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1 Introduction

The cooperative game theory provides $uaeh4$ tools to analyze cost allocation, voting power,
and so on. The problems to be analyzed by the cooperative game $th\infty ry$ include $n$ entities
called players and are usually expressed by characteristic functions called games which map
each subset of players to areal number. The solutions to the problems are given by wlue
functions which assign areal number to each player. The real number caUed avalue can show
the cost borne by the player, power of influence, and so on depenAng on the problem setting.
Several value functions have been proposed. As representative examplae of value functions,
the Shapley value [5] and the Banzhaf vdue [1][3] are well-known. Each of them is uniquely
specified by reasonable $8_{\mathfrak{l}}\dot{n}om$ systems.

In the conventional cooperative gamae, each player can take one $bom$ two options: cooperate
and non-cooperate. However, in the real world problems, we may face adecision problem to
$ch$oose one $hom$ several options. $\mathbb{R}om$ this point of view, it is worthwhle to treat cooperative
games in which each player has $r$ options. Then multi-alternative games also called games nith
$r$ alternatives have been proposed by Bolger [2]. Amulti-alternative game is $expr\infty sed$ by a
generalized characteristic fmction which maps an arrangement showing all players’ choices to
an $r$-dimensional real vector. Bolger [2] proposed ageneralized value function which maps a
multi-alternative game to an $n$-dimensional real vector whose i-th component shows the value of
player $i$ . This function is ageneralization of the Shapley function. On the other hand, Ono [4]
proposed amulti-alternative Banzhaf value (an MBZ value) as agenerdization of the Banzhaf
value.

The value functions/generalized value functions described above are considered under the
assumption that all coalitions/arrangements are formed with equal possibilities. In the real
world, there are many cases when this assumption does not hold. For example, when a certain
license is necessary to choose an option in a multi-alternative game, players without the licenses
camot choose it and then some arrangements cannot be realized.

In this paper, we introduce a kind of restriction on arrangements into multi-alternative games.
In our model, the choice of an altemative is restricted. Such a restriction can be found in the
real world. For example, when a license/skill is necessary for taking some alternatives, those
altematives camot be chosen by unlicensed/unskillful players. Under the restrictions on choices,
we propose a value based on marginal contributions for a given game. The value indicates an
evaluation of an altemative by a player under the given game. Further, the proposed value is
axiomatized.
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In Section 2, we briefly introduce an extended multi-altemative games and related concepts
given by Tsurumi et al. [6] and Bolger [2] and the Bolger value and the MBZ value are presented.
In Section 3, we propose a restricted situation which is called a restncted choice situation and
a value for multi-altemative games with the restricted situation. Further, related concepts and
properties are presented. In Section 4, the proposed value is axiomatized. In Section 5, we give
a numerical example which is called “Job Selection Game” to exemplify the usefulness of the
restricted multi-altemative games and the proposed value.

2 Extended multi-alternative games and previous values
2.1 Extended multi-alternative games

In this section, we introduce the extended multi-altemative games proposed by Tsurumi et
al. [6] which are extensions of multi-altemative games (games with $r$ altematives) by Bolger [2].
Extended multi-altemative games assume that each player chooses one from $r(r\geq 2)$. altema-
.tives or none of them while original multi-alternative games assume that each player always
chooses one altemative. The extended multi-altemative games are mathematically character-
ized as follows:

Let $N=\{1, \ldots,n\}$ be the set of players and $R=\{1, \ldots, r\}$ the set of altematives. Let $\Gamma_{j}$ be
the set of players who have chosen the altemative $j\in R$ . A finite sequence of subsets of players,
$\Gamma=(\Gamma_{1}, \ldots,\Gamma_{r})_{f}$ is called an arrangement. Each arrangement $\Gamma$ satisfies $\Gamma_{1}\cup\cdots\cup\Gamma_{r}\subseteq N$ and
$\Gamma_{k}\cap\Gamma_{l}=\emptyset(\forall k\neq l)$ . Let $\Gamma_{0}$ be a subset of players who have chosen none of altematives. Then
we have $\Gamma_{0}=N-\bigcup_{k\in R}\Gamma_{k}$ . For the sake of convenience, we define $R=\{0,1, \ldots,r\}$ . We
denote 9$k\in R,$ $S=\Gamma_{k}$ by $S\in\Gamma$ . For any $S\in\Gamma$ , we call $(S,\Gamma)$ an embedded coalition (ECL).
Let $E(N, R)$ be the set of ECLs and $A(N, R)$ the set of arrangements on $N$ and $R$ . Then a
function $v$ : $A(N,$ $R)arrow \mathbb{R}^{r}$ such that $vk(\Gamma)=0$ if $\Gamma_{k}=\emptyset$ is called an extended multi-altemative
game on $N$ with $r$ altematives, where $v(\Gamma)=(v_{1}(\Gamma),v_{2}(\Gamma), \ldots , v_{r}\langle\Gamma))$ and $\mathbb{R}$ is the set of real
numbers. Let $MG(N, R)$ be the set of extended multi-altemative games on $N$ and $R$.

In order to exemplify an extended multi-alternative game, we present the following example.

Example 1 (Job Selection Game) Three students $A,$ $B$ and $C$ are considering to work part-
time. There are two jobs 1 and 2 but students cannot take both. Then each student can take one
job or nothing. They can take the same job. If only two students would take different jobs, the
remaining student would not get any payoff but the students taking jobs would get some payoffs
independently. The payoff does not depend on the job taken but on the student taking a job. The
payoffs of students $A,$ $B$ and $C$ would be 8, 6 and 4 units, respectively. If student $A$ would work
alone while students $B$ and $C$ would make the same choice, independent of the job taken by $A$ ,
student $A$ would get 5 units as a payoff. If students $B$ and $C$ would work together while student
$A$ would not work with them, independent of the job taken by them, students $B$ and $C$ would get
18 units as the total payoff. If student $B$ would work alone while students $A$ and $C$ would make
the same choice, independent of the job taken by $B$, student $B$ would get $S$ units as a payoff. If
students $A$ and $C$ would work together while student $B$ would not work utth them, independent
of the job taken by them, students $A$ and $C$ would get 25 units as the total payoff. If student $C$

would work alone while students $A$ and $B$ would make the same choice, independent of the job
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taken by $C$, student $C$ would get 1 unit as a payoff. If students $A$ and $B$ would work together
while student $C$ would not work utth them, independent of the job taken by them, students $A$

and $B$ would get SO units as the total payoff. If all students $A,$ $B$ and $C$ would work together,
independent of the job taken, they would get 50 units as the total payoff.

This game can be represented by the follovnng extended multi-altemative game $v$ for $k=1,2$

with $N=\{A, B, C\}$ and $R=\{1,2\}$ :

$v_{k}(\Gamma)=8$ , for $\Gamma_{k}=\{A\}$ and $|\Gamma_{j}|=1,j=1,2$ ,
$v_{k}(\Gamma)=6$ , for $\Gamma_{k}=\{B\}$ and $|\Gamma_{j}|=1,j=1,2$ ,

$v_{k}(\Gamma)=4$ , for $\Gamma_{k}=\{C\}$ and $|\Gamma_{j}|=1,j=1,2$ ,

$v_{k}(\Gamma)=5$ , for $\Gamma_{k}=\{A\}$ and $(\{B, C\}\in\Gamma or \emptyset\in\Gamma),\cdot$

$v_{k}(\Gamma)=3$ , for $\Gamma_{k}=\{B\}$ and $(\{A, C\}\in\Gamma or \emptyset\in\Gamma)$ ,
$v_{k}(\Gamma)=1$ , for $\Gamma_{k}=\{C\}$ and $(\{A, B\}\in\Gamma or \emptyset\in\Gamma)$ ,
$v_{k}(\Gamma)=30$ , for $\Gamma_{k}=\{A,B\}$ ,
$v_{k}(\Gamma)=25$ , for $\Gamma_{k}=\{A,\cdot C\}$ ,
$v_{k}(\Gamma)=18$ , for $\Gamma_{k}=\{B, C\}$ ,
$v_{k}(\Gamma)=50$ , for $\Gamma_{k}=N$,
$v_{k}(\Gamma)=0$ , for other cases,

where $|\Gamma_{j}|$ is the cardinality of $\Gamma_{j}$ .

An important class of extended multi-altemative games is the set of voting games with $r$

alternatives which are called extended multi-alternative voting games. We assume that only
one altemative is elected.

Let $\Gamma=(\Gamma_{1}, \ldots,\Gamma_{r})$ be an arbitrary arrangement. If altemative $j\in R$ is elected, we call
$(\Gamma_{j}, \Gamma)$ a pair of a winning coalition. If altemative $j$ is not elected, we $caU(\Gamma_{j}, \Gamma)$ a pair of a
losing coalition. Let $WE$ be the set of pairs of winning coalitions. Let $LE$ be the set of pairs
of losing coalitions. Then the triple $(N,$ $R,$ WE$)$ is called a voting game with $r$ altematives (or
a multi-alternative voting game).

A multi-altemative voting game $(N,$ $R,$ WE$)$ can be represented by a multi-altemative game
$v$ as follows:

$v_{k}(\Gamma)=\{\begin{array}{l}1if (\Gamma_{k}, \Gamma)\in WE,0 otherwise,\end{array}$ (1)

where $k\in R$ .

2.2 Previous axioms and values

We describe axioms proposed previously and previous values for extended multi-altemative
games. In this paper, we regard an extended multi-altemative game as a multi-altemative game
with $(r+1)$ altematives $R\triangleleft=\{0,1, \ldots,r\}$ where the set of players with no choice takes zero
value for any arrangement.
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Let $\pi^{j},$ $j=1,$ $\ldots,$
$r$ , be a vector function which maps a multi-altemative game to an n-

dimensional real vector whose i-th component shows the value of player $i$ . The i-th component
of $\pi^{j}$ is denoted by $\dot{d}_{i}$ .

Axiom 1 (j-efficiency) Value $\pi^{j}$ satisfies

$\sum_{\dot{\iota}\in N}\dot{d}_{i}(v)=v_{j}(\Gamma_{(N:j)})$ ,

where $\Gamma_{(N:j)}=(\emptyset, \ldots, \emptyset, N, \emptyset, \ldots, \emptyset)$ ($N$ is the $(j+1)$ -th component).

Axiom 2 (j-null player) Value $\pi^{j}$ satisfies $\dot{i}_{i}(v)=0$ for any j-null player $i\in N$ , where
player $i$ is a j-null player in $v$ if and only if for all arrangements $\Gamma$ satisfying $\Gamma_{j}\ni i$ and forall $k\neq j$

$v_{j}(\Gamma)=v_{j}(\Gamma^{iarrow k})$ ,
where $\Gamma^{iarrow k}$ is the arrangement obtained by changing player $i$ ’s selection to the k-th altemative
in $\Gamma(i\not\in\Gamma_{k})$ .

Axiom 3 (linearity) Value $\pi^{j}$ satisfies $\pi^{j}(v+w)=\pi^{j}(v)+\pi^{j}(w)$ and $\pi^{j}(cv)=c\cdot\pi^{j}(v)$

for a sum of extended multi-altemative games $v+w$ and a scalar multiplication of an extended
multi-altemative game $\alpha$), where, for extended multi-altemative games $v$ and $w$ , we define $v+w$
and $\sigma v$ by $(v+w)_{j}(\Gamma)=v_{j}(\Gamma)+w_{j}(\Gamma)$ and $(cv)_{j}=c\cdot v_{j}(\Gamma);j=1,$

$\ldots,$
$r$ .

Axiom 4 (symmetry) Value $\pi^{j}$ satisfies $\dot{d}_{i}(v)=\dot{d}_{s}(v)$ if players $i$ and $s$ are symmetrric,
where players $i\in N$ and $s\in N$ are said to be symmetric if and only if $v_{j}(\Gamma)=v_{j}(\Gamma’)$ with
amngement $\Gamma’$ obtained by interchange between players $i$ and $s$ in arrangement $\Gamma$ .
Axiom 5 (pivot move) Value $\pi^{j}$ satisfies $\dot{d}_{i}(v)=\dot{d}_{:}(w)$ for extended multi-altemative games
$v$ and $w$ such that

$\sum_{k\neq j}v_{j}(\Gamma)-v_{j}(\Gamma^{iarrow j})=\sum_{k\neq j}w_{j}(\Gamma)-w_{j}(\Gamma^{iarrow j})$ , for all $\Gamma$ such that $i\in\Gamma_{j}$ .

Axiom 6 (mean of total contribution) Value $\pi^{j}$ satisfies

$\sum_{i\in N}\dot{\#}_{i}(v)=\frac{1}{(r+1)^{n-1}r}\sum_{i\in N}\sum_{\Gamma:i\in\Gamma_{j},k\neq j}(v_{j}(\Gamma)$
一 $vj(\Gamma^{iarrow k}))$ .

Theorem 1 (Bolger [2]) The value function $\theta^{j}(v),$ $j=1,$ $\ldots,$
$r$ defined as follows is the

unique function satisfying A cioms $J$ through Astom 5:

$\theta_{i}^{;}(v)=\sum\sum\frac{(|\Gamma_{j}|-1)!(n-|\Gamma_{j}|)!}{n!r^{n-|\Gamma_{j}|+1}}[v_{j}(\Gamma)-v_{j}(\Gamma^{iarrow k})]$,
$\Gamma:\Gamma_{j}\ni ik\neq j$

$\forall i\in N,j\in R$ . (2)

Theorem 2 (Ono [4]) The value function $\beta^{j}(v),$ $j=1,$ $\ldots,$
$r$ defined as follows is the unique

jfUnction satisfying Astoms 2, $S,$ $4,5$ and 6:

$\beta_{i}^{j}(v)=\sum_{\Gamma:\Gamma_{j}\ni i}\sum_{k\neq j}\frac{1}{(r+1)^{n-1}r}[v_{j}(\Gamma)-v_{j}(\Gamma^{iarrow k})],$ $\forall i\in N,j\in R$ . (3)
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3 The proposed value for restricted multi-alternative games
In the conventional extended multi-altemative games, each player can choose any altemative

from a given set of altematives. However, in the real world, there exists a situation where some
altematives cannot be chosen by all players. For example, in Job Selection Game described in
the previous section, some students cannot take some jobs due to their inabilities or conflicts
with regular lessons. In order to treat such situations, we formulate restricted games with $r$

alternatives (restricted multi-altemative games).
In this paper, we consider the restriction on the selection of altematives for each player. Let

$R$ be the set of altematives which player $i\in N$ can choose. Obviously, we have Ri $\subseteq R_{0}$ and
$0\in R,$ $\forall i\in N$ . Especially, $R=R_{0}$ holds if player $i$ can choose any altematives and $R=\{0\}$

holds if player $i$ can choose none of altematives. Then the set of feasible arrangements, $W$ , is
defined by

$W=\{\Gamma=(\Gamma_{1}, \Gamma_{2}, \ldots,\Gamma_{r})|\forall j\in R\forall i\in\Gamma_{j};j\in R\}$ . (4)

We call the set of feasible arrangement $W$ a restricted choice situation. Let $AR(N, R)$ be the
set of restricted choice situations. We characterize a multi-alternative game with a restricted
choice situation as a pair $(v, W)$ where $v\in MG(N, R)$ and $W\in AR(N, R)$ .

Now, we propose a value for multi-altemative games with restricted choice situations.

Deflnition 1 Given $W\in AR(N, R)$ , we define $W_{i,j}$ by

$W_{ii}=\{\Gamma\in W|i\in\Gamma_{j}\}$ .
$W_{i,j}$ is a subset of $W$ where player $i$ chooses the j-th altemative.

We define a function $f^{j}$ : $MG(N, R)arrow(\mathbb{R}^{n})^{AR(N,R)}(j=1, \ldots, r)$ by its i-th component,

$f_{i}^{j}(v)(W)=\{\begin{array}{ll}\sum \sum \frac{1}{|W|}[v_{j}(\Gamma)-v_{j}(\Gamma^{iarrow k})], if W_{i,j}\neq\emptyset,\Gamma\in Wk\in Ro-\{j\}\Gamma_{j}\ni i_{\Gamma^{iarrow k}\in W} 0, otherwise,\end{array}$ (5)

Let us interpret the function defined by (5). The term $vj(\Gamma)-v_{j}(\Gamma^{iarrow k})$ can be interpreted
as the marginal contribution of player $i$ to $\Gamma_{j}$ . $|W|$ shows the number of feasible arrangements.
Therefore, the weight $W^{1}$ means that each feasible arrangement is formed with equal probability.
Then $f_{i}^{j}(v)(W)$ is the expected value of the marginal contributions of player $i$ to altemative $j$

in restricted game $(v, W)$ .

Theorem 3 When $W=A(N, R)$ , the proposed value $f_{\dot{|}}^{j}(v)(W)$ is proportional to the $MBZ$

value $l41$. More specifically, $f_{1}^{j}(v)(A(N, R))= \frac{r}{r+1}\dot{\beta}_{i}(v)$ . Namdy, the normalized $f_{i}^{j}(v)(W)$

equals to the normalized $MBZ$ value of player $i$ to altemative $j$ .

In the rest of this section, we give some concepts associated to the axiom system of value $f^{j}$ .

Deflnition 2 (j-ndl player for restricted multi-alternative games) Let $v\in MG(N, R)$ ,
$W\in AR(N, R),$ $i\in N$ and $j\in R$ . Player $i$ is called a j-null player on $(v, W)$ if and only if the
folloutng holds:

if $W_{i_{\dot{\theta}}}\neq\emptyset$ then $v_{j}(\Gamma)-v_{j}(\Gamma^{iarrow k})=0,$ $\forall\Gamma\in W_{i_{\dot{O}}},$ $k\in R_{0}-\{j\},$ $\Gamma^{iarrow k}\in W$
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Note that player $i$ is a j-null player if $W_{i,j}=\emptyset$ .

This concept is a generalization of j-null players of Bolger’s multi-altemative games.

Definition 3 Let $v\in MG(N,R),$ $W\in AR(N, R)$ and $i\in N.$ Then player $i$ is called an
unrelated player if $R_{d}=\{0\}$ .

Unrelated players are the players who cannot choose any altematives and j-null players for
all $j\in R$ because $W_{1\dot{\theta}}=\emptyset$ for all $j\in R$ .

4 Axiomatic approach
In this section, we give axioms which are reasonable for a value function to restricted multi-

altemative games. We consider four axioms concerning null players, linearity, the independence
from unrelated players, and the proportionality to total deducted welcome difference in voting
games. The first two axioms are generalizations of those of the Bolger value and the MBZ value.
That is, Axiom 7 and 8 are generalizations of Axiom 2 and 3 for multi-altemative games with
restricted choice situations.

Let $\pi^{j}$ be a vector function from $MG(N, R)$ into $(\mathbb{R}^{n})^{AR(N,R)}$ . The i-th component of $\pi^{j}$ is
denoted by $\dot{d}_{i}$ . Note that for any $v,$ $w\in MG(N, R),$ $v+w\in MG(N, R)$ holds.

Axiom 7 (j-null player) Given $v\in MG(N, R),$ $i\in N,$ $j\in R$ and $W\in AR(N, R)$ , the
following holds:

$\dot{\#}_{:}(v)(W)=0\Leftrightarrow i$ is a j-null player on $W$

Axiom 8 (Linearity) Given $v^{1},$ $v^{2}\in MG(N, R)c_{1},$ $c_{2}\in \mathbb{R}$ and $W\in AR(N, R)$ , the following
holds:

$\dot{d}(c_{1}v^{1}+c2v^{2})(W)=c_{1}\pi^{j}(v^{1})(W)+c_{2}\pi^{j}(v^{2})(W),$ $j=1,$ $\ldots,r$

Axiom 9 (Independence from unrelated players) Let $v\in MG(N, R)$ and $W\in AR(N, R)$ .
Let us add an unrelated player $n+1$ to the set ofplayers $N$, and we denote $v$

‘ the $(n+1)$ -person
game. Then, the folloutng holds:

$\dot{d}_{i}(v’, W)=\dot{d}_{:}(v, W),$ $\forall i\in N,$ $\forall j\in R$ .

Aniom 9 means that the value is not changed by the addition of umelated players to agame.
Note that because $R_{n+1}=\{0\}$ , the set of feasible arrangements $W$ does not change between
the $(n+1)$-person game $v’$ and the original $n$-person game $v$ in Axiom 9.

Axiom 10 $d\infty cribed$ in what follows is aproperty with respect to multi-alternative voting
games. If $\Gamma_{j}$ changed Rom awinning coalition to alosing coalition by player $i$ ’s movIng bom
$\Gamma_{j}$ to $\Gamma_{k}(k\in R_{0}-\{i\})$ , the movement is called anegatively influential movement under
arrangement $\Gamma$ . On the contrary, if $\Gamma_{j}$ changed ffom alosing coalition to awiming coalition by
player $i$ ’s moving $hom\Gamma_{j}$ to $\Gamma_{k}(k\in R_{0}-\{j\})$ , the movement is called apositively influential
movement under arrangement $\Gamma$ . Under an arrangement $\Gamma$ , let $M_{i,j}^{-}(\Gamma|v)$ be the number of
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negatively influential movements of player $i$ from $\Gamma_{j}$ and $M_{i,j}^{+}(\Gamma|v)$ the number of positively
influential movements of player $i$ from $\Gamma_{j}$ . Using $M_{i,j}^{-}(\Gamma|v)$ and $M_{i,j}^{+}(\Gamma|v)$ , we define

$M_{i)j}(v)=\{\begin{array}{ll}\sum_{\Gamma\in W}(M_{i_{1}j}^{-}(\Gamma|v)-M_{ii}^{+}(\Gamma|v)) if there erists \Gamma su\text{山} that \Gamma_{j}\ni i,i\in\Gamma_{j} 0 otherwise.\end{array}$

Then Axiom 10 is given as follows.

Axiom 10 (Proportionality to welcome degree difference) Let $W\in AR(N, R),$ $\Gamma\in$

$W,$ $i,$ $s\in N$ and $j\in R$ , and let $v$ be a voting game unth $r$ dtematives. If $M_{ii}(v)-M_{s\dot{\rho}}(v)=l$ ,
we have

$\dot{d}_{i}(v)(W)=\pi_{s}^{j}(v)(W)+\frac{l}{|W|}$ .

Let us interpret Axiom 10. First, $M_{i_{\dot{\theta}}}(\Gamma|v)$ and $M_{ii}^{+}(\Gamma|v)$ can be interpreted as welcome
and unwelcome degrees of player $i$ to altemative $j$ under arrangement $\Gamma$ , respectively. Then the
difference $M_{ 1j}^{-}(\Gamma|v)-M_{ii}^{+}(\Gamma|v)$ can show the deducted welcome degree of player $i$ to altemative
$j$ under arrangement $\Gamma$ . Accordingly, $M_{i,j}(v)$ stands for a total deducted welcome degree of
$i$ to $j$ , which may indicate the power to victory of player $i$ by choosing altemative $j$ . Axiom
10 shows that the difference of values between players $i$ and $s$ should be proportional to the
difference between their total deducted welcome degrees, more specifically, it should be the
ratio of the difference between their total deducted welcome degrees to the number of feasible
arrangements.

Theorem 4 $F\dagger mctionf^{j},$ $j=1,$ $\ldots,$
$r$ defined by (5) is the unique function which satisfies

Axioms 7 through 10.

5 Numerical example

We calculate the proposed value $f_{i}^{j}$ in Job Selection Game described in Example land
demonstrate the effect by arestriction. We compare the values in two different situations: a
situation where all students can choose all jobs and asituation when student Acamot chooee
job 2.

The proposed vaJues are shown in $Tabl\infty 1$ and 2. Table lshows the proposed values when
all students can choose all jobs while Table 2shows the proposed valuae when student Acannot
choose job 2. Because $v$ is symmetric with respect to jobs, the proposed vsluae are same
independent of the jobs students choose when all students can choose all jobs. As shown in
hble 2, the vaJue of student Ain Job 2is zero, Ths would be natural $hom$ the restriction that
Acamot take Job 2. The value of student Adecreases not only in Job 2but ako in Job lby
the restriction. This would be areflection of Axiom 10 by the decrement of possible movements
of student A. By the comparison between Tables land 2, we can observe that the restriction
can strongly change the strength (vdue) of players (students).
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thble. $\underline{1:}$The proposed
$Joblvalues$

when all
$studentscan- Job2$

choose all jobs

Player Value Normalized Value Normalized
$\overline{A11.4070.41311.4070.413}$

$B$ 8.963 0.327 8.963 0.327

$\underline{\frac{C6.9630.2546.9630.254}{Tota127.333127.3331}}$

Table. $\underline{2:}$The proposed
$valuesJobl$

when student
$Acamotch\underline{o}0\underline{s}eJob2$

job 2

Player Vlue Norm liz $d$ Value Normalized
$\overline{A8.5550.30900}$

$B$ 10.722 0.387 5.444 0.569

$\underline{\frac{C8.3880.3034.1110.430}{Tota127.66619.5551}}$

.

6 Conclusion
We have investigated extended multi-altemative games with restricted choice situations. We

have proposed a value based on marginal contributions for restricted multi-altemative games
and shown that the proposed value is proportional to the MBZ value. Further, we axiomatized
the proposed value. In numerical example, we observe that the restriction can strongly change
the strength of players.
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