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1 Introduction

The cooperative game theory provides useful tools to analyze cost allocation, voting power,
and so on. The problems to be analyzed by the cooperative game theory include n entities
called players and are usually expressed by characteristic functions called games which map
each subset of players to a real number. The solutions to the problems are given by value
functions which assign a real number to each player. The real number called a value can show
the cost borne by the player, power of influence, and so on depending on the problem setting.
Several value functions have been proposed. As representative examples of value functions,
the Shapley value [5] and the Banzhaf value [1}[3] are well-known. Each of them is uniquely
specified by reasonable axiom systems.

In the conventional cooperative games, each player can take one from two options: cooperate
and non-cooperate. However, in the real world problems, we may face a decision problem to
choose one from several options. From this point of view, it is worthwhile to treat cooperative
games in which each player has r options. Then multi-alternative games also called games with
r alternatives have been proposed by Bolger [2]. A multi-alternative game is expressed by a
generalized characteristic function which maps an arrangement showing all players’ choices to
an r-dimensional real vector. Bolger [2] proposed a generalized value function which maps a
multi-alternative game to an n-dimensional real vector whose i-th component shows the value of
player i. This function is a generalization of the Shapley function. On the other hand, Ono {4]
proposed a multi-alternative Banzhaf value (an MBZ value) as a generalization of the Banzhaf
value. -

The value functions/generalized value functions described above are considered under the
assumption that all coalitions/arrangements are formed with equal possibilities. In the real
world, there are many cases when this assumption does not hold. For example, when a certain
license is necessary to choose an option in a multi-alternative game, players without the licenses
cannot choose it and then some arrangements cannot be realized.

In this paper, we introduce a kind of restriction on arrangements into multi-alternative games.
In our model, the choice of an alternative is restricted. Such a restriction can be found in the
real world. For example, when a license/skill is necessary for taking some alternatives, those
alternatives cannot be chosen by unlicensed/unskillful players. Under the restrictions on choices,
we propose a value based on marginal contributions for a given game. The value indicates an
evaluation of an alternative by a player under the given game. Further, the proposed value is
axiomatized.
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In Section 2, we briefly introduce an extended multi-alternative games and related concepts
given by Tsurumi et al. [6] and Bolger [2] and the Bolger value and the MBZ value are presented.
In Section 3, we propose a restricted situation which is called a restricted choice situation and
a value for multi-alternative games with the restricted situation. Further, related concepts and
properties are presented. In Section 4, the proposed value is axiomatized. In Section 5, we give
a numerical example which is called ”Job Selection Game” to exemplify the usefulness of the
restricted multi-alternative games and the proposed value.

2 Extended multi-alternative games and previous values

2.1 Extended multi-alternative games

In this section, we introduce the extended multi-alternative games proposed by Tsurumi et
al. [6] which are extensions of multi-alternative games (games with r alternatives) by Bolger [2].
Extended multi-alternative games assume that each player chooses one from r(r > 2} alterna-
.tives or none of them while original multi-alternative games assume that each player always
chooses one alternative. The extended multi-alternative games are mathematically character-
ized as follows: .

Let N ={1,...,n} be the set of players and R = {1,...,7} the set of alternatives. Let T; be
the set of players who have chosen the alternative j € R. A finite sequence of subsets of players,
I'=(Iy,...,T}), is called an arrangement. Each arrangement I" satisfies I'; U---UT, C N and
Ty NIy =0 (Yk #1). Let I'y be a subset of players who have chosen none of alternatives. Then
we have I'o = N — (Jpcg Tx. For the sake of convenience, we define Ry = {0,1,...,r}. We
denote 3k € R, S =Ty, by S € I'. For any S € T, we call (S,T") an embedded coalition (ECL).
Let E(N, R) be the set of ECLs and A(NV, R) the set of arrangements on N and R. Then a
function v : A(N, R) — R" such that v(I") = 0 if 'y, = 0 is called an extended multi-alternative
game on N with r alternatives, where v(I') = (v1(T),v2(T),...,v-(I')) and R is the set of real
numbers. Let MG(N, R) be the set.of extended multi-alternative games on N and R.

In order to exemplify an extended multi-alternative game, we present the following example.

Example 1 (Job Selection Ganie) Three students A, B and C are considering to work part-
time. There are two jobs 1 and 2 but students cannot take both. Then each student can take one
job or nothing. They can take the same job. If only two students would take different jobs, the
remaining student would not get any payoff but the students taking jobs would get some payoffs
independently. The payoff does not depend on the job taken but on the student taking a job. The
payoffs of students A, B and C would be 8, 6 and 4 units, respectively. If student A would work
alone while students B and C would make the same choice, independent of the job taken by A,
student A would get 5§ units as a payoﬁ. If students B and C would work together while student
A would not work with them, independent of the job taken by them, students B and C would get
18 units as the total payoff. If student B would work alone while students A and C would make
the same choice, independent of the job taken by B, student B would get 8 units as a payoff. If
students A and C would work together while student B would not work with them, independent
of the job taken by them, students A and C would get 25 units as the total payoff. If student C
would work alone while students A and B would make the same choice, independent of the job
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taken by C, student C would get 1 unit as a payoff. If students A and B would work together
while student C would not work with them, independent of the job taken by them, students A
and B would get 80 units as the total payoff. If all students A, B and C would work together,
independent of the job taken, they would get 50 units as the total payoff.

This game can be represented by the following extended multz—altematwe game v fork=1,2
with N = {A,B,C} and R = {1,2}:

v (T) =8, for Ty = {A} and |Tj| =1,j = 1,2,

v(T) =6, forTx ={B} and || =1,5=1,2,

w(l) =4, forTy = {C} and I';| =1,j =1,2,

v(T) =5, forTx = {A} and ({B,C} €T or@el),
ve(T) = 3, for Ty = {B} and ({A,C} €T orP el),
w(T) =1, forTy ={C} and ({A,B} €T orP e I"),
v (T) = 30, for Ty = {4, B},

w(T) = 25, for Ty = {A,C},

v (T') = 18, for Ty = {B,C},

v (T') = 50, far Ty =N,

vi(T') = 0, for other cases,
where |T';| is the cardinality of T';.

An important class of extended multi-alternative games is the set of voting games with »
alternatives which are called extended multi-alternative voting games. We assume that only
one alternative is elected.

Let ' = (T'y,...,I'y) be an arbitrary arrangement. If alternative j € R is elected, we call
(T';,T) a pair of a winning coalition. If alternative j is not elected, we call (I';,I") a pair of a
losing coalition. Let W E be the set of pairs of winning coalitions. Let LE be the set of pairs
of losing coalitions. Then the triple (V, R, WE) is called a voting game with r alternatives (or
a multi-alternative voting game).

A multi-alternative voting game (N R,WE) can be represented by a multi-alternative game
v as follows:

(1)

) 1 if (Tk,T') € WE,
v =
* 0 otherwise,

where k € R.

2.2 Previous axioms and values

We describe axioms proposed previously and previous values for extended multi-alternative
games. In this paper, we regard an extended multi-alternative game as a multi-alternative game
with (r + 1) alternatives Rp = {0,1,...,7} where the set of players with no choice takes zero
value for any arrangement. '
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Let n7 , j =1,..., 7, be a vector function which maps a multi-alternative game to an n-
dimensional real vector whose i-th component shows the value of player 7. The i-th component
of 77 is denoted by 7.

Axiom 1 (j-efficiency) Value n7 satisfies
2 () = v (),
iEN
where I'(njy = (0,...,0,N,0,...,0) (N is the (j + 1)-th component).

Axiom 2 (j-null player) Value n’ satisfies w{ (v) = 0 for any j-null player i € N , where
player i is a j-null player in v if and only if for all arrangements T' satisfying I'; 1 and for
allk# 3

0 (T) = vy(0%), |
where T"% is the arrangement obtained by changing player i’s selection to the k-th alternative
inl (€T).

Axiom 3 (linearity) Value 77 satisfies 77 (v + w) = 9 (v) + =f (w) and m(cv) = c - ni(v)
for a sum of extended multi-alternative games v +w and a scalar multiplication of an extended
multi-alternative game cv, where, for extended multi-alternative games v and w, we define v+w
and cv by (v +w);(T) = v;(T) + w;(T) and (cv); =c- vu([),j=1,...,r

Axiom 4 (symmetry) Value 77 satisfies 7rf W) = =l (v) if players i and s are symmetric,
where players i € N and s € N are said to be symmetric if and only if v;(T") = v; (T) with
arrangement I obtained by interchange between players i and s in arrangement I

Axiom 5 (pivot move) Valuer’ satisfies 7l (v) = 7 (w) for extended multi-alternative games
v and w such that

D (D) — v () = D w;(I") — w;(I*¥), for all T such that i € T';.
k#j - ki '

Axiom 6 (mean of total contribution) Value 77 satisfies
. 1 N ‘_'k .
Z"’f(v) =Fro Z ' > .('UJ'(F)._ v (T77%)).
€N €N TuHely kst
Theorem 1 (Bolger [2]) The value function 6/(v), 5 = 1,...,r defined as follows is the

unique function satisfying Azioms 1 through Aziom 5:

dwy= Yo S W=D LD,y i),

1 n—]l‘,-|+1
I'T; i kAj nir

Vie N,j€R. (2)

Theorem 2 (Ono [4]) The value function f7(v), j = 1,...,r defined as follows is the unique
function satisfying Azioms 2, 8, 4, 5 and 6:

Aw=33 61_11)73? [v;(T) — v;(T*"*%)], Vie N,j.€ R. 3)

I:T;94 k#j



138

3 The proposed value for restricted multi-alternative games

In the conventional extended multi-alternative games, each player can choose any alternative
from a given set of alternatives. However, in the real world, there exists a situation where some
alternatives cannot be chosen by all players. For example, in Job Selection Game described in
the previous section, some students cannot take some jobs due to their inabilities or conflicts
with regular lessons. In order to treat such situations, we formulate restricted games with r
alternatives (restricted multi-alternative games).

In this paper, we consider the restriction on the selection of alternatives for each player. Let
R; be the set of alternatives which player i € N can choose. Obviously, we have R; C Ry and
0 € R;, Vi € N. Especially, R; = Ry holds if player i can choose any alternatives and R; = {0}
holds if player i can choose none of alternatives. Then the set of feasible arrangements, W, is
defined by

W ={T=(T,Ts,...,I,)|Vi€e RVi eTy; j € R}. (4)
We call the set of feasible arrangement W a restricted choice situation. Let AR(N, R) be the
set of restricted choice situations. We characterize a multi-alternative game with a restricted
choice situation as a pair (v, W) where v € MG(N, R) and W € AR(N, R).
Now, we propose a value for multi-alternative games with restricted choice situations.

Definition 1 Given W € AR(N, R), we define W;; by
W¢J={F€W |i€rj}.
W;; is a subset of W where player i chooses the j-th alternative.

We define a function f/ : MG(N, R) — (R®)ARN.R) (j =1, ... r) by its i-th component,

PEDD lWl[vg(l")—-v,(r'*k)] if Wiy #0,

F )W) = | (el keRo- {3} (5)

0, otherwise,

Let us interpret the function defined by (5). The term v;(I') — v;(T*—*) can be interpreted
as the marginal contribution of player i to I';. |W| shows the number of feasible arrangements.
Therefore, the weight T“%’T means that each feagible arrangement is formed with equal probability.
Then f;f (v)(W) is the expected value of the marginal contributions of player i to alternative j
in restricted game (v, W).

Theorem 3 When W = A(N, R), the proposed value ff (v)(W) is proportional to the MBZ
value [4]. More specifically, f](v)(A(N,R)) = 758](v). Namely, the normalized f](v)(W)
equals to the normalized MBZ value of player t to alternative j.

In the rest of this section, we give some concepts associated to the axiom system of value f7.

Definition 2 (j-null player for restricted multi-alternative games) Letv € MG(N, R),
W € AR(N,R), i € N and j € R. Player i is called a j-null player on (v, W) if and only if the
following holds:

if Wi; # 0 then v;(T) — v;(T*"%) =0, VI € Wi,k € Ro - {7},[*""* e W.



139

Note that player i is a j-null player if W, ; = 0.
This concept is a generalization of j-null players of Bolger’s multi-alternative games.

Definition 3 Let v € MG(N,R), W € AR(N,R) andi € N. Then player i is called an
unrelated player if R; = {0}.

Unrelated players are the players who cannot choose any alternatives and j-null players for
all j € R because W; ; =0 for all j € R.

4 Axiomatic approach

In this section, we give axioms which are reasonable for a value function to restricted multi-
alternative games. We consider four axioms concerning null players, linearity, the independence
from unrelated players, and the proportionality to total deducted welcome difference in voting
games. The first two axioms are generalizations of those of the Bolger value and the MBZ value.
That is, Axiom 7 and 8 are generalizations of Axiom 2 and 3 for multi-alternative games with
restricted choice situations.

Let 77 be a vector function from MG(N, R) into (R")ARW.R), The i-th component of 7/ is
denoted by 7. Note that for any v,w € MG(N, R), v+ w € MG(N, R) holds.

Axiom 7 (j-null player) Given v € MG(N,R), i € N, j € R and W € AR(N,R), the
following holds:
(W) (W)=0&1iisa J-null player on W

Axijom 8 (Linearity) Givenvl, v2 € MG(N,R) ¢;, cz € R and W € AR(N, R), the following
holds:
(10! + e0?) (W) = e 77 (v1) (W) + eand (v2) (W), j = 1,.

Axiom 9 (Independence from unrelated players) Letv € MG(N,R) and W € AR(N, R).
Let us add an unrelated player n+1 to the set of players N, and we denote V' the (n+1)-person
game. Then, the following holds:

w{(vf,W) =n(v,W), Vie N, Vj€R.

Axiom 9 means that the value is not changed by the addition of unrelated players to a game.
Note that because R,41 = {0}, the set of feasible arrangements W does not change between
the (n + 1)-person game v’ and the original n-person game v in Axiom 9.

Axiom 10 described in what follows is a property with respect to multi-alternative voting
games. If I'; changed from a winning coalition to a losing coalition by player i’s moving from
I'j to T'x (k € Ro — {j}), the movement is called a negatively influential movement under
arrangement I'. On the contrary, if I'; changed from a losing coalition to a winning coalition by
player i’s moving from I'; to I'y (k € Rg — {j}), the movement is called a positively influential
movement under arrangement I'. Under an arrangement I, let M7 ;(T'|v) be the number of
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negatively influential movements of player ¢ from I'; and M:}(I‘Iv) the number of positively
influential movements of player i from I';. Using M (T|v) and M;"J (T'|v), we define

Z (M‘.Tj(l‘]v) - M:}(I‘]v)) if there exists I" such that I'; > 1,
Mis(v) = { T
0 otherwise.

Then Axiom 10 is given as follows.

Axiom 10 (Proportionality to welcome degree difference) Let W € AR(N,R), T €
W,i,s€ N and j € R, and let v be a voting game with 7 alternatives. If M; j(v) — M, ;(v) =,

we have l

m ()W) = mj(v)(W) + .
174

Let us interpret Axiom 10. First, M;;(T|v) and M,?S-(I"Iv) can be interpreted as welcome
and unwelcome degrees of player i to alternative j under arrangement I, respectively. Then the
difference M (T'|v) ~ M,.‘;. (T'|v) can show the deducted welcome degree of player i to alternative
J under arrangement I'. Accordingly, M; ;(v) stands for a total deducted welcome degree of
i to j, which may indicate the power to victory of player i by choosing alternative j. Axiom
10 shows that the difference of values between players i and s should be proportional to the
difference between their total deducted welcome degrees, more specifically, it should be the
ratio of the difference between their total deducted welcome degrees to the number of feasible
arrangements.

Theorem 4 Function f7, j = 1,...,r defined by (5) is the unique function which satisfies
Azioms 7 through 10.

5 Numerical example

We calculate the proposed value f/ in Job Selection Game described in Example 1 and
demonstrate the effect by a restriction. We compare the values in two different situations: a
situation where all students can choose all jobs and a situation when student A cannot choose
job 2. '

The proposed values are shown in Tables 1 and 2. Table 1 shows the proposed values when
all students can choose all jobs while Table 2 shows the proposed values when student A cannot
choose job 2. Because v is symmetric with respect to jobs, the proposed values are same
independent of the jobs students choose when all students can choose all jobs. As shown in
Table 2, the value of student A in Job 2 is zero, This would be natural from the restriction that
A cannot take Job 2. The value of student A decreases not only in Job 2 but also in Job 1 by
the restriction. This would be a reflection of Axiom 10 by the decrement of possible movements.
of student A. By the comparison between Tables 1 and 2, we can observe that the restriction
can strongly change the strength (value) of players (students).
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Table. 1: The proposed values when all students can choose all jobs
Job 1 Job 2
Player Value Normalized Value Normalized
A 11.407 0.413 11.407 0.413
B 8.963 0.327 8.963 0.327
C 6.963 0.254 6.963 0.254

Total 27.333 1 27.333 1
Table. 2: The proposed values when student A cannot choose job 2
‘ Job 1 Job 2
Player Value Normalized Value Normalized
A 8.555 0.309 0 0

B 10722 0387 5444  0.569
C  8.388 0.303 4111  0.430
Total 27.666 1 9555 1

6 Conclusion

We have investigated extended multi-alternative games with restricted choice situations. We
have proposed a value based on marginal contributions for restricted multi-alternative games
and shown that the proposed value is proportional to the MBZ value. Further, we axiomatized
the proposed value. In numerical example, we observe that the restnctlon can strongly change
the strength of players.
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