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1 Introduction

In the previous work, we consider the following second order nonlinear difference equa-
tions,

2(t +1) = X (2(t), y(1)),
{ y(t+1) =Y(2(2),y(t)). (1.1)

Here X (z,y), Y(z,y) are holomorphic functions and expanded in a neighborhood of
(0,0) in the following form

X@y)=z+y+ ) cz'y’ =z + Xi(z,y),
4522

Y(z,9) =y+ ) dijz'y’ =y +Yi(z,y),
i+322

(1.2)

where X;(z,y) # 0 or Y;(z,y) # 0.
Hereafter we consider ¢ to be a complex variable. We define domain D; (ko, Ro) by

Di(Ko, Ro) = {t : [t| > Ro,|argt]| < xo}, -(1.3)

where ko is any constant such that 0 < k¢ £ 7> and Ry is sufficiently large number

which may depend on X and Y. Further we define domain D*(, §) by
D*(k,8) = {z; | arg[z]| < &, 0 < |z| < &}, (1.4)

where § is a small constant, and & is a constant such that x = 2ko, i.e., 0 < k < z.
Here we defined gi as follows for the coefficients of X (z,y) and Y(z,y)

—(2¢20 — d11) + /(2c20 — d11)? + 8d3o
4 b

-—-(2620 - du) - \/(2620 bt d11)2 + 8d30
4 7

93 (cz0, du1, d3o) = (1.5)

9o (c20,d11, d3o) = (1.6)
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respectively, and

A, = gg(czo, du,dso) + ¢z, Ay = 90_(020, dy, dao) + ¢20,

We have proved the following Theorem 1 in previous works in [7].

Theorem 1. Suppose X(z,y) and Y(z,y) are expanded in the following forms

(1.2),
X(zy)=c+y+ ) e’y =2+ Xi(e,y),
i+52
o (1.2)
Y(z,y)=y+ Y dijz'y’ =y+Yi(z,y).
+322
(1) Suppose dyg = 0, and we assume the following conditions,
Aan # c0 — di1 — g3 (c20,d11, d3o) (1.7)
An # c0 — dyy — g5 (€20, d11, d3o) (1.8)

for alln € N, (n 2 4), then we have formal solutions z(t) of the difference system
(1.1) the following forms

-1 -1
1 - logt 1 log t '
_2—2;(1—{—.2;‘1 t (otg)> , Alt(l+qukt J(otg)) ,  (1.9)

i+ k>1

where §;r are constants defined by X and Y.

(2) Further suppose R, = max(Ry,2/(]A2|d))) and we assume A; < 0, Ay, A; € R,
there are two solutions x,(t) and z,(t) of (1.1) such that

(1) zs(t) are holomorphic in Di(ko, R1), and z,(t) € D*(k,8) for t € Di(ro, Ry),
s=1,2,
(ii) z4(t) are expressible in the following form

zl(t)=—l—411—t(1+bl(t,1‘%t))-l, 2(t)_.———< +b2( 1°tgt))_1. (1.10)

Here by(t,logt/t), ba(t,logt/t) are asymptotically expanded in Di(ko, R1) such that

b1( logt) Z QJk(l)t_J(lo t)

J+k21

bz(t logt) N Z ij(z)t_j(loft)k,

j+k21

as t — oo through D,(ko, R;).
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In this proof, we use results of T. Kimura [2] and the following Theorem C in [6]
though we need some modifications of Kimura’s results.

b)

Theorem C. Suppose X (z,y) and Y (z,y) are defined in (1.2). We assume dap = 0
and the following conditions,

Agn # cz0 — dyy — 93-(020, d11, d30), (1.7)

Arn # co0 — di1 — g5 (c20, d11, dso), (1.8)

foralln €N, (n 2 4).
(1) We have two formal solutions

Ut(e) =) ata™, U (x) = ajz"

n22 n22

of
\I’(X(wi(x))) = Y(:c,‘Il(x)), (1'11)
where at, a7 are given by X and Y.

(2) Further we assume A;,A; € R, A; < 0. For any & (0 < k £ Z) and small
8 > 0, there is a constant §, and two solutions U*(z), ¥~ (z) of

\I’(X(x7‘l’(m))) = Y(x’\I’(w))’ (1'11)

which are holomorphic and can be expanded asymptotically in D*(k,6) such that

U*(z) ~ Za:m", and V¥~ (z)~ Za;z". (1.12)
n=2 n=2

as z — 0 through D*(k, ).

When we assume dyo # 0, then there are no analytic solution of (1.11).

2 An Application
Next we will consider the following population model (P)

u(t + 1) — au(t)
ou(t) ’

ut+2)=ou(t+1)+8 (P)
where a = 1 + r, B are constants. This model is proposed by Prof. D. Dendrios [1].
Here r is the net (births minus death) endogenous population (stock) growth rate. The
second term, in the right side hand, is a function depicting net immigration at ¢ + 1,
which should be considered as a ”momentum” to grow from ¢ to ¢t +1. We assume that
« and B are constants such that o > 0,i.e.,7 > —1 and 8 > 0 in (P).
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Let

u(t +2) = uy(t + 2) + ua(t + 2),
where ul(t + 2) = au(t + 1), U2(t + 2) = IBW. Here ul(t + 2) is a term for
endogenous population growth rate from ¢ + 1 to ¢t + 2, and uz(t + 2) is a term for net
in-migration rate. We have

ui(t +2) = au(t + 1) = afui(t + 1) + uz(t + 1)},

ut+1)—ou(t)  ux(t+1)
au(t) T Ty (t+ 1)

u(t+2) =8

where u, (¢ + 1) is the endogenous population growth rate from ¢ to ¢ + 1, and
uz(t + 1) due to net in-migration rate. We may write (P) as :

u(t)
8

When o # 1, (P) admits the unique equilibrium value ¢ = £, and we can have
general analytic solutions such that u(t + n) — ¢, as n = oo (n € N), making use of
theorems of previous studies [7] and [8].

When o = 1, we note that, any value can be equilibrium point of (P). Suppose the
equation (P) has a solution u(t) such that u(t + n) — up > 0, as n — oo, in the case
a = 1. ;From [6], we have the following three cases.

1) u(to+n) L up > cas n — oo,

2) u(to+n) T up > ¢, as n = oo,

or

3) there is a ng, such that u(to + no) < 0, (extermination) .

However we have not been able to prove the existence of a solution of (P) in [6].
Now we will show a solution of (P). Here we have the following Proposition 6,
analogous to Theorem C.

u(t+2) —au(t+1) = {u(t+1)—au(t)}, c=

RI®

Proposition 6. Suppose X (z,y) and Y(z,y) are defined dzo = 0, and we assume the
following condition,

Ain ?4 C20 — dy — 96_(‘320, dlla dSO)a (2-13)

foralln e N, (n 2 4).
(1) We have a formal solution ¥~ (z) = 3273, a ™ of

V(X (z,¥(2))) = Y(z, ¥(z)), (1.11)

where a_ are given by X and Y.
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(2) We assume A, Az €R, (A; < Az) and A, < 0. For any k (0 < x < %) and

small § > 0, there is a constant 4, and a solution U~ (x) of (1.11) which is
holomorphic and can be ezpanded asymptotically in D*(k,6) such that

U~ (z) ~ i a,z",

n=2

as x — 0 through D*(k, §).

When we assume d,, # 0, then there are no analytic solution of (1.11).

From Proposition 6, we have the following lemma, 7, analogous to Theorem 1.

lemma 7. Suppose X(z,y) and Y(z,y) are ezpanded in the following forms

X($,y)=$+y+ Z C,'jl‘iyj=.'l:+X1(.’l:,y),

i+522
Y(@v)=y+ 3 dyjo'y’ =y + Yi(a,y).

i+j22
(1) Suppose dyy = 0 and we assume the following conditions,
A1n # c0 — dy1 — g5 (€20, di1, dso)
foralln €N, (n 2 4). Then the difference system
{ 2(t+1) = X(a(2), y(2)),
y(t +1) = Y(2(t), y(2)),
has a formal solution z(t) of the following form
-1
. k
_A_llf (l + ﬂ;gl Gixt™ (lo—tgf) ) ,

ik : constants defined by X and Y.

(1.2)

(1.8)

(1.1)

(1.9)

(2) Further suppose R, = max(Ro,2/(|A;|8))), and we assume Ay <0, there is a

solution z,(t) of (1.1) such that
(i) z1(t) is holomorphic and z1(t) € D*(x,9) fort e D (o, Ry),
(i) z,(t) are expressible in the Jollowing form

-1
1 log ¢

(1.10)
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Here b,(t,logt/t), is asymptotically ezpanded in Dy (ko, Ry) such that

( logt) Z qjk(l)t_](lo t)

J+k21

as t = oo through D,(ko, R,).

3 The Population Model (P)

In the equation (P),

u(t + 1) — au(t)

ut+2)=au(t+1)+p au(® ,

(P)
we put u(t) = v(t) + g We have

v(t+2) = (L+a)u(t+1) — v(t) + F(v(t),v(t + 1)),
where F(v(t),v(t + 1)) is defined by

2

F(v(t),v(t +1)) = ——-g-v(t)v(t +1)+ a—v(t)2

+ (v(t 4 1) — av(?) + = -B) Z(——) vo(t)'. (3.1)

i22

Next put v(t + 1) = £(t), v(¢) = 7(t), we have
()=(1 D)@

a+1
1

) and (f}) =P (:), we have the following difference

When a = 1, we have eigenvalues A and p of M = ( _01> such that A=y = 1.

Further put P = (i ?

equation

(;8 I B) _ (1 1) (xgg) (F(x(t) +y(t)6x(t) + 2y(t))) . (52)

-1 2

. _l _
Since P7! = (_1 1

) we can write the equations (3.2) as follows,

2(t +1) = X(2(2), y(1)),
{ Wt +1) = Y(a(t), (1)), 43
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such that
( . .
X@y =c+y-Featystw)=a+(y+ Y aa'y)
=z + X,(z,y), i+j22
J o) . (1.2)
\ = y+Y1(:1:,y), i+i22
where d;; = —c;;.

(From the definition of the function F by (3.1), when a = 1, we have
1 2 1, 2 2, .3 i)
F(m+y,a:+2y)=:———(xy+y)+-—5(x y+2zy* +y°) + E vi;z'y’,  (3.3)
B g i+524,521

where v;; are constants which consist of 8. ;From (3.3), we have the coefficients of X
and Y in (1.2’) as follows,

Co =dgy = 0, cho =dno = 0, (n Z 3),

1 1 1
dll:_g<0a doz=-ﬁ<0, d21=§a
and have
~(0+3)—4/(0+5)2+0 1
A =95(C20sd11,d30)+620= ) 4 +O=_ﬁ<0’
—(0+35)+,/(0+ %) +0
Az = g3 (€0, d11,d30) + c20 = T +0=0,

(3.4)
Here we can not have the condition 4; £ A, < 0, however we have A < Ay =0.

Thus we put ay = g5 (cg0, d11,d30), Ay = az + 30 < 0. Since

3
C20 — dyy — gg (€20, d11,d30) = §B‘ >0,

we have
An # co0 — dyg — gg (€20, d11, d3o),

for all » € N,

By Proposition 6, the functional equation
V(X (z,¥(2))) = Y(z, ¥(2)), ’ (1.11)

which X and Y are defined by (1.2’) has a formal solution ¥~ (z) = 3273, a7 2",
where a; are defined by X and Y.
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Further, for any x, 0 < k £ Z, there are a § > 0 and a solutions ¥~ (z) of (1.11),
which are holomorphic and can be expanded asymptotically such that

U= (z) ~ i a, z"
n=2

as ¢ — 0 through
D*(k,8) = {z; |arg[z]| < &, 0 < |z| < §}. (1.4)

(From Lemma 7, we have a formal solution z(¢) of (3.2) such that

ar(te S () R0 mer ) e

J+k21 J+k21

where §;;. are constants defined by X and Y in (1.2).

Further suppose R; = max(Ro,2/(|A1]d))), since A; = —5173- < A; =0, there is a
solution z(¢) of (3.2) such that

(i) z(t) are holomorphic and z(t) € D*(x,§) for t € D;(xo, Ry),
(1) x(t) is expressible in the following form

z(t) = -Ailt (1+b(t I—"?gi))—l 28 (1 +b(t, l°gt)) ) (3.6)

Here b(t,log t/t) are asymptotically expanded in D,(xq, R;) such that

( logt) Z q]k(l)t_J(lo t)

jt+k21

as t — oo through D;(xo, R;).

By the definition (1.7), we have y(t) = ¥(z(t)). Since

(u(«t»(t)ll é) - (U(Z(T)l)> - @ =7 @ B G ?) (5)
we have a solution u(t) of the (P), such that

u(t) = 2(t) + y(0) + 2 = 2(0) + W ®) + £ ~ 2 + 3 aza(ey + £

n22

where z(t) is given in the equation (3.6) as t = oo through D, (ko, R)).

Here we have proved existence a solution of the Population Model (P).
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