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1. INTRODUCTION

Special values of the Lerch zeta function for j > 2 are given by

eZm'nz B, ZT

Rk S (1)
nez\{0} '

where Bj(z) is the ordinary jth Bernoulli polynomial and
2y e/t o= Bi(z;7) i
Jj=0
2miNJ

Bi(zi7) = () By(a), (1.3)

(see [2] for details). An analogous formula for Eisenstein series is also considered
by various authors such as Hurwitz [10], Kronecker (Weil [28, Chapter 8]), Herglotz
[9], Katayama, [12], which reads for j > 3

e21ri(mz:+ny) _ __Hj (.’L‘, v T) (1 4)
(m+n7)i 4! ’ ’
(m,n)ez2\{(0,0)}
where 8(z; ) is the Jacobi theta function and H;(x,y; 7) is given by
3(6) = 62,,‘150'(0;1')0({ +x7T—Y;T) _ i H;(z, U;T)éj—l’ (1.5)

0(&;T)0(xT — y; 7) per SR

In particular when 7 = %, we have

H4j(0, 0; 2) = —(2w)4jH4j,



where {Hy, € Q|k € N} are the Hurwitz numbers defined as coefficients of the
Laurent series expansion of the Weierstrass p-function, namely,

v =5+ 2 ((z—A)z“%)

A€Zw+Zwi
A#£0
1 o 24mH4m Z4m—2
= — - 1.6
z2+2;: 4m  (4dm —2)V (16)

and

Vodx
w=2 —— = 2.622057 - - - 1.7
| == (17)
is the lemniscate constant (see, for example, [18]). From the property of p(z), we
can see that

1 3 567 43659 392931
Hy =15 He =15 H = 335 H16——1'70—7 Hypo = —5—--
As other analogous formulas of (1.1), Cauchy [7], Mellin [22, 23], Ramanujan,

Berndt 4, 5, 6] gave

(1.8)

I e MSC ¥ 4k+32§2( 1yn Bll2) Bueay VD) -

i 1k+3 oY L

meZv(o} sinh(mm)m+ @) 4k + 4 —27)!

Z coth(mW) = (27 )4k+3§:+2 1)+ B3;(0) Bak+4-2;(0) ‘ (1.10)
meZ\{0} mAR im0 (25)! (4k+4—25)! :

for k € Ny := NU {0}, where sinhz = (e —e7*)/2, coshz = (e* + €7%)/2, cothz =
coshz/sinhz.
As certain double analogues of these results, the third-named author proved

—-1)" 1
2 sinh(myr()(m)+ )P ~Q[r, @] (k € No) (1.11)
i
(see [26]) and
_coth(mm) 1 .
> TareEe € ;QUn@] (kew) (1.12)
(m,n)ez?

ms#0
(see [27]). Actually he gave some explicit formulas for these values (for example, see
Section 4).
Our aim in the former part is to study their principles and consider generalized
double series, for example,

E _ (=1 —, | (1.13)

22 (sinh(mn))é(m + ni)J
m;£0
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(see Section 2). Furthermore we evaluate special values of the g-zeta function defined
by

oc mt
Gis,t) =3 2, (1.14)
| 2= 2 i)
where
_1-¢
7)==

(see Section 3). As explicit examples, we give evaluation formulas for (1.13) and
for (1.14) (see Section 4). Note that our special values of the g-zeta function are at
positive integers while those at negative integers are studied by Kaneko, Kawagoe,
Kurokawa, Wakayama, Yamasaki [11, 14] and the third-named author [25].

In the latter part of this paper, we consider the double series of Eisenstein type
defined by

G2(s1, S25 w1, w2) = Z (1.15)

m=1

oo
1 Z 1
(muh)sl et (mwl + ’I’lu.)g)s2

for (s1,s2) € C? with R(s; + s3) > 2 and Rs, > 1. In particular when w; = w, = 1,
this coincides with the double zeta-function of Euler type. In [21], the second-
named author proved a certain functional equation for the double zeta-function of
Euler type. As a generalization of this fact, we prove a functional equation for (1.15)
of reflection-type (see Theorem 6.2), which can be regarded as a double analogue
of the functional equation of the Riemann zeta-function {(s). Furthermore, we give
some functional relations for certain double series involving hyperbolic functions
(see Theorem 8.1). In particular, we can see that these functional relations include
value-relations for double series in (1.11).

Finally we give some functional equations for double L-functions of Euler type
(see Theorem 9.2). These can be regarded as x-analogues of those for double zeta
functions of Euler type.

2. GENERAL PRINCIPLE AND DOUBLE SERIES

In this section, we give a very simple general principle to calculate special values
of a certain family of series which includes those appearing in the introduction. The
following can be easily shown by use of the Cauchy integral formula.

Lemma 2.1. Let f(&) be a meromorphic function. Assume that there exists a family
of compact sets {Dn}%_, such that

(1) 8Dy is piecewise smooth and Alim f(&)d¢ =0,
—% /8D
(2) Dy contains Dy_,. N
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Then
A, D Res f(€) =0
ceDy
In particular, if the sum is absolutely convergent,
2. RBesf()=0.

ceU%-, Dn

As applications of this lemma we give special values appearing in the introduction.

Example 2.2. We show (1.1). The function

21 e27ri£z/1-
6(5) = _T—627ri£/‘r -1 (21)

has simple poles on 7Z with Res¢=n. &(£) = e?™** and the periodicity
B +7) = B(£)e*™. (2.2)

Put f(€) = &(€)¢7 for j > 2. Then Lemma 2.1 implies

Res f(€) + E Res f(§) =0 = Bi(z1) + E e =0. (2.3)
£=0 E=nr 4! (nt)? ’ )
neZ\{0} n€Z\{0}
Example 2.3. We show (1.4). The function
- 00, 7)0(E + 27 — Yy, T
s(g) — eZmz& ( ) (5 Yy )

6(&7)0(xT — y;7) @4 |

has simple poles on Z + 7Z with Resgeminr F(£) = €2m=+n¥) and the periodicities
FE+1) =3,  FE+7)=Fe. (2.5)

Putting f(€) = F(£)¢~7 for j > 3 and applying Lemma 2.1 to this function, we
obtain

Resf()+ >~  Res f(©)=0 =

(mmezigo,0} T
Hlz. y: T 621ri(m:z:+ny)
i "'y, )+ Z (m___._+ m—r =0. (2.6)
J: (m,n)eZ?\{(0,0)}
1 1

- — ~2j-1
Example 2.4 (Ramanujan’s formula [5, p. 275]). Let f(§) = ] A 15 j

with a8 = 7%, Then for j > 1, Lemma 2.1 implies the following famous Ramanujan’s
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formula

P I - 1
o™ {§C(2J +1) + kz=:1 (e2ka _ 1) k241 }

1 = 1
= (-B8)" {§C(2J +1) + ; (e2kB — 1) k2i+1 }

— 22.1 Z(_l)k?;’;c()(:) (2';23:22_?(2(2)!0‘14-1_,0,8":. (27)

k=0

Example 2.5 (Cauchy, Mellin, Ramanujan, Berndt). For j > 0,

—-1)™ 242 o Box(1/2) Baysoon(1/2
mezz\{o} Sinh((m7r))m“"+3 = G0 k\‘;(_l)k 2(k2(k)/! )(4;' :4%_( z/k))!' (2:8)

To give explicit evaluations of the series (1.13), we need to construct an appropri-
ate generating function. By apply Lemma 2.1 to the function f(£) = F(€)®(£)%¢7,
we find for 7 > 3

1
= lim —
0 im '/a N f(&)de

N—oo 278
}}fg’ f(f) + Nl-inoo Z {=Bnisnr f(g)
e Y |m|,|n|<N
coefficient of EZ‘l o {(m,n)#(0,0) ) (2 9)
of ()88 wa.n?drseries
+ D Resf(o).
n€Z\{0}

g
. unwanted series
(Riemann zeta functions)

By subtracting the generating function of the unwanted series we obtain the following
theorem.

Theorem 2.6. Assume (z,y) € R\ Z% and 0 < z < 1. Then

= K; T, Y, 2T j—
FOB(©)* ~ Res(F(MBm)'B(E —m {y + L2}i7)) = D —iﬁ-’——)s !, (2.10)
Jj=1 )
where the residue is taken for € & 7Z. For j > 3,
o &(m £e2wi(mz+ny+n£z)
—'.7! I‘}l—lonoo Z ( )(m + n’r)j = Kj,l(xa Y,z T)! (211)
Im|,Ini<N
(m,n)#(0,0)

which is also valid for (z,y) € R? and 0 < z < 1 by taking the limit of K;(z,y, z; T)
appropriately.



Remark 2.7. In the cases j = 1, 2, the above theorem also holds in some conditions.

However the conditions are a little complicated and omitted here for simplicity. See
[17] for details.

If 7 = 0, then the limit of the integrals (2.9) does not exist. However, we show
that it is possible to give a series interpretation even in the case j = 0. We explain
this fact in the following. Assume y + £z € Z. Then we have

FE+ 1B+ 7)8 = FE)B(£) e WHD = 3(5)6(§)e- (2.12) |

By this periodicity, we obtain
o—hm—~/ 3(©)B(E)‘de

N—oo 271

=§$$@Nﬂae > B(m)ermme.

meZ\{0}

Therefore, under this assumption, if we put
3(O)B(6) = }:%ﬁ’l (2.13)

the coefficient c;, is interpreted as a spemal value of a certain single series in the
case j = 0 while it is interpreted as a special value of a certain double series in the
case 7 = 1. Note that throughout this interpretation, ¢ is fixed.

In the next sections, we will change the interpretation and we will regard F(¢)
itself as a generating function of all ¢g ¢, that is,

FE) = (B (86 (2.14)
£=0

Furthermore we will show that the coefficients ¢y, are special values of the g-zeta
functions.

3. GENERALIZED LAURENT EXPANSION AND q-ZETA FUNCTION

First we give a general framework of expansions of the form (2.14). Let ¢ be a
biholomorphic function between U and ¢(U) with ¢(0) = 0 and ¢'(0) # 0 (i.e. a
local coordinate).

Lemma 3.1. Assume that f is a holomorphic function on U \ {0}. For |z| < €, we
have the uniformly absolutely convergent series

- _ 1 f€)
CEPIECHCE wzzakﬁdwﬂﬁ- (3.1)
We see that —y
B(E) " = 5o = 0+£+0(E) (32

109
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From this expression, we can apply Lemma 3.1 to the pair f(£) = F(&), ¢(§) =
B(£)7! to get

FE) =Y a(®©)) (8(6)7Y)", (3.3)
=-1
=coen =55 [ OB (3.9

As announced in the last part of the previous section, we regard the coefficient of
€1 in (2.13) as that of (&(£)7!)'(&(£)~1)¢ in (2.14).

Next we clarify a relation between these coefficients and special values of the
g-zeta function. Let

1-¢
[€g = T—¢ (3.5)
! = g~ (o, (3.6)
k-1
(a;9)x = [[(1 ~ ag). (3.7)
Jj=0
The following formula is known:
. (qa Q)l
| = i
I;gl[e]q 1311 A=oF e (3.8)
Then the Lerch-type g-zeta function is defined as
o e27rima:qmz
(s, ziz) =D e (3.9)
m=1 q

For 7 € C with 7 > 0, put g = e~2™"/7. Then we obtain the following.

Theorem 3.2. Assume (z,y) € R2\ 22 and 0 < z < 1. We have
S{GERTESE Zg%_y,_z_q(% /B 27) ) (B 27T (3.10)
£=0 14

Assumey+€z€Z,0< z<1 and x € R. Then by taking the limit of Qi(x,y, z;T)
appropriately, we have

_[e]q'(Cq(evg(l - Z); .’L') + (_1)£Cq(e, ez; —CU)) = Qe(il?, Z/, zZ5 T)‘ (311)

It should be noted that Theorem 3.2 is regarded as a g-analogue of the classical
formulas between the Lerch zeta function and Bernoulli polynomials

21 21rw /T -
FE 35 7) = B(E 2 7) = i 62,,,6/,,6_ Z (27r2/7') Be(z) @ri/1)°Be(@) co-1. (3.12)
£=0
—2 (6 2) + (—1)°e(¢; —w)) = (2m‘/T)‘Be(w), (3.13)

21r:mz

$(s;2) = Z Ty (3.14)




Similarly to the classical case (¢ € 2N)
(271' ’i)ZBg

we can derive a formula for special values of the g-zeta function, by setting (z,y, 2,7) =
(0,0,1/2,%) in (3.11).

Corollary 3.3. For ¢ € 2N,

CQ(& ‘6/2; 0) ==

(3.15)

Q(0,0,1/2; 1)
2!
This value in the case 7 = i can be described in terms of Hurwitz numbers and
Bernoulli polynomials of higher order as follows.

(3.16)

Corollary 3.4. For ¢ € 2N,

(e (6,1/2;0) =

-9 (BPa/2) BP1/2) & (2wyH, BE;(1/2)
) ( 7 -+”(2ne)2(e—2)!“z ;! (27:)13(3—3')!

), (3.17)

j=4
JE€4N

where H; is the Hurwitz number defined by (1.6), w s the lemniscate constant defined
by (1.7), and the Bernoulli polynomial of higher order nge)(z) is defined by
Eezt’ £ i ©® &I
( ) =" Bf % (3.18)

&
€ 1 =

4, EXAMPLES

We consider the case when (z,y,!,7) = (0,0, 1,%) in Equation (2:11) of Theorem
2.6. When j = 3, we obtain
eZ'rr(m+1‘n)(z—l/2)

(=1)"
Z sinh(mnm) (m + ni)3

2

e (4.)

27!'3 2 2 27!‘3 2 ) wA 4 3 1 2

—(T—Zﬂ'>z +<——3—+27r)z+15—7r+457r 37

for z € R with 0 < z < 1. In particular, putting z = 1/2 in (4.1), we have

(=" w* T 3. 19
. = - — - 4.2
Z sinh(mm)(m + ni)® 157 90" T 6’ (4.2)
(m,'r;)f)z2

which was already given in [26]. Also, put z = 0 in (4.1) and replace (m,n) by
(—=m, —n). Then, by noting coth(mn) = (€™ + e~™")/(e™™ — e~™"), we obtain
4
E coth(mm) @ 4 5 1, (4.3)

(m +ni)3 157 45" 3"

m,nEZ
m#0
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which was also given in [27].
As another example, setting (z,y,7) = (0,0,7), [ = 2 and 2z = 1/2 in Equation
(2.11) of Theorem 2.6, we obtain

( 2)222 Sh(mm2(m f i)t 45 045" 45" (4.4)
m,n :
ms#0

We can also treat the case 7 = p = €2™/3, for example,

—1\n ~6
> o= 1) cpi (S T3 By
sinh(mmi/p)(m + np)° 2520 540 357

(m,n)ez?
m5#0
ety (sinh(mmi/p)}(m +np)t — p \ 0457 1357 357 | '
m#£0
where
. I(1/3)3
= 94/, = 2.428651 .- . 4.7

Next we give explicit evaluation formulas for the g-zeta function (4(s,t) defined
by (1.14) (see Kaneko-Kurokawa-Wakayama [11] and Kawagoe-Wakayama-Yamasaki
[14]). Let ¢ = e~?" in Corollary 3.3. Then we obtain

(=) & 1 _ —omy2(l 1
G(2,1) = 4 n; (sinh(mm))2 (1—e™™) (24 B 87r)’ (4.8)
4
o -amaf @11 1
G(4,2) =0 -e™) (4807r4 aa0 T 487r)’ (4.9)
4
_ —amef @ 191 1
$(6,3) = (1 —e™™) ( 192074 T 120060 24071')’ (4.10)
8 4
el @ Tt 2497 1
Ca(8,4) = (1 —e™™) (2688007r8 + 5760074~ 7257600 T 11207r)' (4.11)

It is noted that these values can be regarded as character analogues of the Witten
zeta function of type A;.

Remark 4.1. Special ¢g-zeta values at negative integers are obtained by many au-
thors.

5. SUMMARY OF THE FORMER PART

Consider the coefficient a, of the generalized Laurent expansion

oo

AE) =Y ar(BE) (BEO™),, a=5= [ AEOBEHE (5.1)

=1 2mi |€|=€



associated with (2, 8), where 2 and B are
Q2rizt 6'(0; 7)0(€ + T — y; 7‘) 1

; 2ri€z/T
®(¢) = :Ze—;_f/——_—l‘ - % +0(), . (53)
() = Z' (5.4)

We interpret the coefficient a, as a series by summing up all the residues of A(£)B(£)4+1.

Here are the pairs which are treated in this paper.

¢ (8, 5) = Lerch zeta function.

¢ (88, 5) =—> Ramanujan’s formula, etc.

¢ (F,%) = Eisenstein series.

e (§,8) = Lerch g¢-zeta function (a g-analogue of the Witten zeta function of
type A;).

o (3®% 9) == Double series in (1.13).

6.. FUNCTIONAL EQUATI&NS FOR DOUBLE SERIES OF EISENSTEIN TYPE

In this section, we consider certain functional equations for double series of Eisen-
stein type defined as follows (for details, see [15]). ‘

Throughout this paper, we interpret 2° as e!°¢?, where log z = log |z| + i arg 2
with —7 < arg 2 < 7 unless otherwise indicated. To ensure the convergence of (6.1)
(defined below), we assume the following condition for w;,ws: € C. Let Iy be any
line on the complex plane crossing the origin. Then ly divides the plane into two
half-planes. Let H(lo) be one of those half-planes, not including l, itself. Using this
notation, we assume that :

wy,ws € H(lp)

for some Iy (see [19, Theorem 8.1]).

Definition 6.1. (Double series of Eisenstein type)

Ca(s1, sg3w1,w2) = Z )31 Z (mwl ) (6.1)

m—l

for (s1, 82) € C? with R(s1 + s2) > 2 and Rsz > 1. When w; = we = 1,

C2(s1,82;1,1) = Z Z met (m +n)%2

‘m=1 n=1

which is the ordinary double zeta function (;(s;, sz) of Euler type.

113
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Theorem 6.2. (Functional equations) Suppose Rw; > 0, Rw, > 0. Then
Ca(s1, 82; w1, ws) s continued meromorphically to C?, and

27
wiwa
81 +82—1

= ( 2m ) ra- 81){C2(1 — 83,1 — 815wy, w3)

wiw2
_ [(s2)I'(1 — 81 — s2)
wiws " 1T20(1 — 5y)

1-31-383

I'(1— s))[(sy + 82 — 1)
1w T 1 (s5)

F(SZ){C2(31; S2; Wi, wa) — C(s1 + 82 — 1)}

C(1—s1—s2)
(6.2)
holds on the hyperplane

Qogy1 = {(81,82) € C? I 81 + 89 = 2k + 1} (k € Z\ {0})

Remark 6.3. Denote the left-hand side of (6.2) by £(s1, 82; w1, w2). Then

£(s1, sy w1, w2) = (1 — 82,1 — 815wy, w2).

When w; = wy = 1, this implies the functional equation for the ordinary double zeta
function {3(s1, s2) of Euler type and the Riemann zeta function {(s).

We can eassily see that

Ca(s1, S2; wr,wa) = wi *7%2(a(81, 825 1, wafw).

On the other hand, if 7 > 0 then we can write 7 = wy/w; for some Rw; > 0,
Rwy > 0. Therefore, by Theorem 6.2, we obtain the following.

Corollary 6.4. For 7 € C with Q7 > 0 or 7 € (0,00), the following functional
equation

1—84—3s

(@>+z I‘(sz){Cz(sla s2;1,7) — I'(1—s)T(s) + 82 — 1)((31 + 85 — 1)}

T To1+82-1(35)
81 +89—1

omi\ 2
= (—-) F(l - 81){42(1 — 82,1 — 8y, 1’7')

I'(s)T(1 — 87 — s2)
- 7-1331—32[‘(1 _ 31)2 CA—s— 32)}

(6.3)
holds for (s1,82) € Qak+1 (kK € Z )\ {0}).

The above functional equations are deduced from a more general result as follows.



Definition 6.5. (Confluent hypergeometric functions)

6"9
Voan) = [ et n ey,

where ®a > 0, —m < 0 <, |6 + argz| < 7/2 (see Erdélyi et al. [8, formula 6.5
(3)]), and

Fyi(81,82;7) = Z Tor+8a—-1(K)U(82, 81 + 8g; £27ikT), - (6.4)
k=1 ’

where 04,44,-1(k) = Y dlk d*1*%2~-1 which can be continued meromorphically to C2
(see [21]). '

Using this notation, we obtain the following theorem about general forms of func-
tional equations. In the next section, we will give a brief sketch of its proof. For
details, see [15).

Theorem 6.6. (General forms of functional equations)
Suppose Rw; > 0 and Rw, > 0. For (sy, s3) € C2, the functional equation holds:

F(l — Sl)F(Sl + 85 — 1)
-1
wlwg1+sn—lp( ) 4(31 + 82 )

I‘(l—sl) (2%]
=;—1-L—UF8—2—_—1- F+ 1—82,1—81,w1 + F_ 1—82,1—31;:;1—. .

Remark 6.7. The Hurwitz zeta function {(s,a) = > .o (n +a)~° (a > 0) satisfies
the functional equation

I‘(l
where ¢(s,a) =Y >, ez’"""‘ ~* (see Titchmarsh [24, (2.17.3)]). Formula (6.5) may
be regarded as the double analogue of (6.6). We know the asymptotic expansion

C2(31,32;w1,w2) -
(6.5)

{ 1rw/2¢(1 — s, a) - e_”“/zQﬁ(l - 8, —a)} (66)

U(a,c;z) = Z  (ZW)a - c+ Del@e o
k=0
where (a)r = I'(a+k)/T'(a) and pn(a, c; z) is the remainder term. This implies that
W(s2, 51+ 82; £27mikT) can be approximated by (£27ik7)*2 (the term corresponding
to k =0 in (6.7)), hence Fy(s1,$2;7) can be approximated by the Dirichlet series

Z Oay+82— 1(k)
(£2mikr)s
Therefore F(s1, s3;7) may be cons1dered as a “generalized Dirichlet series”. From

this viewpoint, formula (6.5) can be regarded as a duality formula among “general-
ized Dirichlet series”.

+ pn(a, ¢ x), (6.7)
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In other words, since n™® = F(s,1,1;1 — n) (where the right-hand side is the
usual notation of the Gauss hypergeometric function), we see that a Dirichlet se-
ries is a special case of infinite series of hypergeometric functions. Therefore “func-
tional equations” in general setting are perhaps to be understood as duality relations
among infinite series of (cohﬂuent or non-confluent) hypergeometric functions.

Proof of Theorem 6.2. By the transformation formula for ¥(a,c; z), we have
Fi(1 — 83,1 — s1;we/wy) = (£2miwe/w; ) +* 1 Fi(s1, 82; wa/wh).
For (s1, 82) € Qak41, that is, s; + s2 = 2k + 1, we have

Fi(l — 89, 1- sl;wg/wl) = (27rz'w2/w1)"1+’3"1Fi(31,32;w2/w1). (68)

From Theorem 6.6, we have

w1w§‘+’2_1 ) T -s)l(s1+82-1) _
Ta s G2(s1, 825 w1, w2) ort F T (55) C(s1+s82-1)

=F, (1——32,1—-81,w )+F (1—-82,1—81;:’2).
1

Combining this relation and (6.8), we obtain Theorem 6.2. a

From Theorem 6.2, we obtain the following.

Corollary 6.8. forp,q € N,

Baypiragrz  2pt2g+1
_2 ’._2 — ]_, , _ _iptigti | ,2p+29+ , 69
C2(—2p, —2g — 1;wy,w2) ptgt D (6.9)
' Baoptr2g+2  2pt+2g+1
42( D ) qaw1)w2) 4(p +q+ 1) 1 ) (6 10)

where { B, } is the Bernoulli numbers.

This fact in the case (w1,w2) = (1,1) coincides with the known result given by
Akiyama, Egami and Tanigawa [1].

7. BRIEF SKETCH OF THE PROOF OF THEOREM 6.6
By the method introduced by the second-named author in [21], we have

Ca(81, 82; w1, w2)

1 oo 32 1 81—1
dzd
T T(E0T(s2) Jo e —1 ,/ e
where the right-hand side is convergent when Rs; > 0, Rs; > 1, R(s1 + 32) > 2.
Hence (2(s1, s2; w1, ws) can be continued to this region. Let
1
h(z) = ! -

etz —1  wyz
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Then

82 1 [e <) .

81—
Ga(s1, 825wy, we) = I‘(sl)l"(sz)/ 6“2?4—1/ h(z + y)z**'dzdy

1 00 82—1 o0 81—1 (71)
Y T
+ / dxdy.
P(s1)[(s2) Jo e —1Jy wi(z+y)

We denote the first and the second integral on the right-hand side of (7.1) by
9(s1,82; w1, wz) and go(sy, 82;w;, ws), respectively.
When 0 < Rs; < 1, R(s; + s3) > 2, we have

(1 —s 51+32—2
go(81, 82, w1, w2) = aflp(sz;) e — 1Y
_ra- 31)1"(81 + 82— 1)((s1 + 52 — 1)
['(sp)wywitter—!

Next we consider g(s;, s3;w;1,w2). Let C be the contour which starts from +oo,
goes along the positive real axis, rounds the origin counterclockwise, and then goes
back along the positive real axis to +00. Then we have

1
T(E0T(sa) (e — 1) (e — 1)

82 1
x/c‘ewzy._l/h(:v—ky)m" ldzdy

9(s1, 825 w1, wa) =

for Rs; < 1 and s; € C.
By residue calculus, we obtain

. 3 21rz'w1_1
g(s1, 89, Wy, wsp) = T'(51)T'(s3) (e2mior — 1) (e2misz — 1) nZ#OIm

where

y2-t 2min\ 71
= [ X (- dy.
I, ‘L w2y — 1 y+ w1 Y

By the method of Katsurada and Matsumoto [13], we have

x 81+82-1
. 3 2 1 2
E I = (%2 — 1) gmierea~D)/2 (—1) I'(s2) F- (51,32; ‘i’E) ;
wy wh

-1 s1+82-1
2
E I, = (2™ - 1) e7r¢(381+32-3)/2( 7r) T(s2)F4 (81,82; %) .
1

n=-oc wl
Hence we obtain

g(81, 82wy, wy) = (2w s1+aa—1r 1-s s
1

X e-rri(l—sl—sg)/ZF_ 81, 82; “_“2 + evri(.91+szw1)/2F+ 81, 82; ﬂ
» 92y w1 wy
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for ®s; < 0 and Rs, > 1. Furthermore, we see that for any N € N,
1 . N—s8p—j
Fyi(s1,82;7) = Z ( ) — 81);(82)(X2mir)~%277

X C(l — 81 +3)C(82 + j) + Rn(s1, 82;7),
where Rn(s1,s2;7) is a certain holomorphic function for Rs; < N, Rs; > 1 — N.
Since N is arbitrary, Fi(s;, 82;7) can be continued meromorphically to the whole
space C2, and so is g(s1, s2; w1, ws).
Finally, based on the transformation formula for ¥(a, ¢; ), we can prove that

Fi (1 - 89, 1- 81, LU2> = (:f:27l'i7')81+32_1Fi (81, S92, ﬂ) .
w1 wh

Hence we have
(311 32’(*’1,(-‘)2) = F(l - sl)w ! 1—81~82

X{F+<1—82,1'—81, )+F—(1'—32y1_317w2)}'
wh w1

Thus we obtain the proof of Theorem 6.6.

Remark 7.1. From the above observation, we see that the singular loci of {5(s1, 82; w1, w2)
are located on

81+32=2—2k(k€N0), 31+82=1, 82=1.

In particular when (w;,ws) = (1, 1), this fact for (;(s;, sz) coincides with the known
result given by Akiyama, Egami and Tanigawa (1] using the Euler-Maclaurin for-
mula. We can also determine it by using the Mellin-Barnes formula.

8. FUNCTIONAL RELATIONS FOR CERTAIN DOUBLE SERIES

Now we consider double series of Eisenstein type deﬁned by

Cz(sl, 82; T) = Z Z méot (m + n‘r)sz

mel neZ

for 7 = ne't (n > 0; 0 < 6, < 7). Let £ = \/Me'®/2. Then
Ca(81,82;7) = (1 + e~ milor+en)) {5‘8*"”42 (s1,82;€7%,€)
+ (G671 G, (s, 503661, —i€) + C(sy + 32)}

which shows the meromorphic continuation of Zg(sl, S2;T).
For 7 € C with 31 > 0,

N (="
Sa(s1,82i7) = Z Z sinh(mmi/T)m® (m + nr)e2’

m#0 neZ
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Theorem 8.1. Forke Nwithk > 2, 7 € C with ST >0, and s € C,

Sa(s, k;T) = Z (2m/7—)k—1 (%) 22(8,,7' + 1;7).

Example 8.2. For k € N,
C2(0,2k; 1) = Gax () — 2(—1)*¢(2k),

where
( 1
e . k> 2),
MZ”E:Z (m+nr)2% ‘ (k2 2)
(m.n)#(0,0)
Ga(T) = ¢ 1
lim lim e (k=1).
M=o —M<Zm:<M N=oo —N;:szv (m + n7)?
\ - - (m,n)#(0,0)

It is known that G2(i) = —7 and Gg(i) = HM%-);;, where {Hy, € Q| k € N} are
the Hurwitz numbers defined by (1.6) (see [18]). Note that Gg+2(2) = 0 for k € N,
By (1.8), we obtain

G4(3) = w , Gs(i) = 525w Gi12(i) = Fa6s” (8.1)
From Theorem 8.1, we see that
Sa(s,3;7) = %52(8,4; ™) + -Zr—.C~2(8,2;T),
T ~
52(875;7') = '7542(8, 6;7) +3 Cz(s 4;7) + 360 5 ——=Ca(5,2; 7).
Letting s — 0, we have
, w4 7T 4 1,
A_® T 5,1 2
82(073)2) 71_ 907T + 67T ’ (8 )
v ___!_ Bl s T e
S2(0,5;1) = 50" ir + 520" " 3607 (8.3)

where (8.2) coincides with (4.2). More generally we recover the known result (see
[26]):

. | —1 .
82(0,2p — 1;4) = Z Z sinh(mﬂ()(m)"' ng)p-1

m#0 n€Z

_ 2(—1)P+1 Z (21_2p+2j _ 1) C(2p — 2_7) {(_]_)-7G2J(z) —_ 2C(2])} (p (S N)

™
Jj=1

This can be regarded as a double analogue of (1.9) which can be rewritten as

> ol

oy sinh(mm)mk-1

2k
= —2(‘1732”1 D (2 1) ¢(4k — 25)(—1)7 (2% —1)¢(2)) (k€ N).

=0
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9. FUNCTIONAL EQUATIONS FOR DOUBLE L-FUNCTIONS

Finally we introduce certain functional equations for double L-functions. For
details, see [16)].

Definition 9.1. (Double L-function) For Dirichlet characters x1, x2,

S a(m)xa(n)
L' (s1, 82; X1, = E —— 9.1
2 (31 $2; X1 X2) Lt Lt m’l(m + n)sz ( )

More generally, multiple L-functions have already been studied (see, for example,
[3]). The function (9.1) can be continued meromorphically to C? (see, for example,
(20]).

In order to prove functional equations for double L-functions, we recall the double
Hurwitz-Lerch zeta functions introduced by the second-named author in [21].
Let

Gst, 8250, Bywp) = ) _(a+m)™ Y ™a+m+nwy)™,  (9.2)

m=0 n=1
where 0 < @ < 1,0 < <1 and wp > 0. The function Fi(s, 82;, B, 7) is defined

by replacing o4, +s,—1(k) on the right-hand side of (6.4) by

Osy+85-1(k; a0, B) = Z62"“‘“62”(’”")3(1’1“2‘1.
dlk
Then the formula
<2(31’ S2; @, )81 w2)
_T(1-s)
I'(s2)

+ (1 — sy)wy™ 17

X {F+ (1—s82,1=s1;;8,0,w2) + F_(1—83,1— Sl;ﬁ,—a,wz)}

I'(sy + 82 — 1)¢(81 + 8y —1, ﬂ)wé_31—32
9.3)

can be easily deduced from Propositions 1 and 2 of {21]. On the other hand , we
can easily obtain

1 L J a b1
L3 (1,82 x1,X2) = W—ZZXKG)’%(”)Q (31,32; P ?> . (94)

*7(Xz2) a=1 b=1

Combining (9.3), (9.4) and (6.8), we can obtain the following.



Theorem 9.2. For primitive Dirichlet characters x1, x2 of conductor f > 1, the

functional equation

1—5y1—s

2mi\ & - T'(ss
(.%r_) T((;lgL;J(SlySZ;XhXZ)

s1+s82—1
2mi\ 2 I(1—s;)
=\ — —_.—-L“’l 82,1 — 81, X2, X1)s
(f) 7(X2) ( 2 ‘1X2X1)

holds on the hyperplane

Qok+1 = {(s1,82) |81 + 52 =2k + 1}  f xa(—1)xa(~1) =1;
Qor = {(81,82) | 81 + 52 = 2k} if x1(=1Dxa2(~1) = —-1.

Remark 9.3. It is also possible to give the functional equation in the case when
X1 Or X2 is the trivial character. In this case, an extra part including the Dirichlet
L-function appears in the equation. Actually, when both x; and x; are trivial, extra
parts including {(s) appear on both sides of (6.2). In [16], we further treat double

L-functions of Eisenstein type.
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