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Abstract

A brief survey of identities about reciprocal sums of products of elements in a binary
recurrence sequence is presented. The emphasis is on elements satisfying a second order linear
recurrence relation with not necessarily constant coefficients, such as the Fibonacci or the
Lucas polynomials.
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1 Binary sequences with constant coefficients

By a reciprocal sum, we refer to a series of the form 3, 1/E,, where E,, is an expression involving
elements satisfying a linear recurrence relation of fixed order. There have appeared a number of
such sums of elements satisfying a second order linear recurrence relation with constant coefficients,
with the sequences of Fibonacci and Lucas numbers being investigated most.

Let us recall some facts about second order recurrences with constant coefficients. For fixed
P,Q(# 0) € R, denote by L(P, Q) the set of sequences {R,}nez of real numbers satisfying a second
order linear recurrence relation of the form

Rns1=PR,—QRn_;  (ne2). (L1)
Let o, 3 be the roots of its characteristic equation
z? - Pxr+ Q=0 with |a| <|8], A = P2 -4Q.

The case when P = 1 and Q = —1 is historically of most interest. In this case, with initial values
Fy =0, Fy =1, the unique solution sequence to (1.1) is the sequence {F,} of Fibonacci numbers,
while if the initial values are Lo = 2, L, = P, the unique solution sequence of (1.1) is the sequence
{Ln} of Lucas numbers.

A general discussion about reciprocal sums of the two types

= 1

(=11
and
n=1 FnFn+k1 Fn+k2 n+lc Z FnFn+k; n+ka * Fn+k..
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up to 1969 was given in [8]; see also [23]. There it was shown that the so-called second degree
summation, i.e., the denominator contains a product of two Fibonacci numbers, can be completely
settled. The case of alternating series yields

n—1 k . .
Z ;, 1;, = ;k (é -3 Ei—:-‘-) (k € N), (1.2)
n=1" """ j=1 J

and for the non-alternating case, Y p- ; 1/F,Fy i has explicit values when k is even, while for odd
k it can be reduced to the form

o0

1
n=1 FnFn+1

a+b with a,b € Q.

Moreover, the third degree summation can be put in the form

= 1 o 1
—_—=c4+d —_— S,t €N N
rg FnFn+an+t ,; Fn+2Fn+1Fn ( )

with the constants ¢ and d being determined for certain given s and t. In general, all summations
of the shape

(=)t
Z H.-—1 Fn+k¢ and Z H;-—1 Fn+k¢

n=] naxl

can be written under the form

a+b§ 1 and c+d§: (G
oot Frntr—1Fngroa- - Fn o FppraFagrz- F’

respectively, where a, b, c,d € Q. Identities of these kinds have regularly been posed as problems in
the literature, such as in [42].

A reciprocal sum of Fibonacci numbers with subscripts 2" was proposed in 1974 as a problem
by D.A. Millin in [33], and was subsequently solved by 1.J. Good in [15] as

(1.3)
Since then, many proofs have been offered, [19]. In 1976, Hoggart and Bicknell {20] gave the following
more general formula (see also [7]), when k € N,

2Ly~ Fu/B+5F2

)P 2F (1.4)
n=0 Famk —-————2 Fiv5 + Ly if k is even.
2F}

In 1976, using the Lambert series expansion, Bruckman and Good [9] evaluated several reciprocal
sums including

= Fi.gn+1 . 2k Fy = Ly.gn+1 - 2"\/§L ne0 a(n)Fa(n+1) F:(O) 2

where s(n) is a positive integer-valued function with s(n) — oo as n — 0.
In 1977, Greig ({17], [18]) summed a finite reciprocal series of the form }_, 1/Fy.2», which after

passing to limit yields (1.4) as well as other reciprocal sums expressed as a combination of smaller’

sums. In the same year, Bruckman, [10], obtain closed form expressions of certain reciprocal sums
in terms of complete elliptic integrals of the first and second kind.
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In 1984, Popov [37] showed, among other things, that

i 1 __1 (5&_\/5)

n=0 Fan+2kF2(n+l)m+2k 2Fm \ Far

where m is odd and —(m — 1) < 2k < m — 1. He later extended this result in [38] with £,m € N to

ot

= 1.5
Z Ul+nmUt+(n+1)m Ur um (1.5)
and o 1t
nm - 1
Q == , (1.6)
n=0 Vt+1_szl+(n+1)m af — Q Um Vl
where ﬁ”
a” — —an
U, = prpmy Va=a" + 8" (1.7)
In 1990, Andfe-Jeannin [3] gave explicit formulae for the reciprocal sums of elements satisfying
(1.1) with @ = —1 in terms of the values of Lambert series, namely, when k is an odd positive
integer,

o0

Z Ukn

= Uk(n+l)

1 _ 2 2ky _ k g*
S VinVansry (@ = B)Uk (L™ - 2™} + (a-BUsVi’

_2(a=-p) g*
e {L(8™) - 2L(8*) + 2L(8°")} + 577

o0

where Uy, V;, are as defined in (1.7) and

@=3 =
L(z) = —
n=11—z"

In 1994, Good, [16} discovered a symmetry property of alternating reciprocal sums of elements
G, satisfying (1.1) with @ = —1 of the form

_am—pgm =nn
Z Gn n+k a— Z GnGaym ’
where all Gy, ..., Gn+x are assumed nonzero.

In 1995, Melham and Shanon (31} computed the sums in (1.5), (1.6) for elements U,, V,, satisfying
the recurrence (1.1) with Q = —1 and initial values

Ug=0,U;=1;, V=2, V1 =P
Among the established reciprocal sums are, when k € N,

1-Ui

U
Z Uk.an 1-Uk

=0
n Uk

ifP>2

+
(1.8)
+

wI=R |-

ifP< -2

)» o S v .
Uank(n+1) T ofUR’ 7 VinVi(n+1) T 2(a- Bk
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Melham furthered his investigations in two further papers [29] and [30] obtaining more identities
some of which generalize those of Andfe-Jeannin [3] such as

i L;;Fk(i—l) + (—l)k(""'l)Fk — FkLg+1 - Fk(n.,.g) (kyn € N)
= (FeL™ = Fagyn) (FeLit = Frges)  Fi (FeLR™? = Fi(ass)) ’
S 1 2(a - B) 2k k k 1 ¢ 1

= L — 2L(B%) + 2L - k,m odd
2 Gl = T BN —2LEN 42 = = 3 o (km 0dd)
R 1 1 1

= 2L(8%*) —4L(B%*) - Y ——r k,m odd).
g VinVi(am) (@ = B)Ukm ( (6%) —4L(5™) ,.2.—.:1 a""an) - (e odd)

In 1999, Rabinowitz {39] employed a partial fraction decomposition to derive a reduction algo-
rithm which enabled him to obtain various finite reciprocal sums such as, when k € N,

> 5 Z(—i— Fam)
FnFn+k Fy F; Fien
— - if k is odd
i B EL (; FyFiyy ; FiFpiy
FoFppx k/2
n=1 1 1
— _— if ki
F ; Foi1Fy; 1 Fiseven
1 1 1

= - beNuU{0
1 HnisHnibra  HorrHorza  HNibp1HN4b42 ( {on,

where H,, satisfies the recurrence (1.1) with P =1,Q = —1.

In 2001, Hu, Sun and Liu, {21], extended the results of second degree summation to the most
general situation, which we now elaborate. Let {w,} € L(P,Q) and let f be a function such that
f(n) € Z and wy(n) # 0 for all n € NU {0}.

1) If m € N, then

= @ asm _ @OUsmy-100)
= WImWiar)  WrOWem)

2) Assume that P, Q € R\ {0} and P2 —4Q > 0. If lim,_o f(n) = +00 and w; # awo, then

= QMU iy af©
et Wiy Wens1) (w1 — awo)wyo)’

where Af(n) = f(n + 1) — f(n). As pointed out by Hu, Sun and Liu, the above results contain
almost all previously known second degree reciprocal sums identities.

Two other aspects about infinite reciprocal sums are their irrationality and transcendence. It was
proved by André-Jeanin, [1], using Apery’s method that Zn>1 1/F, and 37, 5, 1/L, are irrational;
an alternative proof using g-exponential and g-logarithm is due to Duverney, [13]. Badea [4] (see
also [2], [5], [28]) proved that 3., 1/Fsnyy and 3,5, 1/Lany, are irrational, while Y, o, 1/Fon
and 37, 1/L3n are clearly irrational from their explicit shapes in (1.3), (1.8). Tachiya, [41], proved
results about irrationality of certain Lambert series with applications to reciprocal sums of the form
Y- n 1/Ran+s. Quantitative results about irrationality measure have appeared, e.g. in [27]. Regard-
ing transcendence and algebraic independence, Mignotte, [32], showed that 3°-,(2 + (—1)")/F3n
is transcendental. Bundchuuh and Pethd, [11], used Schmidt’s simultaneous approximation the-
orem and Mahler’s method to deduce transcendence results about reciprocal sums of the form
Y n Bn/Rj(n), where the numerators B, do not grow too fast and the denominators Ry(,) satisfy
(1.1) with exponential growth. Nishioka, [34], using Mahler’s method proved algebraic independence
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of numbers of the form 3, an/Ry(n), where g(n) =~ d", d > 2. Algebraic independence results along
this line have been of much progress, see e.g. [14], (24]. Nyblom ([35], [36]) using Roth’s theo-
rem proved transcendence of numbers with reciprocal sums Y, 1/Rn1 , 3., 1/2"Fp , Y, 1/2" Ly, as
special cases.

2 Binary sequences with non-constant coefficients

A natural question arisen from the investigation of reciprocal sums of elements satisfying a binary
recurrecne with constant coefficients is whether the identities previously discovered continue to hold
when the coefficients in the binary recurrence are not necessarily constant. It is shown in [25] that
the answer is generally positive. In principle, this is achieved by extending results anologous to
the two main assertions of Hu, Sun and Liu mentioned in the last part of the previous section. In
the rest of this paper, a discussion along this line is given with emphasis being placed on deriving
reciprocal sums for Fibonacci and Lucas polynomials.

Let A := {an}nez and B := {b,}nez be two sequences of elements in a field and assume that
an, # 0 for all n € Z. Let L(A, B) be the set of all second order recurrence sequences {Wy,}nez
satisfying

Wat2 = bnsaWas1 + ans2Wy (n € 2). (2.1)
For a fixed m € Z, define
Cm,o =0, Cm,l =1, Cm,n = m+ncm,n-l + am+nCm,n-—2 (n € Z) (2-2)
Q203 - Gny if n>0
=<1 if n=0 (2.3)

(a180a-1-+-an42)" if n<O.

Recently, in [25], the following general results about reciprocal sums of elements satisfying (2.1) were
proved.

Theorem 1. Let {A,}, {Bn} € L(A,B), D = A;Bg — A¢B; and let {Crmn}, 6n be defined as
above. Let f : NU {0} — Z. Assume that By # 0 for all k € NU {0}.
I Ift € N, then

-1
‘Z: (=1)®8;0) D Criiy, skrn—sw _ (=1 P0500) D Cr0), 1010 _ Arr _ Aro
= By(k)Bs(k+1) By(0)By (1) Bsry  Bj(o)

I If limg oo f(k) = +00 and limy,—00 An/Bn = £ (with respect to a suitable topology of the field),
then

o= (=1)/®é54) D Cyhy, skr)=106) _ , _ Ar0)
2 B: B =4 Bty
pard F)Bf(k+1) 1(0)

If we take, in Theorem 1,
A =—Q, ba=P, By, =Wy, Con=An=U, (ne2),

we simply recover the results of Hu, Sun and Liu mentioned earlier.
Special cases of Theorem 1 are the Fibonacci polynomials Fy,(z), and the Lucas polynomials
L,(z), which satisfy the recurrence (2.1) with b, =z # 0, a, =1, i.e,,

Foy2(x) = 2Fpp1(z) + Fa(z), Lpy2(z) =xLny1(z) + La(z) (n e Z),
and respective initial values

Fo(z) =0, Fi(z) =1; Lo(z) =2, Li(z) ==z.



Putting

T+ Vz?+4 z—Vz?+4
5 A=

alz) =
it is well-known that

a(z)"™ — Blx)"
a(z) - B(=z) ’

Applying Theorem 1 to these two particular cases of Fibonacci and Lucas polynomials, we get

Fo(z) = Lp(z) = a(x)™ + B(z)™.

Proposition 1. Let f : NU {0} — Z. Assume that Fy,)(x) and Lgn)(x) are nonzero for all
n € NU {0}.
I If teN, then

1) E( —DIO Freyny— g (@) _ (DI Froy_0)(®) _ Fro+1@) _ Fropa (@)

= Froo @) Fres1)(2) - Fyo)(@)Fyy(x) Fy 1) () Fy(0)(z)

2) ti (VI ®(2? +4) Frerny-g0 (@) _ (17O (2? + 4) Fyy-s(0)(®)
k=0 Ly ey (@) L g (41 () Lio@Lso(@)
Lywy+1(x) _ Lyoy+1(2)
Ly (x) Lyoy(x)

IL If limp oo f(R) = 00, then

1 = (1O Friin) sy () - () - Fron(@)
& Frm(@)Frgey(z) Froy(z) ’

2) i (=1 B (@? + 4) Fronen)-si) () - Q) - Ly0)+1(2)

pard Lg(ky ()L g 41y () Lsy(z) ’
a(zr) whenz>0
h Qz) =
where (=) {ﬁ(m) when z < 0.

Proof. 1. For the case of Fibonacci polynomials, in Theorem 1 take
An = Fpy1(2), Bn = Fu(@), Crnyn = Fu(x) with 8py =1, D = —1.
For the case of Lucas polynomials, in Theorem 1 take
Ap = Lyn11(z), Bn = La(z), Crpn = Fu(z) with Sy =1, D=2z%+4.

II. The assertions follow from Part I observing that

lim Fryi(z) = lim Lpyi(x) - {a(z) ifx>0

n—ooo Fo(z)  n—oco Ly(z) Blz) ifx<O.

O

Applying Proposition 1, we deduce a number of identities about infinite reciprocal sums gener-
alizing those of Fibonacci and Lucas numbers.

Corollary 1. Let a,j,t,k,r € N with k even, r odd, s € NU {0} and let Q(:z:) be as defined in
Proposition 1. Then

- (=1 _ (=1t _ Fyq(x)
Y ;Fmﬂ(z)ﬂ(nﬂ)ﬂ(m) ~ F(2) (Q(w) Fy(z) )

17



(=1)ltn-D)/elt Fjpi(z)  1—(-1)t
2) ZF(x)Fn+,(z) e S (-0 Fi@) T RE @

n=1 i=1

oo (_1)n+1+[(n_1)/¢], »
3) gl Fo(z)Fpte(x) F( ) (tn( )_Z g(lz) )

7=1

4) Z( =1)2#" 4+ Fe_1yatn () = () - Fatst1(2)

n=0 at"+:(z)Fat"+1+n(z) °+‘ (.’t)
=z +1
2 Z P~ 0@ 0@ -1
(=1)* _ (=1) _ Ljn(x)
® nEz;) Len+i(Z)Lenany+5(x) (22 +4)Fe(z) (Q(x) Lj(z) )

(~=1)ln=1)/1]t p
K ,gLn(z)L..ﬂ(x) T ORE > L@ T2+ DR

=
) ,?_;; T = @R (”’( )~ ?;1 L?ZS’)

9) 2, (::_1)+(;>§(¢_1)+§3 -y (-5

10) Zi a(z)mlFm(z) R (”‘)Z; o oy o o8

u 2,; LG s @ e 2 L,:((zx))L:(fS))(z)'

D% s & e = @ TR () - %%))
) glf«mnm(a(c) i)t(" DL - (@ -(t——‘tl));}(a:) (9(”‘) - EEE—S-’ ) |
o g Ft(2n+1)+j(-’€)21— (—IyR@? (;‘zlt)(gl (Q( )= gza(:)c))

15) ,i_'; Lt(zn+1)+j(:)22-"-4("1)’%(-’3)2 = (;i)(:l (“‘z) -

1 Fy(z) _ Faj41(x)
10 Y I TR L@ Fp() | Fu@) ( @) = @) )

n-‘O
1 _ 1 _ F(2) _ Bjy(z)
vgo Fant2)r42i(®) — Fr(z) ~ Le(z)Fj(x)  For(x) (Q(z) F4(z) )

_7+1(27) 1- (—1)t (1').

18
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z2 44 _ 1 Li(x) N Foit1(x)

i 2_.; Eorrn T = R g (@~ B
x?+4 _ 1 _ Li(2) _ Fjn(z)

,,z___% L@ I ~ RORE A (@~ ety

Proof. For parts 1) and 6), put f(n) = tn + j in Proposition 1. part II 1) and 2), respectively.

Parts 2) and 7) follow from summing the identities in parts 1) and 6), respectively, over j from
1 to t and rearranging.

Part 3) follows from multiplying the identity in part 1) by (—1)/*!, summing over j from 1 to ¢
and rearranging.

For parts 4) and 9), put f(n) = at™ + s in Proposition 1 part II 1) and 2), respectively.

Part 5) follows easily by putting ¢ = 2, s = 0 in the identity of part 4) and simplifying. This is a
particularly pleasing identity with each denominator in the left hand sum containing only one term
of exponential index; this is the only such case derivable from part 4).

Part 8) follows from multiplying the identity in part 6) by (—1)7, summmg over j from 1 to ¢
and rearranging.

Part 10) follows from dividing through by a(z)""*+V) Fyp(2) Fy(n+1)(2) in the identity

a(z)PFr(n+1)(x) + Frp(x) = a(m)r(ﬂ+l)Fr(z) (neN),

and summing over n.
Part 11) follows in the same manner as part 10) but using instead the identity

(@)" Lu(n41)(@) + Len(@) = {a(z) - B(z)}a(@) "+ Fy ().
For part 12), we start with the identity

2 +4 _ 1
Ley2a(z) — (—1)2Le(x) ~ Fa(z)Fase(x)

Putting a = j, j +¢,..., j + Nt, and multiplying by (-1)%, (=1)¥,..., (—1)N?, respecteively, we
get

CO*E+8) () (DM@ (-
Leyaj(z) = (-1)Le(x)  Fj(2)Fj4e(z)’ Latsai(@) = (1) Le(z)  Fipe(2)Fjp2e(z)’ "
(=1)Nt(z? +4) (=N

Lean+1)+23 (@) — (—1P ML, (z) Fiyne(2)Fjpv41ye(x)”

Summing these expressions and letting N — oo, we get

) (=) - (1™
@ +4)3 Lezn+1)+25(2) — (1) Ly(z) — 2 Fyne(@)Fjpmrare

n=0 n=0

and the result follows from replacing the right hand expression by the result of part 1).
Part 13) follows along the same line of proof as in part 12) but starting instead with the identity

1 1
Lyy2a(z) + (—1)2Le(z) B La(z)Late’

and using the result of part 6) at the end.
For part 14), we start with the identity

1 1

Fart@)? — (-1)°FR(2)?  Fo(@)Farm(@)
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Putting a = j, j +2t,..., j + 2Nt, we get

1 1 1 1
Fipe(x)? — (-1)iF(x)? = Fj(z)Fj42e(z)’ Fjyae(x)? = (-1)IF(z)?  Fjt2(x)Fjsa(z)’ "’
1 1
Fipans1(®)? — (1) F(2)?  Fjpane(@) Fjpav+1)e(T)’

Summing these expressions and letting N — oo, we get

o0

1 s 1
Fian+1)+5(@)? — (-1)iF(z)? Z Fatnti (@) Fag(ny1)+5 ()’

n=0 n=0

and the result follows from the result of part 1) with 2¢ in place of ¢.
Part 15) follows along the same line of proof as in part 14) but starting instead with the identity

x2 4+ 4 1

Laye(z)? — (-1)2Le(z)?  Fa(z)Fasze(z)
To prove the first identity of part 16), we start with the identity

Fa(e)? = (-1)""Fo(z)® = Fr(2)Fpyr(2).

Replacing n by (2n + 1)r + 25 and rearranging, we get

1 - Flan+1)r+25(2) — Fr(x) (2.4)
Flont1yr+2i (€) + Fr(x)  Fonr42;(Z) Flant2)r+2;(T)
Next, from the identity
Lo (z)Fan+1)r+2;(T) = Fant+ayr+2i(2) + (—1)" Fanra2;(x),
using the fact that r is odd, we get
F(2n+l)r+2.2'(z) - 1 ( 1 _ 1 ) (2 5)
Fanr+25 (%) Fani2yr+2i(Z)  Le(x) \ Fane42(2)  Fant2)r+25(T)

Summing (2.4) over n from 0 to N and using (2.5) to simplify the first term on the right side which
becomes a telescoping sum, we get

1 1 ( 1 1 )_N Fy(z)

Faniyrs2;(@) + Fr(@)  Lo(z) \F2;(z)  Fant2yr2i(@) Fanr+2§(Z) Fant2)yr+2i(T)

N

n==0 n=0

The result now follows by taking N — oo, making use of the result in part 1) and the fact that
1/Fn(z) = 0 (N — oo). The second identity is proved similarly.
To prove the first identity of part 17), we start with the identity
Ln(2)? = (=1)""*Li(2)? = (2® + 4) Fn-i(2) Fatx(2).
Replacing n by (2n + 1)k + 2j and rearranging, we get

2 + 4 - _Leantnk+2;(2) — Li(2)
Lant1yk+2i(T) + Li(x)  Fonk42i(T) Fian+2)k+25(T)

(2.6)
Next, from the identity

Fi(Z)Lzn+1yk+2i(T) = Fant2yk+2i (@) + (1) Fonpy2i(2),



using the fact that k is even, we get

L(2n+1)k+2;(2) 1 ( 1 _ 1 )
Fonk+2i (%) Fantaykr2i(T) Fk(iv) Fonkv2i(®)  Fanyaks2i(®) /)’

@.7)

Summing (2.6) over n from 0 to N and using (2.7) to simplify the first term on the right side which
becomes a telescoping sum, we get

z? + 4 1 ( 1 1 ) o Ly ()

6 Lantks2i(@) + Le(@) — Fi(@) \Faj(@)  Fansnks2;(®)) 2t Fank+2;(@) Fant2yer2; (@)

N

The result now follows by taking N — oo, making use of the result in part 1) and the fact that
1/Fn(z) - 0 (N — o0). The second identity is proved analogously. O

Some of these and similar identities have already appeared in [6], [37] and [38]. Next, we prove
some identities about finite reciprocal sums of Fibonacci and Lucas polynomials, cf. [3], [16].

Corollary 2. Lett,a,m € N, a > 2. Then

2t ' t
F _1ymyy2(2) (~1)on
1) S (- Slet/aerarcoma@ g~ D"
) ,,xl( : Fitn+1)/2la+(1+(-1)")/2-1(8) 2= Fan—1(2) Fan(®)’

2) %(—1)"‘ F[(n+1)/2]a—(3_(_1),.)/2(3) _ t (=1)2n(z? + 1) |
n=1 Fitn+1)/21a-@3-(=1)n)/248(%)  Z{ Fan+1(%)Fans2(z)

3) For constants ), v, define Gn(z) := AFy,(z) + vLn(z) (n € N). Then

: (=" (1"
@) Y GG F‘(m)za,.(mc,.ﬂ(z)‘ (28)

na=l

Proof. For part 1), using the analogue of Cassini’s formula (Theorem 53 on p. 74 of [23]), which is
easily checked by induction,

Fo-1(2)Fata1(z) — Fa(z)? = (-1)" (n€N),

we have

i(_l)n Fitn+1)/2)a+(a+(-1)n)/2(2) i ( Fany1(z) __ Fan(z) )_5‘: (-1)em

n=1 Fin+1)/2)a+(1+(-1)n)/2-1(2) ne1 Foan(z) Fan-1(z) B nel Fon(z)Fan-1(x)"
For part 2), using the identity
Fa_1(@)Fpy1(x) = Fpa(2)Frga(z) = (-1)*(@? +1) (neN),

we have

i(_l)n Fitnt1)/200-@-(-)n)2(2) _ ¢ (Fan-l(m)_Fm_z(x))= L (~1)an(z? 4+ 1)
& Fiin+1)/2la-@—(-1)7)/2+3(2) = \Fon42(Z)  Fant1(2) Fan+1(z) Fans2(z)

To prove part 3),‘we start from the two identities, when m,n € N,

Frt1(@) Frnin(z) — Fin(2) Fns1(2) = (=1)" Fp(z)
Fint1(Z)Lmn(Z) = Fin(2) Lngnt1(2) = (=1)™ La(z)

which yield Fint1(2)Gman(T) — Fn(€)Gmint1(x) = (—=1)™Gp(z), and so
1 ( Fpi1(z) _ Fn(2) ) _ ()™ (2.9)

Gn(@) \Grmint1(@)  Gmin(@))  Gmin(@)Gmint1(@)

21
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Without loss of generality, assume that m > ¢t. We establish (2.8) by induction on m, the case m =t
being valid trivially. Assuming (2.8) holds up to m, to prove it holds for m + 1 is equivalent to
proving that

()™ Fy(z) =i(—1)“( Fpyi() _ _Fu(@) )
Gm+1(Z)Gm+1+¢(T) Gn(z) \Grnym+1(z)  Gnim(x)/’

n=1

Using (2.9), this is equivalent to proving that

F(z) R i (2.10)

Gm+1(2)Gm+14¢(7) Gm+n(Z)Gnim+1(T)

Since Fi(z) = 1, (2.10) clearly holds when ¢ = 1. Assuming it holds up to ¢, to show it holds at
t + 1, we must verify that

nw=l

Fiya(z) _ Fy(z) (-1)*
Gm+1(2)Gm+t42(2)  Gmi1(2)Cmit41(T)  Gmit41(Z)Gmyesa(z)
This last equation follows easily from (2.9). a

Besides beautifui identities about reciprocal sums of Fibonacci and Lucas numbers, there are
equally beautiful identities relating such numbers with trigonometric and hyperbolic functions such
as those in [29]. To end this section, we derive their generalizations to Fibonacci and Lucas polyno-
mials.

Proposition 2. Letn € N. Then

1. tan~! F, 4(z) — tan~! F,,(z) = tan™! ( ZLpi2(x) ) .

For2(@)?2 + 1 - (—1)"z2

(9:2 + 2)Fn+2(x)

o1 of 1N
2. tan I(Tu)) + tan 1(’_—F..+4(z)) = ten I(Fm(z)z—l—(—nw
provided Fpy4(z)Fn(z) > 1.

3. tauh™ (s ) + taal ™t (s ) = taan™ (& + 2)Fnya(a) )-

Frra(@) Fror2(@)? + 1~ (=1)"2?

boronn™ () o™ () = oo ()

Proof. The four identities follow from the following facts, with n € N and u,v € R:

tan~'u —tan~!v = tan™! (ﬁ) provided uv > —1,

tan~!u +tan~!v = tan™?! (lltu—l:;) provided uv < 1,
tanh™' u + tanh ™! v = tanh ™! (u) ,
14 uv

1 —uv
Fo(2)Fota(z) + (-1)"2? = Fpya(z)?,
Fata(z) — Fa(z) = zLny2(2),
Frta(z) + Fu(z) = (x2 +2)Fpa(x)

tanh™! 4 — tanh ™} v = tanh™! (ﬂ) ,

and the observation that, for z # 0, Fy,(z)Fn4+4(z) > 0. O
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Corollary 8. Lett € N and ¢ > 0. Then

Firai-2(z)? +1 — (—1)tz? 2

— i— _ (2% + 2) Fyrai-2(x) e 1
2 g(—l) tan™ (Ft+4¢—2(-’5)2 “?“‘ z—l)‘-'v’) = tan™ ('13’?(?5)
provided Fi 4(z)Fi(z) > 1.

o= (1%i-1 panh~ @+ DFaia(®)  \ _, i 1
s Z(—l) ltanh™? (Ft+4i—2(z)2 +‘;4_ (_l)tz.z) = tanh 1( )

— 2Ly 4i—2(2) n
1. Ztan'1 ( t+di-2 ) = - —tan~! Fy(x).
i=1

=1

— - ZLyy4i—2(x) _ - 1
4. Zta.nh 1 ( Ftw_z(w)‘;_ o (_1)%2) = tanh~? (——Fg(x))'

i=]

Proof. Puttingn =t, t+4, t+8,...,t+4N — 4 in the first identity of Proposition 2 and summing,
we get

N
- Leyaia(@ ) i
Etan 1 (Ft+4.'-:éz)t2+:- 12(— )(—1)'-'E2> = tan~ Fyp.an (2) ~ tan™" Fi().

Noting that for z > 0, we have F; 4n(x) — 00 88 N — 0o. The first assertion thus follows by letting
N — oo. The remaining three assertions follow in the same manner. (]

i=1

3 Continued fractions

As elements satisfying the recurrence (2.1) are closely related to non-regular continued fraction
expansions, it is meaningful to transfer the above results into the language of continued fractions.
Define the sequence {Sn}n>1 by
Sp = - (n>1).
b+ a3
b +

b3+

If the sequence {S,} converges with respect to some appropriate topology, we write

ai

- = = lim Sn, o (31)
S
2+ bs + .

and call it a (non-regular) continued fraction of the element it represents. The elements a,, by, are
referred to as its nt* partial numerator, respectively, nt* partial denominator, and S, is called
the n** approximant (or convergent) of the continued fraction (3.1). If

ay=az=---=1 and bjeN (i 2 1),

then (3.1) is usually called a simple continued fraction, customarily denoted by [b;, ba, b3, ...]. For a
fixed bg, define
A_1=1, Ag=by, B.1 =0, Bp=1, 3.2)

and let
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It is well-known, see e.g. Chapter 2 of [22] or Chapter 1 of [26], that the two sequences {A,} and
{B,} satisfy the same system of second order linear recurrence relations but with different initial
conditions, viz.,

A, =byAn_1+8,An—2 (n2>1), (3.3)
Bn, =baBpn_1 +anBn_2 (n2=1). (3.4)
The element A,,/B,, is called the n** convergent of the continued fraction (3.1) with A, being the

numerator and B,, the denominator of the nt? convergent, respectively. Since the two recurrence
relations (3.3) and (3.4) are of the same form as (2.1), Theorem 1 at once yields:

Theorem 2. Let {ap}n>1 and {bn}n>0 be two sequences in a field all of whose elements except by
are nonzero. Let {An}, {Bn} be two sequences satisfying (3.2), (3.3) and (3.4) and the sequence
{Cm,n} be as defined in (2.2). Let f : NU {0} — Z. Assume that By # 0 for all k € NU {0}.

I Fort e N we have

t—1 k +1 +1
Z( DI ®Cra, rrny—goy I ai _ (=1)7OCy0), 110 TR a4
o By(k) By (k+1) By(0)By(r)

(3.5)

_Are _Aro
" Byy B

II If f(k) is such that limg_.o f(k) = +00 and if the sequence {A,/Byn} converges to £, then it is
a sequence of approrimants of the continued fraction representing £ and

1
i(-l)f(k)cf(k)vf(k+1)-f(k) | A e A0

= By B (e+1) By

(3.6)

II1. If f(k) is such that limk_.o f(k) = —oco and if the sequence {A_n/B_pn}, N converges to 9,

then oo ' f(k)+1
Z(—1)“"’Cf(k).f(k+1)—f(k)H._1 % _,_ Ao

By (k) By(k+1) By

The results of Theorem 2 are applicable to the theory of continued fractions in the field of Laurent
series over a field equipped with the degree valuation which we briefly discuss now.

Let K be a field,  an indeterminate, K((1/z)) the field of all formal Laurent series equipped
with the degree valuation, |-|, , 80 normalized that |z|,, = e!. In K((1/x)), there is a continued
fraction expansion ([12] or [40]), whose basic properties are similar to the one in the real case, which
is constructed as follows: since each element £ € K((1/z)) \ {0} has a unique representation of the
form

€ =CmZ™ +Cm-1T™  +em_2z™ 2 +... (meZ),
with coefficients ¢y (# 0), Gm—1, tm—2,-.- € K. Define
= [¢] + (£),

where
[€] := cmZ™ + cm-12™ " + ... + 1T + ¢,
() :==cax P 4+cgx2+...,

with the customary convention that empty sums are interpreted as 0. Clearly, [£] and () are uniquely
determined. Let

= [¢] € K[z,
80 that |Bples = |€]ee = 1, provided [£] # 0. If (£€) = 0, then the process stops. If (¢) # 0, then write

1
f—ﬂ0+av
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where £ = (£) with |€;|eo > 1. Next write

& = [&1] + (&)

and let
By = [&1] € K[z] \ K,
so that |B1]ee = |10 > 1. If (£1) = 0, then the process stops. If (&;) # 0, then write

1
fl“ﬁl"'és

where £, = (£1) with |€2]e0 > 1 and let
B2 = [§2] € K[z] \ K,

8o that |B2|cc = |€2|lc0c > 1. Again, if (&) = 0, then the process stops; otherwise, continue in the
same manner. By so doing, we obtain the unique representation

= [ﬁOy ﬁlw--, ﬁn—-la En] = fo + 1 ’
ﬂ1+62+_

+

1

ﬂn—l + {in

where
Bi € Klz]\ K (i 21), & € K((1/2)), |énloo > 1
if the process does not stop before, and &, is referred to as the nth complete quotient. The sequence
{Bn} is uniquely determined, called the sequence of partial quotients of £.
The two sequences of partial numerators, {C,}, and partial denominators, {D,}, are defined by
C= 1, Co = 60: Cn+\ = ﬁn+lcn +Ch (n 2 0) ‘
D_1=0, Dg=1, Dyt1=Pnt1Dn+Dp_y (n=0).

As an example, note that the partial numerators and partial denominators of the continued fraction

0; z, z, z,..]: =0+ 1

r+
T+ 1
are merely two shifted sequences of Fibonacci polynomials, namely,
C,, = F,(z), Dy, = Fp1(x).
This continued fraction converges, with respect to the degree valuation, to (vVz2 + 4 — z)/2.
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