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Algebraic independence of certain series
involving continued fractions and
generated by linear recurrences

BRESTALETEE Mo ZBH (Taka-aki Tanaka)
Faculty of Science and Technology, Keio Univ.

In this paper we consider the necessary and sufficient conditions for the values of
functions in question at algebraic points to be algebraically independent. The first such
result in history is Lindemann-Weierstrass Theorem asserting that the values e*,... ,e**
of exponential function at algebraic numbers a;, ... ,a, are algebraically independent if
and only if a1,...,as are linearly independent over Q (cf. Shidlovskii [10]). First we
introduce here some previous results including the author’s ones. In what follows, let
q1,- .. ,qs be algebraic numbers with 0 < |g;| <1 (1 <7 < s).

Let {Ri}r>1 be a linear recurrence of positive integers satisfying

Rk+n - Cle+n—1 +--+ Can (k 2 1)7 (1)
where n > 2 and ¢, ... , ¢, are nonnegative integers with ¢, # 0. We define a polynomial
associated with (1) by

(X)=X"—c X" - —cp.

We assume that ®(31) # 0 and the ratio of any pair of distinct roots of (X) is not a
root of unity and that {Rx}«>1 is not a geometric progression. Let

00 oo S Rx oo
f(z) = Zszv 9(z) = Z 1 — 2R’ h(z) = H(l - sz-)'
k=1 k=1 k=1

Let Q denote the field of algebraic numbers. The author [12, 15] proved that the following
four properties are equivalent:

() f(q1),---, f(qs).9(q1)s---,9(qs), h(q1), - .. , h(gs) are algebraically dependent.
(ii) f(q1),.--.,f(gs) are algebraically dependent.

(iii) 1, f(q1), ..., f(gs) are linearly dependent over Q.
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(iv) There exist a nonempty subset {g;,, ..., .} of {q1,...,qs}, roots of unity (1, ... , G,
an algebraic number v with g;, = (v (1 <1 < t), and algebraic numbers &, ... , &,
not all zero, such that

d e =0
=1

for all sufficiently large k.

Although the necessary and sufficient conditions mentioned above are on any number
of points, e.g. 0,...,as0r gy, ... ,qs, there are some results on such conditions only on
two points among ¢, ... , g, as follows:

Let F(z) = Y 72, 2*. Nishioka [5] settled Masser’s conjecture asserting that the
values F'(q1),...,F(qs) are algebraically dependent if and only if there exist distinct
i,J (1 £14,j < s) such that ¢;/g; is a root of unity.

Next we define

zR1+Ra+-+Ry

Z(l_le J(1 — 2R2) .o (1 — 2R)

For any £ > 1, let Ni be the greatest common divisor of n consecutive terms
Ry, Rt1, ..., Reyno1. The author [14] proved that the values ©(q:),... ,©(q,) are al-
gebraically dependent if and only if there exist some k¥ > 1 and distinct 4,5 (1 <i,j < s)
such that g¢;/g; is an Ng-th root of unity.

On the other hand, ©(z) is expressed as the continued fraction

P!

—zR2(1 — 2R ’

—zFs (1 — 2F2)

O(z) =
1—2R+

1+

1+

—2Bn(1 — 2Bn-1)

+
1+
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which is obtained from the identity

oo
212223 """ Zk

— (1=2)(1 = 29)(1 = 23) - -+ (1 — 2)

- , (2)

—2z2(1 — z1)
1—2+
1 ~2z3(1 — z3)

1+
1+

4 —2zn(1 — 2,-1)

1+

where {2, },>1 is a sequence of complex numbers with |z,| < 1 such that lim, o 2, = 0.
Letting 2y = ag*~! (k > 1) in the left-hand side series of (2), we have

oo k(k—1)/2

a*q
; (1-a)(1—aq)-- (1 —agk1)’

which is the series obtained by letting £ = —a in
o0
(—1)kqkk-1/2k
R — 3
11(g5 a5 9, %) k§=1: (1-a)(1 —aq)---(1 —agk-1)’ (3)

where 1¢;(a; 3;q, x) is the case r = s = 1 of g-hypergeometric series defined by

r(bs(al’ o sa‘r;ﬁls v 365;(1):3)

= S H;;—Ol(]'—alql) l—0 1"051'Q) —1)k ﬂkT_l'l lbs—r
DY TRy et el A

(cf. Gasper and Rahman [1}).

Now we state the main theorem of this paper. Replacing £k — 1 in the exponent of ¢
in the right-hand side series of (3) by Ry, where { Rx}x>1 is a linear recurrence satisfying
(1), and replacing z by —z in (3), which does not lose the generality since z runs through
all the algebraic numbers in what follows, we have

qu1+R2+ -+ Ry
“ (1~ agf)(1—agk2)--- (1 - agh)

k

12
— aofi’

Lo e

O(z,a,q9) =

NE

k

T8

~~N

We note that ©(1, 1, z) equals ©(2) mentioned above. Throughout this paper, let

U={(z,a,q) | 2,0, € Q\{0}, |a| <1, |g| <1}
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Then ©(z, a, q) converges at any point in U. Let (z1,a1,q1), (Z2,02,92) € U. We write
(z1,01,q1) ~ (2, a2,q2) if z1/a; = z2/ay and if aquk = agqéi’“ for all sufficiently large k.
Then ~ is an equivalence relation.

Theorem. Let {Ri}r>1 be a linear recurrence satisfying (1). Suppose that {Ri}x>1 18
not a geometric progression. Assume that ®(x£1) # 0 and the ratio of any pair of distinct
roots of ®(X) is not a root of unity. Then the values

O(r,a,q9) ((z,a,q9) €U)

are algebraically dependent if and only if there exist distinct (21,01, 1), (€2, a2,¢2) € U
such that (z1,a1,q1) ~ (z2, az,q2).

Corollary 1. Let {Ri}ir>1 be as in Theorem. Suppose in addition that g.c.d.(Rg+1 —
Ry, Rii2 — Riy1,... ,Rkyn — Riyn1) = 1 for any & > 1. Then the wval-
ues O(z,a,q9) ((z,a,q9) € U) are algebraically independent, namely the infinite set
{©(z,a,q) | (z,a,q) € U} is algebraically independent.

Proof. By the theorem, if the values ©(z, a, ¢) ((z,a,q) € U) are algebraically dependent,
then there exist distinct (1, a1, q1), (%2, a2, ¢2) € U such that z;/a; = x2/a; and aqu" =
agqg" for all sufficiently large k. Then there exists a positive integer k¢ such that aqu" =
a2q3* (ko < k < kg + n). Thus (q1/g2)®+ R =1 (ko < k < ko +n — 1) and so
q1/q2 = 1 since g.c.d.(Riy+1 — Rkgs Riko+2 — Rko+1,- - - s Rkgtn — Rkg+n—1) = 1. Hence
(z1,a1,q1) = (x2, a2, ¢2), which is a contradiction.

Corollary 2. Let {Ri}k>1 be as in Theorem. Let qq,...,qs be algebraic numbers with
0 < |g| <1 (1 <4< s) such that none of ¢;/q; (1 <1i < j <) is a root of unity. Then
the infinite set

s © k xqiRl
U{ T2

i=1 \ k=1 i=1

z,a € Q\ {0}, |a| < 1}

is algebraically independent.

Corollary 3. Let {Ri}k>1 be as in Theorem. Suppose in addition ¢, = 1. Let
N*=gcd.(R; — Ri, Rs— Rs,... ,R,11 — R,). Let ¢ be a primitive N*-th root of unity
and G = {(¢%1, (P, (1)) a cyclic group generated by (¢™, (R, (™) with componentwise
multiplication. Then the values ©(z,a,q) ((z,a,q) € U) are algebraically dependent if and
only if there exist distinct (z1,01,q1), (%2, az2,q2) € U such that (z1/x2,a1/02,q1/¢2) € G.

Proof. Let Ry = Rpy1 — Ry and N = g.cd.(Ry, Riyqs--- » Riinq) (K > 1). Since
{R;}x>1 satisfies (1), noting that ¢, = 1, we see that N} = N* for any k£ > 1. If
distinct (z1,a1,q1), (T2, a2,q2) € U satisfy (z1/x2,a1/a2,q1/q2) € G, then z:1/z2 = a1/a2
and (¢1/¢2)® =1 (k > 1) and hence z;/a, = z2/az and (q1/¢2)™ = (q1/¢2)™ = az/ay
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(k > 1), which implies that ©(z,a,q) ((z,a,q) € U) are algebraically dependent by the
theorem. Conversely, if O(z,a,q) ((z,a,q) € U) are algebraically dependent, then by
the theorem there exist distinct (z1, a1, q1), (Z2, ag, q2) € U such that z,/a; = z2/a; and
a1 = azqd¥ for all sufficiently large k. Then there exists a positive integer ko such that
arql* = angR" (ko < k < ko +n). Thus (q;/¢2)® =1 (ko < k < kg +n — 1) and hence
(q1/g2)"" = 1. Since (q1/q2)® =1 (k > 1), we see that az/a; = (q1/g2)® = (q1/g2)™
and so (71/T2,a1/02,q1/¢2) € G.

Example 1. Let {Gk}i>0 be the generalized Fibonacci numbers defined by
Go =0, G, =1, Gk+2 = ka+1 + Gy (k > 0), (4)

where b is a positive integer, and let

k G1+G2++Gy

— - q
@(.’L’,CL,Q) = kzz:l (1 _ aqu)(l _ aqu) . .(1 — aqu).

By Corollary 3 with N* = g.c.d.(Gz — Gy, G3 — G3) = gcd.(b— 1,2 —b+ 1) = 1 the
values ©(z,a,q) ((z,a,q) € U) are algebraically independent. In particular, the infinite
set

{ k F1+F2+ +Fy

Z(l_aqﬂ )(1 = ag™) - -- (1 — agF*) :E,a,qE@\{O}, la] <1, ’Q|<1}

is algebraically independent, where {Fx }r>o is the sequence of Fibonacci numbers defined
by

Fo=0, Fi=1, F=Fau+F (k>0). (5)

The following result on an analogue of g-exponential function

k 1+2+ +k

x)"l+z 1—Q)(1—Q) -(1—g*)

gives a generalization of the author’s previous result [14] stated above.

Corollary 4. Let {Ri}r>1 be as in Theorem. Let a be a fized algebraic number with
0 < |a| £ 1 and define

qu1+R2+ “+Ry
E(z,q) = Z (1 —agf)(1 — agf2)--- (1 — agfix)

= ZHl—aqR‘

k=1 l=1
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Then the values

E(z,q) (z,q€Q\{0}, g/ <1)

are algebraically dependent if and only if there exist some distinct pairs (z1,q1) and (xq, g2)
of nonzero algebraic numbers x1, T2, q1, g2 with |q1|,|g2] < 1 such that x; = x5 and ¢M* =
a3 for some k > 1, where Ny = g.c.d.(Ri, Rkt - - ; Resn_1).

In particular, if Ny = 1 for any k > 1, then the values E(z,q) are algebraically
independent for any distinct pairs (z,q) of nonzero algebraic numbers x,q with |q| < 1.

Proof. By the theorem, the values E(z,q) (z,q9 € Q \ {0}, |qg| < 1) are algebraically
dependent if and only if there exist a positive integer ko and some distinct pairs (z;, ¢;) and
(2, q2) of nonzero algebraic numbers with |g1], |g2| < 1 such that z; = z, and ¢f* = g;*
for any k > ko, which implies that qiv o — qév %o Conversely, if qff o — qév *0 then gfk = g™
for any k > ko, since Ny, divides Ry, for any k > ko by (1).

Remark 1. Some functions are known to have the property that their values at any
given nonzero distinct algebraic numbers are algebraically independent. Example of the
entire function f(x) having such a property, namely the values f(a1), ... , f(as) are alge-
braically independent for any nonzero distinct algebraic numbers ay, ... ,a,,is 3 _pep q*'z*
or > pop q%" z*, which were given by Nishioka [6], [8], respectively, where ¢ is an algebraic
number with 0 < |g| < 1 and d is an integer greater than 1, or 3 o, ¢F*z*, which were
shown by the author [11], where {F},>0 is the sequence of Fibonacci numbers defined
by (5). Example of the function g(z) € Z[[2]] analytic inside the unit circle having such
a property,‘namely the values g(¢q1), ..., g(qs) are algebraically independent for any dis-
tinct algebraic numbers q;,... ,¢s with 0 < |g;| < 1 (1 < i< s),i8 Y pog 2*'tk given by
Nishioka (7], or > 7- | [kw]2*, shown by Masser [4], where w > 0 is a quadratic irrational
number and [o] denotes the largest integer not exceeding the real number o. In the case
of w = (=b+ Vb2 + 4)/2 with b a positive integer, we have

k+1 Gk+Gk+1

Z [kw]e* = Z (1- zck)(l — 2Ck+1)’

=1

where {G}r>o is the generalized Fibonacci numbers defined by (4) in Example 1 above
(cf. Nishioka [9]).
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Corollary 5. Let {Ri}k>1 be as in Theorem. Define

e qu1+R2+ “+ Ry
O(a,q) =
; 1—-agf)(1—agR2)--- (1 — aqh)
Ry
- M - : (6)

R —ag™ (1 — ag™)

Prean e —ag"s (1 — ag™)
1+
1+

_aRnl_aRﬂ.—l
N g™ ( qitn1)

1+

Then the values
- O(a,q) (a,q€Q\{0}, la|] <1, [g] < 1)

are algebraically dependent if and only if there exist some distinct pairs (a1, q1) and (a2, ¢2)
of nonzero algebraic numbers a1, as, q1,q2 with a1, |az] < 1 and |q1], |g2] < 1 such that
aquz" = agqfk for all sufficiently large k.

In particular, if g.c.d.(Rx+1— Rk, Rk+2—Rkt1,--- s Rkyn— Rgsn-1) =1 forany k > 1,
then the values ©(a, q) are algebraically independent for any distinct pairs (a, q) of nonzero
algebraic numbers a,q with |a| < 1 and |q| < 1, namely the infinite set {O(a,q) | a,q €
Q\ {0}, |al €1, |q| < 1} is algebraically independent.

Remark 2. The continued fraction expansion (6) in Corollary 5 is obtained also from
the identity (2).

Example 2. Let {G}i>0 be the generalized Fibonacci numbers defined by (4) in Exam-

ple 1 above and let
a)k G1+G2++Gg

elaa) = Z(Haq@l)maq@) T+ ago)
_ ag®
- Gz 1+ Gl
1+ag® + ! és 29 ();z
1+ ag”*(1 + aq™?)

1+

ag®* (1 + agCnr—1
L4 ( qcn-1)

1+
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Since g.c.d.(Gk+1 — Gk, Giy2 — Gr41) = g.¢d.(Go — Gy, G3 — Gz) =1 forany k > 1
(see Example 1), by Corollary 5 with ©*(a,q) = —©(—a,q), the values ©*(a,q) are
algebraically independent for any distinct pairs (a,q) of nonzero algebraic numbers a, g
with |a| < 1 and |g| < 1. In particular, the continued fractions

ag™

ag??(1 + ag™)
ag™(1 + ag™)

(a,g€Q\ {0}, lal <1, gl < 1)
1+ agfr +

1+

1+

Fn 1 Fn—l
L (14 ag™?)

1+

are algebraically independent, where { F}, } >0 is the sequence of Fibonacci numbers defined
by (5).

Corollary 6. Let (zy,a1,q1), (2}, d},q1), (T2, a2, q2), (25, a%,q5) € U. If the values of ©
satisfy

ki— 11 __alql ki—1 k .’.Ulql
H xl)alyql)— ZH

k=1 x1q1 k1z11'“q
k1—1 R ki—1 k R
1—aig™ g
= T 2.7 T @(x/ a/ q 1
R 1) %1y 41 R
,E riq glnll—a’lqi‘
and
k2—1 Ry ko—-1 k
1—a x
155 (oo - 1722 )
k=1 T292 k=1 1= 11_‘1‘1
k2—'1 R k2 1 k ,R
1—a§q§ * Tagqy
= —2=— | O(z5, a9, ¢5) —
i) 2, 9, g2 R
e 2w

where ky and ko are positive integers, then there exists a positive integer k3 such that

kz=1 k

kﬁl 1= a105(g192) ™ O(zyx2, a1az, q1q2) Z H 12212
’ y 41
w1 T1T2(g1g2) R 1

—_— Ry
=1 I=1 a1a2 CI1(I2)
kaz—1

1—adal q'ql Ry ol E x) (qq )R
- [ A@B)™ (o0 daqa) - 3 [ fons

/ _ R
o T1za(g1qe) ™ k=1 I1=1 ajaz(q1gz) ™
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Proof. Since ©(zy,a;,q:) and O(z!,a},q]) are algebraically dependent and so are
O(z2, az, q2) and O(xh, aj, ¢3), by the theorem (zy,a1,q1) ~ (x},a},q}) and (x4, as,g2) ~
(x4, a3, q3), respectively. Then z;/a; = z}/a}, /a2 = z4/ah, and there exist pos-
itive integers k|, kj such that a;qf™* = a/(¢})® (k > k}) and axqs* = ab(gy) R
(k > k3). Hence (z172)/(maz) = (2175)/(a}a3) and aiaz(g1g2)™ = afay(gigs)™ for
all k > k3 = max{k}, k5} and so the corollary is proved by using (7) below.

Sketch of the proof of Theorem. First we prove that, if there exist distinct
(z1,01,q1), (%2, a2, q2) € U such that (z1,a1,q1) ~ (22, az, ¢2), then the values O(z;, a1, q;)
and ©(z», as, g2) are algebraically dependent. Since z;/a; = x2/a2 and since there exists
a positive integer ko such that aqu’“ = a2q2R’" for all k£ > kg, we have

ko—1 R ko—-1 k
1-— a1q k xlq
1 =28 (oo - Y I 22
k=1 T19 Pl e a:qs"
oo k
= Y[z
a1l—a qR’
k=ko I=ko 1
o0
_ T2 Q20
- Z R,
khe imke 22 1 — a2
ko—1 R ko—1 k
1 —azq" $2Q2
= —7F— | ©(z2,0a2,¢2) — (7)
R R
g 2N ,§ ,Hl ~ 020

which implies that ©(z,, a),q) and ©(z3, as, ¢2) are algebraically dependent.
Next assume that the values

O(z,a,9) ((z,a,9) €U)

are algebraically dependent. Then there exist distinct (z,a1,q1),...,(Zs as,q¢5) € U
such that the values ©(z;,a;,q1),...,©O(zs, as,qs) are algebraically dependent. In
what follows, we prove that there exist some distinct i,7’ (1 < 4,7 < s) such that
(i, ai,6;) ~ (i, ay, gy ), which yields the theorem by renumbering (z;, a;, ¢;) = (z1,a1, q1)
and (zy,ay, qr) = (Z2, az, ¢2). There exist multiplicatively independent algebraic numbers

Bi,... B with 0 < |3;| <1 (1 <j<t)and a primitive N-th root of unity ¢ such that
t
=¢II8° a<i<e), (8)
=1
where m;, ... ,m, are integers with 0 < m; < N—1lande; (1 <i<s, 1<j<t)are

nonnegative integers (cf. Loxton and van der Poorten [3], Nishioka [9]). We can choose a
positive integer p and a sufficiently large integer u, which will be determined later, such
that Reyp, = Ri (mod N) for any k > u + 1.
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For an m x n matrix Q = (w;;) with nonnegative integer entries and for z =
(21,...,2,) € C™ we define a transformation Q : C* — C" by
Qz = (Hzflj,Hzfz",... ,Hz;)"j> .
Jj=1 J=1 Jj=1
If
C1 1 0 0
Ca 0 1
Q= : 0
: 1
c, 0 . 0
and if

M(z) = zfn ... 20
where {Rx}r>1 is a linear recurrence satisfying (1), then by induction we have
M(QFz) = 2%+ .. 2B (> 0).

Let y;» (1 £j <t 1< X< n) be variables and let y; = (y;1,---,¥m) (1 <j <8),
y= (¥, --,Y,;). Define

2 b m¢mRn T, M(Qy,)* |
fiw =3 11— T T gy LSS ).

Letting

we see that

ZH ‘T’ql Rl+1 Z H x’q‘

ke 1= 1~ @iG; bt It LT a,qz
and so
= xlql ziq
O(zi, ai, ;) = 1’[ f(B) + ZH =
l1-a = 1 e
Since ©(z1,a1,q1),- .- ,O(x,, as, q;) are algebraically dependent, so are f;(8) (1 <i < s).
Let

Q' = diag(Q®, ... ,QP),
t
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where p is replaced by its multiple such that all the entries of 2” are positive. In fact,
we can choose such a p. (For the proof see [12].) Then each f;(y) satisfies Mahler type
functional equation

p) = (] 2 M M)
’ T o [, M(@y;)5

) fi(Qy)

k=u
p+u—-1 k m; R 4 l ei;
zi (™ [, M(Qy,)®
+ZH1 —— YIS (9)
k=u l=u _aic i Hj=l ( y.‘l) d

where Q'y = (WPy,,...,PPy,). Since f;(B8) (1 < i < s) are algebraically dependent, by
the theorem of Kubota [2] with Lemma 4 and Proof of Theorem 2in [12], f;(y) (1 < i< s)
are algebraically dependent over Q(y).

The rest of the proof is abbreviated in some places. (For the complete proof, see
[16].) We apply Kubota’s criterion [2] on the algebraic independence of Mahler functions
over the rational function field, which is stated as a condition concerning the functional

equation (9) and

- { M

() l hy) € Q(y) \ {0}}.

We assert that
p+u—1 xiCmiRkﬂ (1-— ai,Cmi’Rk+1 H;':l M(Qkyj)"'i'j)

Qii'(y) = H xi’Cmi,Rk'}-l(l — a‘icmiRk*-l H;=1 M(Qky])eu)

k=u

if and only if a; (™ R+ = (™ Ren1 (u <k <p+u-—1), (eir,... ,€x) = (er1,... ,€0),
and a?zh = abz?. It is clear that, if @;(™f+ = gu(™Ren (y < kK < p+u-—1),
(ei1y---,€it) = (ev1,...,emn), and afzl, = alz?, then Qiv(y) = 1 € H. Conversely,

suppose that Q;i(y) € H. Then there exists an F(y) € Q(y) \ {0} satisfying

p B p+u—1 wilcmirRkH (1 _ aicmiRk+l H;_=1 M(Qkyj)eij)
(y) - H xigmiRk+l(1 — ai'cmi/Rk+l H;=1 M(Qky:’)eu])

) F(Qy). (10)

k=u
Let P be a positive integer and let
Y= (Wi ym) = (oo 20) (1S5 <0),
We choose a sufficiently large P such that the following two properties are both satisfied:
(a) If (ei1, ... ,e) # (€1, .- ,ev), then 30 e;PT # Yo en; PY.

(b) F*(2) = F(2P,... 2P, ... 2P, ..., 2P) e Q(z1,...,2.) \ {O}.
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Then by (10), F*(z) satisfies the functional equation
pru—l  ~myR . ~miR k N\E;
F*(z) = ( H ziC k+1(1 — @™+ M(QF2) )) F*(P2), (11)

i ;i Rk (1 —_ ai’cmi'Rk+1 M(ka)Ei,)

where E; = Z;=1 ei;P? (1 <7< s). By Theorem 2 of [13] we see that

:Ei’Cmil Rit1 (1 _ aicmiRk.'.l XE,)
xicmiRk+1(]_ — ai'cmi'Rk"'lXEi')

eQ”

for any k (u £ k < p+u— 1), where X is a variable, and F*(2) € Q. Hence E; = E;

and aicmiRk+l = ai,cmi’Rk"‘l (u <k<p+u-— 1) Thus (eil, ce ,e,-t) = (6,‘/1, R ,6ilt) by
the property (a), and the functional equation (11) becomes
P
F*(z) = ‘:};F*(Q”z).

Since F*(z) € Q" , we have a?z® = a%a®, and the assertion is proved.

Now let S be a nonempty subset of {1,...,s} such that for any ¢, € S we have
a;{™ et = gu(mvRen (u <k <pH+u-—1), (en,...,en) = (€r1,... e,ft) and afzl, =
abz!. Fixa A € Sandlet a = ay, m = my, £ = z5/af, and ¢; = €5 (1 < j < ).
Then for any i € S we have z¥/a? = £, a;(™F+1 = (™ (u < k < p+u—1),
(€i1,...,€i) =(e1,-..,€), and so

P—ﬁ-l T (i Re H; 1 M(QFy )e"j _ Mﬁl agm R+ H;’=1 M(Qkyj)ej
1 — Q; szRk+1 H M(Qk )e” 1 - a’CmRk+1 H;:l M(Qkyj)ej .

k=u k=u

Hence by (9) the linear combination G(y) = ¥,.¢ cifi(y) with ¢; € Q satisfies the func-
tional equation

Pl gemRen [TE_, M(Qty,)" :
G(y) - 5 ( E 1~ aCmRk+1 H M(Qk )e] G(Q y)
pt+u~1 k m.leRH'l l"[ M(Qlyj)eij

i =1
+ Z Z H 1 — q;¢™iRin h;=1 M(Qlyj)ez'j

=u €S l=u

pru=l o mRig [It., M(Qky,)e )
G - j=1 J G Q’

p+u—1 k—u+l k a le+1 t.— M Ql ej
+zz: (3) I e 02
k=u i€8 l=u 1- a( H’I Hj=1 ( yJ) ’

or

Since f;(y) (1 < i < s) are algebraically dependent over Q(y), by Kubota’s criterion [2]
mentioned above, there exist algebraic numbers ¢; (i € S), not all zero, such that (12)
has a solution G*(y) € Q(y). Let P be a positive integer and let

yJ=(yj17"'7yjn) (zlf’J"“’sz) (1SJSt)
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We choose a sufficiently large P such that

H(z)=G*(zF,... 28, 2F, ... 2P e Qla, ..., 2n).
Then by (12), H(z) satisfies the functional equation
pru=l mR ko, \E

_ al™ 1 M(Q* z) -
H(z) = ¢ ( kI_I et | H2)
ptu-1 k—u+1l k mR 1 \E
z; a™ U M (Q'2)
i | — , 1
2P (%) N maree 1)

where E = Z;=1 eij. Letting H(z) = A(z)/B(z), where A(z) and B(z) are coprime
polynomials in Q[z1. ..., 2,] with B # 0, by (13) we have
p+u-—1

A(z)B(QPz) II aCmRHdAJ(ka)E)

p+u 1
= EA(Q2)B(z) H a¢™Ren pr(QF 2)E
p+u—1 - k—-u+1 k
+ > Do ( ) B(z)B(Pz) [ a¢™+ M(Q'2)"

k=u €S l=u
p+u—€-

x [ @-a(™fnM(Q 2)"5). (14)
U'=k+1

We can put by Lemma 3.2.3 in Nishioka [9] the greatest common divisor of A(Q2P2z) and
B(§®z) as z!, where I is an n-dimensional vector with nonnegative integer components.
Then B(z) divides B(z)z! [[22%"! M(Q*z)® by (14). Therefore B(z) is a monomial
in z1,...,2, by Lemma 12 of [13] with Lemma 4 and Proof of Theorem 2 in [12]. If u is
sufficiently large, since p and u are independent, the right-hand side of (14) is divided by
21+ -2, B(Q¥2) and thus A(2) is divided by z; - - - 2,. Since A(z) and B(z) are coprime,
B(z) € Q7. If A(z) ¢ Q, then by Lemma 6 of [14], deg, A(QP2) > deg, A(2), which
is a contradiction by comparing the total degrees of both sides of (14). Hence A(z) =
0. Then by (14), we see that Y . gci(zi/a:;)* ™" =0 (u < k < p+u— 1) and so
Yiesci(zi/ai)* =0 (1 £ k < p). Hence z;/a; = zs/ay for some distinct ¢, € S since
¢; (i € S) are not all zero. Since ¢,¢' € S and Rgyp = Rx (mod N) for any £ > u + 1,
we have q;¢(™R+1 = g (™ Retr (kK > u). By (8) with (e;,...,€x) = (€i,...,em) we
get a,-qiR"+1 = ai:qf"“ (k > u). Therefore (x;,a:,q:;) ~ (z,a,qr), and the proof of the
theorem is completed.
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