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Differential equations and rational
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Abstract

e The monodromy’s study of Fuchsian hypergeometric differential
equation provides a natural framework for the explicit determination
of rational approximations of polylogarithmic functions .Thus , we
can obtain almost without calculation explicit determination of many
polynomials and hypergeometric power series related to their Padé
approximations . -

From now on , using a classical way , one can study the arithmetic
nature of numbers related to the values taken by these functions.

It is an expanded version of the conference given at the sympo-
sium on New aspects of analytic Number theory, held at the RIMS
of the university of Kyoto in october. 27-29 , 2008.

I would like to thank the organizer Professor Takao Komatsu and
also N.Hirata Kohno for their invitation to come to Japan .

1 Introduction

& In this paper I want to explain the origin of many formulas which are
related to the simultaneous rational approximations of polylogarithmic func-
tions.

Let us recall that :

Definition 1
' . 2™
Lig(z) = - e
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For ¢ = 1, one recognizes the power series expansion to — log(1l — z).
For g = 2 this function is called the dilogarithmic function .

1.1 Arithmetic motivations

& The arithmetic motivation for searching such effective rational approxima-
tions comes from proving irrationality or transcendence of numbers arising
as values of polylogarithmic functions , such as Li,(1/p)), p € Z ,

Lig(1) = ¢(9),
(for g integer ¢ > 2) ) .
¢(2),¢(3), - ete,

e We sall now describe the preliminaries for the main result of this paper .
(Marc Huttner :Israel Math Journal 2006),[Hu].

1.2 Riemann-Hilbert problem

& Find a very natural way to the explicit construction of functional linear
forms in polylogarithmic functions using the construction of a fuchsian "hy-

pergeometric ” differential equations with prescribed singular points 0,1, 00
and prescribed monodromy.

We solve in this particular case a ”Riemann-Hilbert problem ”.

Remark 1 Let us recall that the Riemann-Hilbert problem is : Prove that
there always ezists a Fuchsian linear differential equation of order g+ 1 such
that its singular points and monodromy operator are given.

In general this fuchsian equation involves on accessory parameters and ap-

parent singularities (i.e singular points for the differential equation but not
for the solutions!)

For our special case there exists a solution, we shall prove that this equa-

tion does not involve accessory parameters and apparent singularities. This
operator is thus unique!

We use a new explicit construction which replaces and generalizes many
constructions often given without proofs by many authors. (See Apéry
[Ap],Nesterenko,[Ne| ,Gutnik [Gu], Ball-Rivoal [Ba,Ri],Zudilin ,[Zu] .

1.3 Pochhammer symbol , hypergeometric power se-
ries :
Definition 2 In the following if a € C we put (a)o =1 and ifn > 1,
- (@p=ala+1)(a+2)...(a+n-1)
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Definition 3

b11b27' 7bq z) (1)
_ i Lo(%)n z"
n= Hg:l(bj)n nl

denotes the hypergeometric power series .

1.4 Hypergeometric differential equation,Levelt’s con-
struction

& The hypergeometric power series is the holomorphlc solutmn at 0 of the
following differential equation of order ¢ + 1.

Hyp((a)s, (b):)
((0+b,—1)@+by—1)---(0+b;—1)— (2)
2(6 + ag)(6 +az) - (6 + aq))y(z) =0.

The natural domain of definition of the solutions of the ordinary differential
equation (ODE) is the Riemann -sphere CP;.
By examination the ODE Hyp((a);, (b);) has 0,1, 00 at its only regular sin-
gular points . '
s+1F, can be continued to a meromorphic function on Z = CP, — {0, 1, 00}
which is generally multivalued .
e The solution space of any order ODE on CP, is determined by the charac-
teristic exponents associated to a symbol called Riemann-P-scheme (see for
example [AAR] ) , which indicates the location of the singular points , and
the exponents relative to each singularity .
(These exponents do not depend of the basis of solution choosen!)

e The equation Hyp((a)i, (b):) is free of accessory parameters and the Riemann-
P-symbol related to this equation is

Theorem 1

0 o 1

/ 0 agp '0 \
1-56; a 1
2

: :og—1
\1—bq ag d )
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q q
d= ij — Zaj
i=1 3=0

The notation o< indicates that the unique analytic solution f(z) (hyper-

geometric power series) f(z) =g41 F,(2) ) belongs to the zero exponent at
z = 0 and satisfies f(0) = 1.

The main point is that at z = 1 there exist ¢ holomorphic linearly inde-
pendent solutions of Hyp((a);, (b);). This result is very important and is
characteristic of the hypergeometric ODE , (Levelt) [Le].

Remark 2 When d € Z , one solution at z = 1 is in general logarithmic i.e
can be written ¥(z) = u(z) + (1 — 2)%v(z)log(1 — z) + w(z)] where u is a
polynomial of degree ¢ — 1 and v resp w are analytic functions at z = 1.

1.5 Padé problem

& Find the 0 = ¢(n + 1) coefficients of the polyhomials A (z) ,of degree n (
1 < k < q ) and the remainder Ry (2) such that for given 0 > n+ 1, the
linear form :

Roo(z) = Ao(2) + Y _ Ak(2)Lin(1/2).
k=1

satisfies OrdooReo(2) = Oco-

1.6 Rivoal’s problem
e Recall that : OrdoRw(2) = 0. i€

1 1
Roo(z)‘—:;;;(CQ—FCl;'{—"')

with cg # 0. (The polynomial Ag(z) is completely determined and of degree
<n-1)

Construct (if possible) these polynomials such that A;(1) = 0 i.e Roo(1)
exists. and also A,_1(1) = A;3(1) =--- = A3(1) = 0.
The following assumption :

0 =0 + 01+ 0g (4)

where o, and oy are positive integer (related to analytic continuation of
R (2) at z = 0 rep z = 1 ) will be needed to prove the following theorem
:[Huttner.Israel Math Journal,[Hul)
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Theorem 2 (Main theorem) & Under the assumption (3), the polyno-
mial Ag(z) and the remainder Ry (2) are solutions of the Fuchsian differential
equation : -
690 +1—00) — 2(0 + 000)( — )T =0 (5)

R.(z) is analytic in the vicinity of z = co and belongs to the exponent o

at z = 0o0. As usual , we put § = zadz.

R (2) is an hypergeometric power series!
Roo(2) = Coo(n)(1/2)7> x

+1F O " 300,00 + Op
q q O-oo+n,"',am+n

1/2) (6)

where Co(n) denotes a constant which depends on oo, and oo.

;) (7)

e To obtain a polynomial (hypergeometric ) solution at z = 0 , we must
suppose that oy = 0. (In this case the polynomial A,(2) € Z[z] or 1—0¢ < —n.
i.e ,00 > 1+ n. ) (See the well-poised-case where we have the relation :

-n,—n, -+ ,—N,0
Aq(z)——‘qHFq( 1,---,1 1_0000

Oo+1l—0p=1—n

In particular the study of this differential equation gives the rational approx-
imation related to Rivoal’s theorem .

Theorem 3 (Rivoal’s Theorem ) For any even g >4,

dimg(Q + QC(3) + QC(5) + -+ + Qc(g — 1)) > ~+ o)

1
— 1+ log2 og (4)

2 Polylogarithmic functions and local systems

& Now we review the necessary mathematical background which allows to
understand this lecture :
In the following we put :

Z =IP1(C) - {0,1,00}

Let us recall that for ¢ integer , ¢ > 1
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(Ifg>2and <1ifg=1).

has an analytic continuation to the cut plane X = C — [1, +o0].

For ¢ > 2 |, we have :
0(Lig(2)) = Lig_1(2)

In this case ,y(z) = Liy(2) is the holomorphic solution of the non-homogeneous
differential equation :

d
— 2)— (89" 1) (y) =
(1= 2) (6 () = 1
Remark 3 A basis of solutions at z = 0 of this equation is

(log 2)? (log2)s !
2 ’ ’ (q . 1)' 7qu(z)

The polylogarithmic functions , Li,(2) has an analytic continuation to X

and may be conceived of as a 'multivalued ’ function on Z (i.e. function on

W the universal covering of Z ) .

Let us recall also the following integral formulae

1,log 2,

, = dt
L'Ll(Z) = —‘lOg(]. - Z) = A ‘1—:_'-2

and for the higher logarithm :
Ligi1(z) = / L—z‘;(-tldt.
0

We use the analytic continuation of Li1(z), Lia(z) - -« , Liy(2) along loops v,
‘circling z = 1, and ~q circling z = 0.
e Analytic continuation along =, gives :

(2im)k—1
(k —1)!
Using monodromy , it is easy to see that the g + 1 fonctions
1,log(1 — 2), Lia(2) - -+ , Lig(2)
are Q(z) linearly independent .Thus , we obtain a local system
PLi(q) =: C(2){log(1 — 2),- -+ , Lig(2)}
which is of rank ¢ + 1 over C(2).

Lix(z) — Lig(2) + (log z)*?

Remark 4 e The connections formulae for the Li,(2) between z = 0 and
z = oo involve Bernoulli polynomials in logz ). That give the analytic con-
tinuations of Ryo(2) at z=0 and z = 1.

The monodromy group of this local system is well known ; it is in particular
unipotent .
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3 Periods

® We use the analytic continuation of Lii(z), Lig(2) - - , Lis(2) along loops
71 and 7o -

The second row is a result of the monodromy transform of the first row along
loop 7, , the third row along loop 7y , i.e analytic continuation along

MYon W o,V o
We obtain the following matrix of ”periods” :

Theorem 4

1 Liy(2) .-+ Lig(2)
0 2m--- 2irlog®™ z/(q —1)!
A(z) = SO (9)
0 0 (2dm)?~? (24m)9 1 log 2
o ... 0 --- (2im)?

3.1 Proofs :Analytic construction of linear forms of
polylogarithmic functions

® Let us recall the main steps of this proof which is almost the same as

in [Hu]). (In this paper we study the approximation at infinity , i.e. z is

replaced by the local parameter 1/z ).

e Consider the linear form :

Definition 4 ]
Ro(2) = Ao(2) + Y _ Ar(z)Lik(1/2).
k=1

Now this form gives rise to linear forms obtained by use of analytic contin-
uation of Ry (2) along loops based in a vicinity of z =1 resp z =0 ( i.e. is
monodromy around the points z =1 and z=10)

Roo(z) | AO(Z)
Rl(Z)

= A(2) | Ax(2) (10)
Ry(2) Aq()

Now ,from a local system of rank g+1 we can construct a differential equation
whose solutions are given by a basis of this local system.
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Theorem 5 (Classical theorem) o Let fi(z), -, f,41(2) be a system of
multwalued and regular holomorphic functions on Z such that its Wronskian
det( f ) # 0 and such that the analytic continuations of the f;s along the
loops v; define automorphisms of the space of functions spanned by frs .
Then there exists a (q + 1)** order differential equation with coefficients in
C(z) such that the system f1(z), -, fo+1(2) of functions is its fundamental
system. (The matriz of analytz'c continuations of the fis along loops v; are
called monodromy matrices ).

Using this theorem ,we obtain :

Theorem 6 o R;(2), -, Ry(z) = (2im)? Ay(2) satisfy the same Fuchsian
differential equation of order ¢ + 1 as Ry (2).

3.2 Applications of Levelt’s construction to Padé prob-
lem

As the analytic continuation of Ry (2) along 7v; is’

Y (log (1/2))*71) )
(k —1)!

Rx(2) = Roo(z) +227rZA

k=1

e We put now

Ru(a) = 2in(3_ an(a) BT
k=1

Using analytic continuation of R;(z) along 7y, gives

q k—2
Ra(z) = (2im?* 3 a2 (PELD—; Ro(a) =

That gives A x (A(z)) where
A(z) = (Ao(2), A1(2) - - , Ag(2))"
e The exponents at z = oo are :
Oooy =My , —N.

e At z = 0 one finds
0'0,0,"' ,0.
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(00 is the exponent given by analytic continuation at 0 of Roo(2).)
e At z=1:

'07]-7"' 7q__1)a-1

Fuchs relation for Fuchsian differential equations of order (g+1) gives :(Fuchs
relation) og + 0o + 01 — gn + g(q—;ll = q—%ﬂl

00+ 0o + 01 =q(n+1)

(There does not exist apparent singularities and we find exactly the number
of coeflicient of the polynomials Ag(z).)

e Let 0o , and at z = 1 (6; ) , be the exponents related to the analytic
continuations of R (2) (which depend on additional assumptions on the
polynomials Ag(z).) | ‘

e The Riemann scheme related to this equation gives the main theorem! :

Theorem 7 ( Main Riemann scheme)

[0 = 1 \
Op Oxo 01

0 —n 0
P O -n 1

\ 0 -n g—1 /
which can be written :

[ 0 ®© 1 \

Oo Oco + 00 O3

(1/z)°=P| ~9w =T  Ow 21/,

N

e The elements of this 1ocal system are solutions of the following differential
equation:
(096 +1—0p) — 2(0 + 000)(0 —n)¥)(y) =0.

Within a multiplicative constant this give the formulae of the main theorem
for the remainder as well as the Fuchsian differential equation .
o If one puts A,(2) = Z?:o c(j)2? , the other polynomials are obtained by
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the use of Frobenius method for solving Fuchsian linear differential equations
yle for1<k<qg-1,

k n
Agei(2) = 20D el + 1) ems
i=0

Let us recall that the’ logarithmic’ solutions of the Fuchsian differential equa-

tion are given by
k n

Ri(2) = (3" el + )2l
=0

e The Padé case is related to 09 = 01 = 0.

3.3 D-modules

& But if 69 > 1+ n , ie. if there exist relations between the analytic
continuation of the power series Ry (2) at 2 = oo and at z = 0, we find that

the rank of the D— module 9%%%‘-’1 o

Q(2)[Lir(1/2),- - -, Lig(1/2)].
is q , ( not of rank ¢ + 1. as expected! )
e The previous fact has been verified by Rivoal himself and has been gener-
alized by Nesterenko .
There exists also an elementary proof using a decomposition in partial frac-
tion of Ru(2) [Ba,Ri] .
For a proof , we can use the following relations :

) -

Go,di, "' ,0a
(9+a0)p/(a0)pq+1Fq< b(;’b:’... ’b:

q+1Fq ( ao +p,ay, - ) Oq Z)

bl,bZ"" abq
:).

If , for instance ag + p = b1 , we obtain
ai, ' ,a
F... ) )y Ygq
7tq 1( ba, -+ , b,

3.4 The well-poised case

& We consider the differential operator
H(6) = (6 + aq)p/(ao)

for ag = 0o} P = 0o — n — 1.
In this case we can write ,
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Res(2) = H(6)(R(2))

R(z) being a solution of a Fuchsian differential equation of order ¢ and H (6)
commutes with the monodromy .

We obtain a shift for the linear combination of polylogarithmic functions
Liy(1/z) with, for 1 < k < g — 1 : the same polynomials .

The new polynomial A,_, replaces the previous polynomial 4,(z) i.e 4,(z) =
0 ,etc . '

e The new linear form becomes :

Roo(2) = 3 A5(s)Lis (1/2) + Ao(z)

=1

Ao(2) = ~[Ag(2)Lig-1(1/2) + - - Ag(2)Lir(1/2)]n

(polynomial part at the order n — 1 ). This gives the ” well-poised-case”.
e In the literature concerning special functions , [AAR] : if the parameters
of the hypergeometric power series satisfy

Definition 5 ap + 1 =a, + by = --- = a4 + b, the power-series is said well-
poised.
o It is said very-well-poised if it is well-poised and a; = a9 + 1

Remark 5 In the present problem , in the very-well poised case , one finds
that the first polynomial A,—1(2) satisfies Ag_1(1) =0 .

The differential equation satisfied by this polynomial is of order g+ 1 but the
local system is of rank v, = q — 2 over Cl[z].

e Let us consider the relation
Oo—0Op+1=1—n (11)

This relation means that in the above differential equation y(z) is a solution
if and only if 2"y(1/2) is also a solution. In this case, the remainder R(2)
can be written [Well-poised remainder]

1/ z)

Theorem 8 (A reciprocal polynomial) A,(z) = (—=1)@)"z"A4,(1/2).

2000:"' yTo0) Too
Oo+n+1: - 0+n+1

Ros(2) = (1/2)7= P

e The polynomial A,(z) satisfies the relation
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Let us write A,(z) = 3.7, ¢;27.

For0<j<n,wefind, ¢; =cn; .

Since these polynomials are solutions of a Fuchsian differential equation , the
other polynomials are computed by Frobenius method.

e For 1 < k < g — 2 the polynomial coefficients of Ax(z) satisfy the relations

dk
E(cj+t)|t=0 =

dk , d
E{E(Cﬂ—(ﬂt))lt:o =(-1) a_t‘;;‘(cj+t))|t=0- ‘

We find :
Ay (z) = (=)@ Ok A (1/2),

3.5 Arithmetic applications
& For k=2-..qg— 1, the polynomials Ai(z) are such that

Aq_g(l) = Aq_.4(1) te Ag(l) = Al(l) = O

In particular if g— 1 = 2a + 1 is odd , we obtain the famous Rivoal’s relation
on linear form of {(2k + 1) [Ba,Ri]. The remainder can thus be written :

Theorem 9
Roo(1) = Azar1(1)¢(2a + 1) + -+ + A3(1)¢(3) + Ao(1).

We have multiplied the remainder by a normalized constant related to various

integral values which represent R, (z) and also by an common denominator
D,, such that :

A (2) € Z|2) and dE A,k (2) € Z][2]
e We put
O =TN+ 1,00 =0 +n
with the parameter r satisfying : 1 < r < 9;—1 (o1 > 1.
These assumptions permits us to compute the remainder Ro.(2z) at z = 1).

In this case ,
The remainder is given by

2r+1)n+2,rn+1,.-- ,rn+1
Roo(1) =C(n,r,q)-q+1Fq< ( (r+1))n+2,"' ,(r+1)n+2) 1)

m+1,-n,---,—-n
Ag(2) =1 Fq( —(r+Dn,1,---,1
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1—9, (rn1)? ((2r + )n + 1)!
((r+1)n+ 1)l
e The remainder can also be written using Euler’s integral
_ (@r+Dn)! S

R = 7 7 n ces
oo (2) nl2r+1 [o,1]q[(1 — - .tq)2r+1] dty - - - dig

C(n,q,r) =nl?"

4 Apéry, Gutnik, Nesterenko , ((2) and ((3)

& Let us recall Beukers’s and Gutnik ’s method ,[Be],[Gu] concerning simul-
taneous approximations of {(2) and ((3). :
e Linear Algebra shows that there exists four polynomials

As3(2), A2(2), A1(2), Ao(2)

of degree n such that :

Ri(z) = A3(z)Lia(1/2) + Az(2)Liy(1/2) + A1(2)

Rz(z) = 2A3(1/Z)L’L3(Z) + Az(Liz(l/Z) -+ Ao(z)
satisfying OrdooRi1(2) 2 n+ 1, OrdoRz(o0) > n+ 1 and Ay(1) = 0.
Remark 6 The main idea to motivate the introduction of Ry(2) comes from

” Frobenius method of perturbing the power sertes”.
In this aim we introduce the function :

. o0 onts
LZk(Z, S) = ; m

where s denotes a ’formal’ variable .
Since |,
OLix(z, s)
0s
Using the following function :

|s=0 = Lix(2)logz — kLik+1(z)

Ry(1/z,8) = As(z)Lis(1/2,8) + Ax(z)Li1(1/ 2z, 8) + Ai(2,8)(1/2)°
e An easy computation shows that :

OR1(1/%, s)l _
Os =0
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Ry(1/2)log(1/2) — Ra(2)
with A;(2) = A;(z, s)|s=0 and

Ao(z) = 223,
e We put now )
Ry(z) =log(1/z).Ry(2) — Ra(2) (12)

We can construct a linear differential operator L of order at least 4 such that
at z = o0.
Since

Ry(z) = log(1/2).Ry(2) — Ra(2)

is a (logarithmic) solution of L = 0.
e Monodromy around 0 shows that L(R;(z)) = 0.
Now if we put :

Ry(z) = As(z)log(1/2) + Az2(2),

monodromy around 1 shows that L(R3(2)) = 0.
Monodromy around 0 for R4(2) = A3(2) yields L(Rq4(2)) = 0.

Theorem 10 The ’Levelt basis’ of solutions ¢f L at O is
Ry(2), Ri(2), Ra(2), Ra(2)

They are linearly independent solutions at z = oo of a Fuchsian differential
equation of order 4 .

e The Riemann scheme of L is :

0 o< 1

0O -n O
Pl O —-n 1]z

0 n+1 2

0 n+1 1

The unique differential hypergeometric equation related to this Riemann
scheme is

6* — 2(6 — n)*(@+n + 1)*> = 0.

e This Riemann scheme gives the famous Apéry’s polynomial ,[Ap]

—n,—n,n+1,n+1
Az(z) = 4F3< 1.1.1 |z>
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OIeVE

e We also see that R3(1) = 0 i.e Ay(1) = 0 (see the Riemann scheme)!) We
find the form of the remainder, only by studying this Riemann scheme !

One finds that R;(z) is equal ( with the choice of a multiplicative normali-
sation ’s constant ) to

4

n! ntl n+ln+l,n+1,n+1
(2n)'2(1/z) F( on+1,2n+1,1 1/2).

If one puts
n! 1

Ra(2) = (2n + 1)12 zn+1

T1(Z)

and ry(z) = 37, cn(1/2)",
e The 'logarithmic’ solutlon belonging to the exponent n + 1 is given by

ro(2) = ‘gz(z cn+t(1/2)")le=0.
k=0

4.1 ((3) is irrational !
e Since log1 = 0, we find:

n)
r2(1) = Zak (k)

n+1

2

(which gives Beukers or Nesterenko’s integral for the remainder.) Since ,
d3.A(1) € Z ,we obtain

(245(1)¢(3) + Ao(1))dS = ro(1).d5

Since ,
lim d3ry(1) = 0.
n—oo

the irrationality of {(3) is proved !

We can conclude that in many cases, the study of the Riemann
scheme gives a complete answer for the determination of simulta-
neous rational approximation of polylogarithmic functions.
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