formulas.
e A consists of formulas whose form are VpQ where Q is a prime formula.
Example p,q = p,Vp(p),VpVq(r) is semiprime sequent.

Definition 14 (Sp-tree) Similarly to Definiton 5, So-tree is constructed according to
the following table. We add a new node until all leaves become semiprime sequents.

If S(«) matches S(d’) is defined by S(a”) is defined by
1 -A, = A I'=s AA
2 I = A, VA AT = A
3 AANB T = A A BT'= A
4 | T'= A,Vp(AAB) I'=> A, VpA I'= A,VpB
5 IpA, T = A Alga/p], T = A
6| I'=A,Vp3panA | T = A, Vp(A[G, /pni1])
7] VpAT = A A[H./p,T = A

In the line 5, g, is a fresh variable. We define A*, G/ and H, in the table as follows.
e AT = Alq1/p1]..-[gn/Px])- (@1, ..., @, are fresh variables)

e We define G/, by,

3pn1(A*) = Ipn(AT)
Y@3pn+1(AT) = Fp,i1(AT)
S(O‘) = I'=> A,Vp3p, 1 A VPIpni14 = 3pn-ﬁ—l(A.'*_)
I' = A, 3pn+1(A+) (.)
=8 A Gafoe] %,
I'= A V(AT [Ga/Pnii]) "
S(e) = T = A,Vp(A[G,/Pn+1])

(V,l) xn
(name, )
(cut)

(name,r)
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(#) is an application of the line 6 of Definition 5. We get G", by replacing ¢; by p;
of G, in the last (name, r) rule.

e For each v € V(VpA\S(a)), we define following formula. Let FV(S(a)) = {p1, ..., pn}.

o - { il (Mo (A[T/p]) = T)
¢ Ay A ... ARS (M,(A[T/p]) =F)

These hY are defined by

Then H, is defined by

Ho = \/{H;|7 € V(¥pA\S(a))}

Lemma 15 The construction of the Sy-tree always terminates.

Proof. This is shown by double induction on the number of quantifiers and the number
of logical symbols in the sequents.

In the line 1,2,3,4 of Definition 14, the number of quantifiers does not increase and

the number of logical symbols decreases. In the line 5,6,7 of Definition 14, the number
of quantifiers decreases.

Lemma 16 For all node « in the Sp-tree and for all v, M, (S(a)) = T.

Proof. This is shown by induction on definition of tree.

1. If S(a) = —A, T = A, it is similar to Lemma 7.

2. f S(a) = ' = A,Vp-A, it is shown by the following partial proof and soundness
of inference rules of LK ,_3v.

-ﬂA+ =>_,A+
i.h.(S(e)) Vg-A* = —A+ (V,l) xn
F=>A,Vﬁ'—1A Vp'_ﬁAﬁ__‘A.;.
'= A,—tA+

(name,l) x n
(cut)

S@)=A"T=A

At = AT (_1 l)
+ A+ J
AT —AT = (cut)

3. If S(a) = AAB,I'= A, it is similar to Lemma 7.
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4. If S(a) = I' = A,Vp(A A B), it is shown by the following partial proof and
soundness of inference rules of LK A_3y.

A=A
AAB= A (A(’\j)l) <
i.h.(S(a)) H(ANB) = A 0 K
I'=> AVE(AANB) Vp(AAB) = VpA >’
S@) = T = A,vpA (cut)

The case of S(a”) is similar.
5. If S(a) = FpA,T = A, it is similar to Lemma 7.
6. If S(a) = ' = A, 3pA, it is trivial because of definition of G.,.

7. Similar to Lemma 7.
|
Lemma 17 For all S(a)(= “T' = A”) in the Sp-tree, LIp-3v - S*(a)(= “T, ~A = 7).

Proof.

This is shown by induction on maximum length from S(a) to the leaves in Sy-tree.

e If o is leaf, then S(a) is semiprime formula. Obviously

M,(¥p(q)) = My(q) for all v <= q ¢ {p1, ..., P}

Since M, (S(a)) = T for all v, at least one of the following conditions holds.

- 1€l
- TeA
— Some q satisfies ¢ € I" and Vp(q) € A and q ¢ {p1, ..., Pn}

On the other hand, following sequents are provable in LJA-3v
- 1=
- T
— ¢,~Vp(g) = where g & {p1,...,pn}
We can show LJA-gv - S*(a) by appling (w,!) to above sequents.

e If a is not leaf,

1. if S(e) = -A, T = A and S(¢/) = I' = A, A, then it is similar to Lemma
8.
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2. if S(a) = I'= A,Vp—A and S(¢/) = A*, T = A, then it is shown by
A= AT 3.5,

At = JgAT (=, 1)
i.h.(S*(a)) At —3JGAT = (ﬁ’ ")
IA*T,-A = (3,0) x n -3GAT = -A* (\;, r) x n

I, 3gA*, A = ( ’ ") -3GAT = Vg-AT (n;me F) x n
- ™ 7 + _1, -/ 7] + _'ﬂ K
T,-A = -3JgA 3GAT = VA (cut)

S*(@) = T, -A, ~Vp-A =

3. f S(a) = AAB,T'= A and S(¢/) = A,B,I' = A, then it is similar to
Lemma 8.

4. If S(a) = T'= A Vp(AAB) and S(&/) = T = A,VpA, S(@") = ' =
A,VpB, then it is shown by

A=A B=>DB
AD S Ang WD (A

VPA,VPB = AN B (VEQ :)2:”
ih(S* (@) . i.h.(S* (")) VpA,VpB = Vp(A A B) (; )
T,-A, VpA = T,-A,—VpB = VpA,VpB,~Vp(A A B) = ’(_, D, (=)
T,-A= —vpA ") T,2A = ——VpB E;: ~VPA, ~VPB VP(AAB) = N z; (c’ B
I',-A,= -—VpA A -—VpB ’ —=VPA A --VpB,~-Vp(AAB) = > 7

S*(a) =T,-A,~Vp(AAB) = (cut)
5. 11 5(a) = 3pAT = Aand S(o) = Alg/p],T = A, then it is similar to
Lemma 8.

6. If S(a) = I = A,VpIpp+14 and S(¢/) = T = A,VpA[G), /pn+1], then it
is shown by

AGy/prs) = AlGH/pen] 15
AlG,,/Ppt1] = 3pn1 A (V’ D) xn
Vﬁ(A[G/a/er-lD = 3p'n‘ﬁ-lA (’ 7‘) % n
vﬁ(A[GIa/pn%—l]) = vﬁapn—HA‘ (; l)
~VpIpnt14, VB(A|GL, /D)) = (_" " i.h.(S*(a))
=Vp3Ipn1A = Vp(A[G,, /pni1]) L, A, ~Vp(A[G /Prti))
S*(a) =I',-A, ~VpIpp+14 = .

= (cut)

7. If S(a) = VpA, T = A and S(&/) = A[H,/p],T = A, then it is shown by

i.h.(S*(c))
A[Ha/p]a Fa —7A =
S*(e) = VpA,T,~A =

v,

Theorem 18 (Equivalency of LK -3y and LJ_3v)

LK\,-svF= A s LIpayF= A
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Proof.

(=)

This is obvious.

(=)

this is shown in a way similar to Theorem 9 as follows.

1. If A = Vp(T),
Applying (V,r) to LIn—3v = T, we get LIr_3v F= A.

2. If A =V5(BAC),
(= A) is a parent of (= VpB) and (= VpC)("." the line 5 of Definition 14).
Since i.h., LIr~av F=> V5B and LIy F= V5C.
Applying (A, r) to these, we get LIr-3v F= VpB A V(.
On the other hand, LIr-av F VpB AVEC = Vp(B A C)
Applyng (cut) to these, we get LIr_3v F= A.

3. If A =VpIp...B,
(= A) is a parent of (= Vp(B[G,/pn+1]))("." the line 7 of Definition 14).
Since i.h., LIr_3 F= Vp(B[GL /Pn+1])-
On the other hand, LIr-3v - VB(B[G.,/Pns1]) = VP3P B.
Applying (cut) to these, we get LI -3y = A.

4. If A = Vp—B,
(= A) is a parent of (B =)(". the line 3 of Definition 14).
Applying Lemma 8 to (BT =), we get LYoy - B =.
By (—,7),(V,r), (name,r), LIr-3v F= Vp—B.

Corollary 19 (Glivenko’s Theorem) Glivenko’s theorem also holds in LK,_3, and
LJ/\_.Qv. That is

LKy svFI'=A <= LJyav+I'=--4
Proof. Similar to Corollary 10.

Remark In the first order predicate logic, theorem 18 does not hold. A counter ex-
ample is =(Vz—~—P(z) A -VzP(z)). This is provable in LK, but not in LJ.
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4 Partial Equivalency of LKxy-3v and LJ,y_3v
Definition 20 (Valuation) The following definition is added to Definition 11.

e My(AVB)=T <= M,(A)=TorM,(B)=T
Lemma 21 (Soundness of LK,y-3v) If LKAy-3v F= A, then M,(A) = T for all v.

Proof. Similar to Lemma 3.

Definition 22 (Weak formula) Weak formulas are defined by
® p,q,7,....,L and T are weak formulas.
e —A is a weak formula.
e AV B is not a weak formula.
e AN B is a weak formula <= A and B are weak formulas.
e dpA is a weak formula <= A is a weak formula.

e VpA is a weak formula <= A is a weak formula.
Example 3p(p A —=—(qVr)) is a weak formula. p A Vg(q V r) is not a weak formula.

Definition 23 For each sequent S( = “I' = A”), we define P(S) and N(S) as the
smallest set such that

e Ac A= A€P(S)
e AcT = A e N(S)
e ANBeP(S)or AVB e P(S) = A,BeP(9)
e AABeN(S)or AV B e N(S) = A, B € N(S)
e JdpA € P(S) or VpA € P(S) = A € P(S)
e JpA € N(S) or VpA € N(S) = A € N(5)
e A € P(S) = A e N(S)
e ~A e N(S)= A€ P(9)
Example IfS = p= p,~(gAr), then P(S) = {p, ~(gAr)} and N(S) = {p, q,7, qAT}.

Definition 24 (Weak sequent) A sequent S is called a weak sequent if S satisfies the
following condition.
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e VpA € P(S) = A is a weak formula.

Definition 25 (So-tree) Sp-tree of this section is obtained by adding the following
lines to table of Definition 14.

If S(a) matches S(c’) is defined by | S(&”) is defined by
8 AVBT=A ATl = A BT'=A
9 T—A AVEB T= A AB
10| T'= A,Vp(AV B) (p # 0) I'=>AAB

Lemma 26 If S is a weak sequent, then all sequents of Sy-tree are also weak sequents.

proof. This is shown by induction on definition of Sy-tree.

e In the line 1,2,3,8,9,10, if VpA € P(S(¢)), then VpA € P(S(a)). By i.h., Ais a
weak formula.

In the line 4, if VpA € P(S(a’)), then VpA,Vp(A A B) or ¥p(B A A) € P(S(a)).
By i.h., A, AA B or BA A is a weak formula. Therefore A is also a weak formula.

In the line 5, if VgB € P(S(a')),

— if VgB is subformula of C € I' U A, B is weak formula by i.h.

— otherwise, VgB is subformula of Alq,/p]. Since VgB € P(S(¢)), VgB[p/q.) €
P(S(e)). By i.h., B[p/q,] is weak formula. Then B is also weak formula.

In the line 6, if VgB € P(S(c')),

— if Vg¢B is subformula of C € I' U A, B is weak formula by i.h.

— otherwise, V¢B is subformula of A[H,/p]. There is C such that B = C[{H,/p).
Since V¢gB € P(S(a')), VqC € P(S(«a)). By i.h., C is weak formula. Since
H, do not contain V or V, B is also weak formula.

In the line 7, it is similar to the case of the line 6.
[

Lemma 27 If Sy is a weak sequent, then the line 10 is never applied through the
construction of Sy-tree.

Proof. By Lemma 26, all sequents of Sy-tree are weak sequents. But S() in the line 10
is not a weak sequent since A V B is not weak formula and Vp,(A VvV B) € P(S(a)).
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Lemma 28 For all node « in the Sp-tree and for all v, M, (S(a)) = T.

Proof. The following cases are added to a proof of Lemma 16.

8. If S(a) = AVB,T' = A, it is shown by the following partial proof and soundness
of inference rules of LKAy _3v.

A= A (v, 1) i.h.(S())
A= AVB'\"" AVBTIT=A
Sd) = ATl'= A

(cut)

The case of S(a”) is similar.

9. If S() = T = A, AV B, it is shown by the following partial proof and soundness
of inference rules of LK Ay -3v.

ih(S(@) A=A BB
T=A AVEB AVB#A,B(EZ,)T),(VJ)

Sd) =T = A, A B

10. If S(a) = T = A,Vp(A V B), it is shown by the following partial proof and
soundness of inference rules of LK oy —3v.
A=A B=2B
i.h.(S(a)) AVE=S AB ("(‘g 1}))’>(<Vﬁl)
I'=>AVp(AVB) Vp(AVB)= A B ( ,t)
S() = T = A, A, B cu

Lemma 29 Let S; a weak sequent. For all S(a)(= “I' = A”) in the Sp-tree,
LIny-av F S*(a)(= “T,-~A = ").

Proof. The following cases are added to a proof of Lemma 17.

8. If S(a) = AV B,I' = A, then it is shown by

i.h.(S*(e/))  i.h.(S*(a"))
A,F,h'A=> B,F,_‘A:}
S*(a) = AVB,T,-A=

)

9. If S(a) = I'=> A, AV B, then it is shown by

FEY (V(’:)l) VYD (V(’_f))
—1(A\/B),A=$ (_: 7") —»(A\/B),B = (__: r) Zh(S*(O/))
-(AVB)=-A "’ -~(AVB)=-B ' I',-A,-A,-B =
(A7) (A x 2,(e, 1)
-~(AVB)=-AA-B ' [-A-AAN-B= " A

S*(@) = T,-A,~(AVB) = (cut)
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10. The case that S(a) = T = A,Vp(AV B) (n > 1) is not necessary to consider
since Lemma 27 holds.

n
Theorem 30 If (= A) is weak sequent and A is a weak formula, then
LK y-av F= A S LIpy-avF= A

Proof. Similar to Theorem 18. In the case 1,2 and 3 in the proof of Theorem 18, B and C
are weak formulas and (= B) and (= C) are weak sequents. Since induction hypotheses
are hold in all cases, this Theorem is shown similarly. The case that 4 = V(B Vv C) is
not necessary to consider since Vp(B V C) is not a weak formula.

[
Corollary 31 If (I' = A) is a weak sequent, then
LKyv-s3vFI'= A = LIpv-svFI'= --A
Proof. Similar to Corollary 19.
n
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