
An Application Model of a Nonlinear Difference
Equation whose the all Eigenvalues are 1

桜美林大学・リベラルアーツ学群 鈴木麻美 (Mami Suzuki)
Department of Mathematics and Science, College of Liberal Arts,

J. F. Oberlin University.

1 Introduction
In the previous work, we consider the following second order nonlinear difference equa-
tions,

$\{\begin{array}{l}x(t+1)=X(x(t), y(t)),y(t+1)=Y(x(t), y(t)).\end{array}$ (1.1)

Here $X(x, y),$ $Y(x, y)$ are holomorphic functions and expanded in a neighborhood of
$(0,0)$ in the following form

$\{\begin{array}{l}X(x, y)=x+y+\sum_{i+j\geqq 2}c_{ij}x^{i}y^{j}=x+X_{1}(x, y),Y(x, y)=y+\sum_{i+j\geqq 2}d_{ij}x^{i}y^{j}=y+Y_{1}(x, y),\end{array}$ (1.2)

where $X_{1}(x, y)\not\equiv 0$ or $Y_{1}(x, y)\not\equiv 0$ .
Hereafter we consider $t$ to be a complex variable. We define domain $D_{1}(\kappa_{0}, R_{0})$ by

$D_{1}(\kappa_{0}, R_{0})=\{t : |t|>R_{0}, |\arg[t]|<\kappa_{0}\}$, (1.3)

where $\kappa_{0}$ is any constant such that $0< \kappa_{0}\leqq\frac{\pi}{4}$ , and $R_{0}$ is sufficiently large number
which may depend on $X$ and $Y$ . Further we define domain $D^{*}(\kappa, \delta)$ by

$D^{*}(\kappa, \delta)=\{x;|\arg[x]|<\kappa, 0<|x|<\delta\}$ , (1.4)

where $\delta$ is a small constant, and $\kappa$ is a constant such that $\kappa=2\kappa_{0}$ , i.e., $0< \kappa\leqq\frac{\pi}{2}$ .
Here we defined $g_{0}^{\pm}$ as follows for the coefficients of $X(x, y)$ and $Y(x, y)$

$g_{0}^{+}(c_{20}, d_{11},d_{30})= \frac{-(2c_{20}-d_{11})+\sqrt{(2c_{20}-d_{11})^{2}+8d_{30}}}{4}$ , (1.5)

$g_{0}^{-}( c_{20}, d_{11}, d_{30})=\frac{-(2c_{20}-d_{11})-\sqrt{(2c_{20}-d_{11})^{2}+8d_{30}}}{4}$, (1.6)
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respectively, and

$A_{2}=g_{0}^{+}(c_{20}, d_{11}, d_{30})+c_{20},$ $A_{1}=g_{0}^{-}(c_{20}, d_{11}, d_{30})+c_{20}$ ,

We have proved the following Theorem 1 in previous works in [7].

Theorem 1. Suppose $X(x, y)$ and $Y(x, y)$ are expanded in the following forms
(1.2),

$\{\begin{array}{l}X(x, y)=x+y+\sum_{i+j\geqq 2}c_{ij}x^{i}\dot{\psi}=x+X_{1}(x, y),Y(x, y)=y+\sum_{i+j\geqq 2}d_{ij}x^{i}y^{j}=y+Y_{1}(x, y).\end{array}$ (1.2)

(1) Suppose $d_{20}=0$ , and we assume the following conditions,

$A_{2}n\neq c_{20}-d_{11}-g_{0}^{+}(c_{20}, d_{11}, d_{30})$ (17)
$A_{1}n\neq c_{20}-d_{11}-g_{0}^{-}(c_{20}, d_{11}, d_{30})$ (1.8)

for all $n\in N,$ $(n\geqq 4)$ , then we have forrreal solutions $x(t)$ of the difference system
(1.1) the following forms

$- \frac{1}{A_{2}t}(1+\sum_{i+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})^{-1},$ $- \frac{1}{A_{1}t}(1+\sum_{j+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})^{-1}$ , (1.9)

where $\hat{q}jk$ are constants defined by $X$ and $Y$ .

(2) Further suppose $R_{1}= \max(R_{0},2/(|A_{2}|\delta)))$ and we assume $A_{2}<0,$ $A_{1},$ $A_{2}\in \mathbb{R}_{J}$

there are two solutions $x_{1}(t)$ and $x_{2}(t)$ of (1.1) such that
(i) $x_{s}(t)$ are holomorphic in $D_{1}(\kappa_{0}, R_{1})$ , and $x_{s}(t)\in D^{*}(\kappa, \delta)$ for $t\in D_{1}(\kappa_{0}, R_{1})$ ,

$s=1,2$ ,
(ii) $x_{s}(t)$ are expressible in the following form

$x_{1}(t)=- \frac{1}{A_{1}t}(1+b_{1}(t,\frac{\log t}{t}))^{-1},$ $x_{2}(t)=- \frac{1}{A_{2}t}(1+b_{2}(t,$ $\frac{\log t}{t}))^{-1}$ . (110)

Here $b_{1}(t, \log t/t),$ $b_{2}(t, \log t/t)$ are asymptotically expanded in $D_{1}(\kappa_{0}, R_{1})$ such that

$b_{1}(t,$
$\frac{\log t}{t})\sim\sum_{j+k\geqq 1}\hat{q}_{jk(1)}t^{-j}(\frac{\log t}{t})^{k}$,

$b_{2}(t,$
$\frac{\log t}{t})\sim\sum_{j+k\geqq 1}\hat{q}_{jk(2)}t^{-j}(\frac{\log t}{t})^{k}$,

as $tarrow\infty$ through $D_{1}(\kappa_{0}, R_{1})$ .
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In this proof, we use results of T. Kimura [2] and the following Theorem $C$ in [6],
though we need some modifications of Kimura’s results.

Theorem C. Suppose $X(x, y)$ and $Y(x, y)$ are defined in (1.2). We assume $d_{20}=0$

and the following conditions,

$A_{2}n\neq c_{20}-d_{11}-g_{0}^{+}(c_{20}, d_{11}, d_{30})$ , (1.7)
$A_{1}n\neq c_{20}-d_{11}-g_{0}^{-}(c_{20}, d_{11}, d_{30})$ , (1.8)

for all $n\in \mathbb{N}_{l}(n\geqq 4)$ .
(1) We have two formal solutions

$\Psi^{+}(x)=\sum_{n\geqq 2}^{\infty}a_{n}^{+}x^{n},$ $\Psi^{-}(x)=\sum_{n\geqq 2}^{\infty}a_{\overline{n}}x^{n}$

of
$\Psi(X(x, \Psi(x)))=Y(x, \Psi(x))$ , (111)

where $a_{n}^{+},$
$a_{\overline{n}}$ are given by $X$ and $Y$ .

(2) Further we assume $A_{1},$ $A_{2}\in \mathbb{R},$ $A_{2}<0$ . For any $\kappa(0<\kappa\leqq\frac{\pi}{2})$ and small
$\delta>0$ , there is a constant $\delta_{y}$ and two solutions $\Psi^{+}(x),$ $\Psi^{-}(x)$ of

$\Psi(X(x, \Psi(x)))=Y(x, \Psi(x))$ , (111)

which are holomorphic and can be expanded asymptotically in $D^{*}(\kappa, \delta)$ such that

$\Psi^{+}(x)\sim\sum_{n=2}^{\infty}a_{n}^{+}x^{n}$ , and $\Psi^{-}(x)\sim\sum_{n=2}^{\infty}a_{\overline{n}}x^{n}$ . (1.12)

as $xarrow 0$ through $D^{*}(\kappa, \delta)$ .
When we assume $d_{20}\neq 0_{f}$ then there are no analytic solution of (1.11).

2 An Application
Next we will consider the following population model (P)

$u(t+2)= \alpha u(t+1)+\beta\frac{u(t+1)-\alpha u(t)}{\alpha u(t)}$ , (P)

where $\alpha=1+r,$ $\beta$ are constants. This model is proposed by Prof. D. Dendrios [1].
Here $r$ is the net (births minus death) endogenous population (stock) growth rate. The
second term, in the right side hand, is a function depicting net immigration at $t+1$ ,
which should be considered as a”momentum” to grow from $t$ to $t+1$ . We assume that
$\alpha$ and $\beta$ are constants such that $\alpha>0$ , i.e., $r>-1$ and $\beta>0$ in (P).
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Let
$u(t+2)=u_{1}(t+2)+u_{2}(t+2)$ ,

where $u_{1}(t+2)=\alpha u(t+1),$ $u_{2}(t+2)= \beta\frac{u(t+1)-\alpha u(t)}{\alpha u(t)}$ . Here $u_{1}(t+2)$ is a term for
endogenous population growth rate from $t+1$ to $t+2$ , and $u_{2}(t+2)$ is a term for net
in-migration rate. We have

$u_{1}(t+2)=\alpha u(t+1)=\alpha\{u_{1}(t+1)+u_{2}(t+1)\}$ ,

$u_{2}(t+2)= \beta\frac{u(t+1)-\alpha u(t)}{\alpha u(t)}=\beta\frac{u_{2}(t+1)}{u_{1}(t+1)}$ ,

where $u_{1}(t+1)$ is the endogenous population growth rate from $t$ to $t+1$ , and
$u_{2}(t+1)$ due to net in-migration rate. We may write (P) as :

$u(t+2)- \alpha u(t+1)=\frac{c}{u(t)}\{u(t+1)-\alpha u(t)\}$ , $c= \frac{\beta}{\alpha}$ .

When $\alpha\neq 1,$ $(P)$ admits the unique equilibrium value $c= \frac{\beta}{\alpha}$ , and we can have
general analytic solutions such that $u(t+n)arrow c$, as $narrow\infty(n\in N)$ , making use of
theorems of previous studies [7] and [8].

When $\alpha=1$ , we note that, any value can be equilibrium point of (P). Suppose the
equation (P) has a solution $u(t)$ such that $u(t+n)arrow u_{0}>0$ , as $narrow\infty$ , in the case
$\alpha=1$ . $i_{\lrcorner}$ From [6], we have the following three cases.
1 $)$ $u(t_{0}+n)\downarrow u_{0}\geq c$ as $narrow\infty$ ,
2 $)$ $u(t_{0}+n)\uparrow u_{0}>c$ , as $narrow\infty$ ,
or
3 $)$ there is a $n_{0}$ , such that $u(t_{0}+n_{0})\leq 0$ , (extermination).

However we have not been able to prove the existence of a solution of (P) in [6].
Now we will show a solution of (P). Here we have the following Proposition 6,
analogous to Theorem C.

Proposition 6. Suppose $X(x, y)$ and $Y(x, y)$ are defined $d_{20}=0_{r}$ and we assume the
following condition,

$A_{1}n\neq c_{20}-d_{11}-g_{0}^{-}(c_{20}, d_{11}, d_{30})$, (213)

for all $n\in \mathbb{N},$ $(n\geqq 4)$ .
(1) We have a formal solution $\Psi^{-}(x)=\sum_{n\geqq 2}^{\infty}a_{\overline{n}}x^{n}$ of

$\Psi(X(x, \Psi(x)))=Y(x, \Psi(x))$ , (111)

where $a_{\overline{n}}$ are given by $X$ and $Y$ .
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(2) We assume $A_{1_{J}}A_{2}\in \mathbb{R},$ $(A_{1}\leqq A_{2})$ and $A_{1}<0$ . For any $\kappa(0<\kappa\leqq\frac{\pi}{2})$ andsmall $\delta>0_{f}$ there is a constant $\delta_{f}$ and a solution $\Psi^{-}(x)$ of (1.11 $whi$holomorphic and can be expanded asymptotically in $D^{*}(\kappa, \delta)$ such that
$)$ which is

$\Psi^{-}(x)\sim\sum_{n=2}^{\infty}a_{\overline{n}}x^{n}$,

as $xarrow 0$ through $D^{*}(\kappa, \delta)$ .

When we assume $d_{20}\neq 0$ , then there are no analytic solution of (1.11).

From Proposition 6, we have the following lemma 7, analogous to Theorem 1.

lemma 7. Suppose $X(x, y)$ and $Y(x, y)$ are expanded in the following forms

$\{\begin{array}{ll}X(x, y)=x+y+\sum_{i+j\geqq 2}c_{ij}x^{i}y^{j}=x+X_{1}(x, y), Y(x, y)=y+\sum_{i+j\geqq 2}d_{ij}x^{i}y^{j}=y+Y_{1}(x, y). (1.2)\end{array}$

(1) Suppose $d_{20}=0$ and we assume the following conditions,

$A_{1}n\neq c_{20}-d_{11}-g_{0}^{-}(c_{20}, d_{11}, d_{30})$ (1.8)
for all $n\in \mathbb{N},$ $(n\geqq 4)$ . Then the difference system

$\{\begin{array}{ll}x(t+1)=X(x(t), y(t)), y(t+1)=Y(x(t), y(t)), (1.1)\end{array}$

has a formal solution $x(t)$ of the following form

$- \frac{1}{A_{1}t}(1+\sum_{j+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})^{-1}$ , (1.9)

$\hat{q}_{jk}$ : constants defined by $X$ and $Y$ .

(2) Further suppose $R_{1}= \max(R_{0},2/(|A_{1}|S)))$ , and we assume $A<0$ ther .
solution $x_{1}(t)$ of (1.1) such that

1 $erelS$ a$l$

(i) $x_{1}(t)$ is holomorphic and $x_{1}(t)\in D^{*}(\kappa, \delta)$ for $t\in D_{1}(\kappa_{0}, R_{1})$ ,(ii) $x_{1}(t)$ are expressible in the following form

$x_{1}(t)=- \frac{1}{A_{1}t}(1+b_{1}(t,$ $\frac{\log t}{t}))^{-1}$ . (110)
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Here $b_{1}(t, \log t/t)_{}$ is asymptotically expanded in $D_{1}(\kappa_{0}, R_{1})$ such that

$b_{1}(t,$
$\frac{\log t}{t})\sim\sum_{j+k\geqq 1}\hat{q}_{jk(1)}t^{-j}(\frac{\log t}{t})^{k}$ ,

as $tarrow\infty$ through $D_{1}(\kappa_{0}, R_{1})$ .

3 The Population Model (P)
In the equation (P),

$u(t+2)= \alpha u(t+1)+\beta\frac{u(t+1)-\alpha u(t)}{\alpha u(t)}$ , (P)

we put $u(t)=v(t)+E\alpha$ . We have

$v(t+2)=(1+\alpha)v(t+1)-v(t)+F(v(t), v(t+1))$ ,

where $F(v(t), v(t+1))$ is defined by

$F(v(t), v(t+1))=- \frac{\alpha}{\beta}v(t)v(t+1)+\frac{\alpha^{2}}{\beta}v(t)^{2}$

$+(v(t+1)- \alpha v(t)+\frac{\beta}{\alpha}-\beta)\sum_{i\geqq 2}(-\frac{\alpha}{\beta})^{i}v(t)^{i}$ . (3.1)

Next put $v(t+1)=\xi(t),$ $v(t)=\eta(t)$ , we have

$(_{\eta(t}^{\xi(t}I_{1)}^{1)})=(\begin{array}{ll}\alpha +1-1 10\end{array})(\begin{array}{l}\xi(t)\eta(t)\end{array})+(\begin{array}{l}F(\eta(t),\xi(t))0\end{array})$ .

When $\alpha=1$ , we have eigenvalues $\lambda$ and $\mu$ of $M=(\begin{array}{ll}\alpha +1-1 l0\end{array})$ such that $\lambda=\mu=1$ .

Further put $P=(\begin{array}{ll}l 2l 1\end{array})$ and $(\begin{array}{l}\xi\eta\end{array})=P(\begin{array}{l}xy\end{array})$ , we have the following difference
equation

$(\begin{array}{l}x(t+l)y(t+1)\end{array})=(\begin{array}{ll}1 l0 l\end{array})(\begin{array}{l}x(t)y(t)\end{array})+P^{-1}(^{F(x(t)+y(t),x(t)+2y(t))}0)$ . (3.2)

Since $P^{-1}=(\begin{array}{ll}-1 2-1 1\end{array})$ we can write the equations (3.2) as follows,

$\{\begin{array}{l}x(t+1)=X(x(t),y(t)),y(t+1)=Y(x(t), y(t)),\end{array}$ (1.3)
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such that

$\{$

$X(x, y)=x+y-F(x+y, x+2y)=x+(y+ \sum_{i+j\geq 2}c_{ij}x^{i}y^{j})$

$=x+X_{1}(x,y)$ ,

$Y(x, y)=y+F(x+y, x+2y)=y+( \sum_{i+j\geq 2}d_{ij}x^{i}y^{j})$

$=y+Y_{1}(x, y)$ ,

$(1.2’)$

where $d_{ij}=-c_{ij}$ .
$i$Rom the definition of the function $F$ by (3.1), when $\alpha=1$ , we have

$F(x+y,x+2y)=- \frac{1}{\beta}(xy+y^{2})+\frac{1}{\beta^{2}}(x^{2}y+2xy^{2}+y^{3})+\sum_{i+j\geqq 4,j\geqq 1}\gamma_{1j}x^{i}y^{j}$ , (3.3)

where $\gamma_{ij}$ are constants which consist of $\beta$ . $i$From (3.3), we have the coefficients of $X$

and $Y$ in (1.2’) as follows,

$c_{20}=d_{20}=0,$ $c_{n0}=d_{n0}=0,$ $(n\geqq 3)$ ,

$d_{11}=- \frac{1}{\beta}<0,$ $d_{02}=- \frac{1}{\beta}<0,$ $d_{21}= \frac{1}{\beta^{2}}$ ,

and have

$A_{1}=g_{0}^{-}(c_{20}, d_{11}, d_{30})+c_{20}= \frac{-(0+\frac{1}{\beta})-\sqrt{(0+\frac{1}{\beta})^{2}+0}}{4}+0=-\frac{1}{2\beta}<0$,

$A_{2}=g_{0}^{+}(c_{20}, d_{11}, d_{30})+c_{20}= \frac{-(0+\frac{1}{\beta})+\sqrt{(0+\frac{1}{\beta})^{2}+0}}{4}+0=0$

,

(3.4)

Here we can not have the condition $A_{1}\leqq A_{2}<0$ , however we have $A_{1}<A_{2}=0$ .
Thus we put $a_{2}=g_{0}^{-}(c_{20}, d_{11}, d_{30}),$ $A_{1}=a_{2}+c_{20}<0$ . Since

$c_{20}-d_{11}-g_{0}^{-}(c_{20}, d_{11},d_{30})= \frac{3}{2\beta}>0$ ,

we have
$A_{1}n\neq c_{20}-d_{11}-g_{0}^{-}(c_{20}, d_{11}, d_{30})$ ,

for all $n\in \mathbb{N}$ .

By Proposition 6, the functional equation

$\Psi(X(x, \Psi(x)))=Y(x, \Psi(x))$ , (111)

which $X$ and $Y$ are defined by (1.2’) has a formal solution $\Psi^{-}(x)=\sum_{n\geqq 2}^{\infty}a_{\overline{n}}x^{n}$ ,
where $a_{\overline{n}}$ are defined by $X$ and $Y$ .
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Further, for any $\kappa,$ $0< \kappa\leqq\frac{\pi}{2}$ , there are a $\delta>0$ and a solutions $\Psi^{-}(x)$ of (1.11),
which are holomorphic and can be expanded asymptotically such that

$\Psi^{-}(x)\sim\sum_{n=2}^{\infty}a_{n}^{-}x^{n}$ ,

as $xarrow 0$ through
$D^{*}(\kappa, \delta)=\{x;|\arg[x]|<\kappa, 0<|x|<\delta\}$ . (1.4)

$i^{From}$ Lemma 7, we have a formal solution $x(t)$ of (3.2) such that

$- \frac{1}{A_{1}t}(1+\sum_{j+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})^{-1}=\frac{2\beta}{t}(1+\sum_{j+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})^{-1}$, (3.5)

where $\hat{q}_{jk}$ are constants defined by $X$ and $Y$ in (1.2’).

Further suppose $R_{1}= \max(R_{0},2/(|A_{1}|\delta)))$ , since $A_{1}=- \frac{1}{2\beta}<A_{2}=0$ , there is a
solution $x(t)$ of (3.2) such that
(i) $x(t)$ are holomorphic and $x(t)\in D^{*}(\kappa, \delta)$ for $t\in D_{1}(\kappa_{0}, R_{1})$ ,
(ii) $x(t)$ is expressible in the following form

$x(t)=- \frac{1}{A_{1}t}(1+b(t,$ $\frac{\log t}{t}))^{-1}=\frac{2\beta}{t}(1+b(t,$ $\frac{\log t}{t}))^{-1}$ . (3.6)

Here $b(t, \log t/t)$ are asymptotically expanded in $D_{1}(\kappa_{0}, R_{1})$ such that

$b(t,$
$\frac{\log t}{t})\sim\sum_{j+k\geqq 1}\hat{q}_{jk(1)}t^{-j}(\frac{\log t}{t})^{k}$ ,

as $tarrow\infty$ through $D_{1}(\kappa_{0}, R_{1})$ .

By the definition (1.7), we have $y(t)=\Psi(x(t))$ . Since

$(^{u(t+1)}u(t)_{\alpha}-\overline{g}^{\xi}\alpha)=(\begin{array}{l}v(t+1)v(t)\end{array})=(\begin{array}{l}\xi\eta\end{array})=P(\begin{array}{l}xy\end{array})=(\begin{array}{ll}1 2l 1\end{array})(\begin{array}{l}xy\end{array})$ ,

we have a solution $u(t)$ of the (P), such that

$u(t)=x(t)+y(t)+ \cdot\frac{\beta}{\alpha}=x(t)+\Psi(x(t))+\frac{\beta}{\alpha}\sim x(t)+\sum_{n\geqq 2}^{\infty}a_{\overline{n}}x(t)^{n}+\frac{\beta}{\alpha}$

where $x(t)$ is given in the equation (3.6) as $tarrow\infty$ through $D_{1}(\kappa_{0}, R_{1})$ .

Here we have proved existence a solution of the Population Model (P).

64



References
[1] D. Dendrinos, Private communication.

[2] T. Kimura, On the Iteration of Analytic Functions, Funkcialaj Ekvacioj, 14,
(1971), 197-238.

[3] M. Suzuki, Difference Equation for a Population Model, Discrete Dynamics in
Nature and Society, 5, (2000), 9-18.

[4] M. Suzuki, Holomorphic solutions of a functional equation and their applications
to nonlinear second order difference equations, Aequationes mathematicae, 74,
(2007), 7-25.

[5] M. Suzuki, Analytic General Solutions of Nonlinear Difference Equations,
Annali di Matematica Pure ed Applicata, 187, (2008), 353-368.

[6] M. Suzuki, Holomorphic solutions of some functional equation which has a
relation with nonlinear difference systems, Surikaisekikenkyusho K6kyuroku No.
1547 (2007), 78-86.

[7] M. Suzuki, Analytic $sol$ solutions of a nonlinear two vamables Difference system,
Surikaisekikenkyusho K6kyuroku No. 1582 (2008), 53-82.

65


