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Abstract

There are five classical theorems on convex sets in Euclidean spaces,
i.e., Carath\’eodory’s theorem, Radon’s theorem, finite and infinite
Helly’s theorems. and Kakutani’s fixed point theorem. In this paper,
by considering lartice-valued fuzzy convex sets in Euclidean spaces and
some lattice-valued fuzzy topologies of Euclidean spaces, we extend
these theorems to the lattice-valued fuzzy case in a uniform way us-
ing a-cut operators. This paper provides an example of lattice-valued
fuzzyfication of classical mathematics.

1 Introduction
In this paper, we investigate the notion of convexity in Euclidean spaces from
the viewpoint of $latticearrow$valued fuzzy mathematics and reveal some combina-
torial properties of lattice-valued fuzzy convex sets in Euclidean spaces.

Convex geometry has been studied extensively from different perspec-
tives (for example, see [10, 6]) and has been applied to diverse research ar-
eas, including computer science and economics. In this paper, we consider
Caratheodory’s theorem, Radon)$s$ theorem and (finite and infinite) Helly’s
theorems (see [8, 10]), which are fundamental results in combinatorial con-
vex geometry and have many applications to computer science (for example,
see [1, 21] $)$ . As a very significant fact, these theorems characterize the dimen-
sion of a Euclidean space. We also consider Kakutani’s fixed point theorem
(see [14, 4]), which is a generalization of Brouwer’s fixed point theorem and
has.widespread applications to economics and game theory (see [4, 2]). It is
well known that J. F. Nash used Kakutani’s fixed point theorem to show the
existence of so called Nash equilibrium (see [20, 4]).
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Let us briefly review historical developments of fuzzy convex geometry. In
1965, Zadeh [26] introduced the concept of $[0,1]$ -valued fuzzy sets $([0,1]$-fuzzy
sets, for short) by considering $[0,1]$ -valued membership functions. Zadeh
[26] also introduced the concept of $[0,1]$ -fuzzy convex sets, based on which
several authors have studied the various properties of $[0,1]$ -fuzzy convex sets
(for exapmle, see [9, 15, 22, 24, 25, 27]). Among them, in 1980, Lowen [17]
showed separation theorems for $[0,1]$ -fuzzy convex sets. Meanwhile, in 1967,
Goguen [12] generalized the concept of $[0,1]$ -fuzzy sets to L-valued fuzzy
sets (L-fuzzy sets, for short) for an arbitrary completely distributive lattice
$L$ . However, Goguen [12] did not consider the convexity of L-fuzzy sets.
Thereafter, in 2008, Huang and Shi [11] introduced the notion of L-fuzzy
convex sets, some properties of which are investigated in this paper.

In this paper, we show some L-fuzzy versions of the above classical the-
orems on convex fuzzy sets, i.e, Carath\’eodory’s theorem, Radon’s theorem,
finite and infinite Helly’s theorem, and Kakutani’s fixed point theorem. As
a related work, in 1991, Feiyue [9] extended Carath\’eodory’s theorem to the
$[0,1]$ -fuzzy case. In this paper, we extend Carath\’eodory’s theorem to the $Larrow$

fuzzy case for an arbitrary completely distributive lattice $L$ . By using some
properties of a-cut operators for $a\in L$ (for the definition, see Definition 2.4),
we can prove L-fuzzy versions of the five theorems in a uniform way. It is ex-
pected that we can extend other theorems on convex sets to the L-fuzzy case
in similar ways. We remark that a-cut operators play important roles also
in the context of mathematical fuzzy logics, especially topological duality
theory for them (see [18, 19]).

This paper is organized as follows. In Section 2, we first review basic
notions on L-fuzzy sets. Then we introduce a-cut operators for $a\in L$ and
show some properties of them. In Section 3, we review basic notions on
L-fuzzy convex sets and show some properties of them, among which it is
shown that a-cut operators transform an L-fuzzy convex set into a convex
set in the ordinary (i.e., two-valued) sense. In Section 4, we first review
basic notions on $Larrow$fuzzy topology and then equip n-dimensional Euclidean
space with a natural L-fuzzy topology. Then we show that, under some
assumption on $a\in L$ , a-cut operators transform an L-fuzzy compact (resp.
closed) set into a compact (resp. closed) set in the ordinary sense. Section 4
is needed only for L-fuzzy versions of infinite Helly’s theorem and Kakutani
fixed point theorem. In Section 5, using a-cut operators, we show the main
theorems in this paper, i.e., some L-fuzzy versions of the above five theorems
in convex geometry. Finally, in Section 6, we consider some future work,
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including a mechanical procedure to get fuzzy versions of theorems in classical
mathematics. Our final aim is to obtain such a ($(fuzzyfication$ procedure”,
and this paper is a first step for it.

In Sections 2, 3 and 4, we omit the proofs of all the propositions and,
in Section 5, we sketch the proofs of the main theorems. The details of the
proofs will be presented in a subsequent paper.

2 Basic Concepts and Propositions
$\omega$ denotes the set of all non-negative integers.

A lattice $L$ is called a completely distributive lattice iff $L$ is a complete
lattice and arbitrary joins in $L$ distribute over arbitrary meets in $L$ (see [7,
16] $)$ . Throughout this paper, $L$ denotes an arbitrary completely distributive
lattice and $0$ (resp. 1) denotes the least (resp. greatest) element of L. $L_{2}$

denotes the two-element Boolean algebra $\{0,1\}$ .
$\mathbb{R}^{n}$ denotes n-dimensional Euclidean space. An L-fuzzy set on $\mathbb{R}^{n}$ is

defined as a function from $\mathbb{R}^{n}$ to $L$ , where “on $\mathbb{R}^{n}$
” is often dropped. Since $L$

is complete, the class of all L-fuzzy sets is closed under arbitrary meets (i.e.,
infimum). We call a set in the ordinary sense a crisp set.

For two L-fuzzy sets $\mu$ and $\lambda$ , we define $\mu\leq\lambda$ by $\mu(x)\leq\lambda(x)$ for any
$x\in \mathbb{R}^{n}$ . We do not distinguish between an element $a$ of $L$ and the L-fuzzy
set $\lambda$ defined by $\lambda(x)=a$ for any $x\in \mathbb{R}^{n}$ . For instance, for an L-fuzzy set
$\mu$ , when we write $\mu\leq a$ , we mean that $l^{l}(x)\leq a$ for any $x\in \mathbb{R}^{n}$ .

Definition 2.1. Let $\mu$ be an L-fuzzy set on $\mathbb{R}^{n}$ . The a-cut set of $\mu$ , which is
denoted by $C_{a}(\mu)’$. is defined by

$C_{a}(\mu)=\{x\in \mathbb{R}^{n};\mu(x)\geq a\}$

Deflnition 2.2. Let $a\in L$ and $\mu$ an L-fuzzy set on $\mathbb{R}^{n}$ . Then, $\mu$ is said to
be non-empty relative to $a$ iff there exists $x\in \mathbb{R}^{n}$ such that $\mu(x)\geq a$ .

It is clear that $\mu$ is non-empty relative to 1 iff $\mu^{-1}(\{1\})$ is not empty.

Definition 2.3. For $a\in L$ , $a$ is said to be upward inaccessible in $L$ iff the
following holds:

$\{x\in L;x<a\}<a$ .

If $L$ is a finite totally ordered lattice, then every element in $L$ is upward
inaccessible in $L$ .
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Definition 2.4. Let $a\in L$ . We define a function $\tau_{a}$ from $L$ to $L_{2}$ as follows.

$\tau_{a}(x)=\{\begin{array}{ll}1 (if x\geq a)0 (otherwise).\end{array}$

We call $\tau_{a}$ an a-cut operator.

Throughout this paper, $a$ denotes an element of $L$ .
Note that $C_{a}(\mu)=(\tau_{a}\circ\mu)^{-1}(\{1\})$ for an L-fuzzy set $\mu$ .

Proposition 2.5. The following hold:

$\bullet$
$\tau_{a}$ is idempotent, i. e., $\tau_{a}0\tau_{a}=\tau_{a}$ ;

$\bullet$
$\tau_{a}$ is monotone, i. e., if $x\leq y$ then $\tau_{a}(x)\leq\tau_{a}(y)$ ,

$\tau_{a}$ commutes with arbitrary meets as follows.

Proposition 2.6. Let $\mu_{i}$ be an L-fuzzy sets for each index $i\in I$ . Then,

$\tau_{a}\circ\bigwedge_{i\in I}\mu_{i}=\bigwedge_{i\in I}(\tau_{a}0\mu_{i})$
.

While $\tau_{a}$ does not necessarily commutes with joins, we have the following:

Proposition 2.7. Let $a\in L$ be upward inaccessible in L. Then,

$\mathcal{T}_{a_{i\in Ii\in I}^{O_{h}=(\tau_{a}0\mu_{i})}}$
.

We give an example which shows that $\tau_{a}$ does not necessarily commutes
with joins. Let $L$ be the four-element Boolean algebra $\{0, a, b, 1\}$ , where $a$

and $b$ are incomparable. Define an L-fuzzy set $\mu$ by $\mu(x)=a$ for $x\in \mathbb{R}^{n}$ and
an L-fuzzy set $\lambda$ by $\lambda(x)=b$ for $x\in \mathbb{R}^{n}$ . Then we have

$\tau_{1}\circ(\mu\vee\lambda)\neq(\tau_{1}0\mu)\vee(\tau_{1}0\lambda)$ .

Note that 1 is not upward inaccessible in $L$ .
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3Basic Results on L-Fuzzy Convex Sets
We call a convex subset of $\mathbb{R}^{n}$ in the ordinary sense a crisp convex set on $\mathbb{R}^{n}$ .

Definition 3.1. An L-fuzzy set $\mu$ on $\mathbb{R}^{n}$ is an L-fuzzy convex set on $\mathbb{R}^{n}$ iff
$\mu(rx+(1-r)y)\geq\mu(x)\wedge\mu(y)$

for any $x,$ $y\in \mathbb{R}^{n}$ and any $r\in[0,1]$ .
$C_{L}$ denotes the set of all L-fuzzy convex sets on $\mathbb{R}^{n}$ . For a set $X$ , let $L^{X}$

denote the set of all functions from $X$ to $L$ .

Definition 3.2. For a set $X$ and a subset $C$ of $L^{X},$ $(X,.C)$ is called an L-fuzzy
convexity space iff $(X, C)$ satisfies the following properties:

$\bullet 0,1.\in C$ ;

$\bullet$ $C$ is closed under arbitmry meets;

$\bullet$ if $\{\mu_{i}\in C;i\in I\}$ is totally ordered, then $\{\mu_{i};i\in I\}\in C_{f}$

where $0$ (resp. 1) is the constant function whose value is always $0$ (resp. 1).

Note that $L_{2}$-fuzzy convexity spaces coincide with ordinary convexity
spaces (for the definition of ordinary convexity spaces, see [6]).

Proposition 3.3. $(\mathbb{R}^{n},C_{L})$ is an L-fuzzy convexity space.

Since the class of all L-fuzzy convex sets is closed under arbitrary meets,
we can define the L-fuzzy convex hull of an L-fuzzy set as follows.

Deflnition 3.4. For an L-fuzzy set $\mu$ on $\mathbb{R}_{f}^{n}$

$H_{L}(\mu)=\wedge$ { $\lambda;\mu\leq\lambda$ and $\lambda$ is an L-fuzzy convex set}.

Then, $H_{L}(\mu)$ is called the L-fuzzy convex hull of $\mu$ .

Let $X$ be a subset of $\mathbb{R}^{n}$ . Then, the $L_{2}$-fuzzy convex hull (of the indica-
tor function) of $X$ coincides with the ordinary convex hull of $X$ , where the
indicator function $\mu x$ of $X$ is defined by $\mu_{X}(x)=1$ for $x\in X$ and $\mu_{X}(x)=0$

for $x\not\in X$ . Throughout this paper, we do not distinguish between a set and
the indicator function of the set.

$\tau_{a}$ transforms an L-fuzzy convex set on $\mathbb{R}^{n}$ into a crisp convex subset of
$\mathbb{R}^{n}$ as follows.
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Proposition 3.5. Let $\mu\in C_{L}$ . Then, $\tau_{a}0\mu$ is a crzsp convex set.

The converse of the above proposition also holds:

Proposition 3.6. Let $\mu$ be an L-fuzzy set on $\mathbb{R}^{n}$ . If $\tau_{a}\circ\mu$ is a cresp convex
subset of $\mathbb{R}^{n}$ for any $a\in L$ , then $\mu$ is an L-fuzzy convex set on $\mathbb{R}^{n}$ .

The following proposition states that, for a subset $X$ of $\mathbb{R}^{n}$ , the L-fuzzy
convex hull (of the indicatior function) of $X$ coincides with the $L_{2}$-fuzzy
convex hull (of the indlcatior function) of $X$ .

Proposition 3.7. Let $\mu$ be an L-fuzzy set on $\mathbb{R}^{n}$ . If the range of $\mu$ is con-
tained in $\{0,1\}$ , then we have

$H_{L}(\mu)=H_{L_{2}}(\mu)$ .

$\tau_{a}$ commutes with $H_{L}$ as follows.

Proposition 3.8. Let $\mu$ be an L-fuzzy set on $\mathbb{R}^{n}$ . Then,

$H_{L}(\tau_{a}0\mu)=\tau_{a}\circ H_{L}(\mu)$ .

4 Basic Results on L-Fuzzy Topology
This section is needed only for Theorem 5.9 and Theorem 5.11.

Chang [5] introduced the notion of $[0,1]$-valued fuzzy topology and there-
after Goguen [13] extended that to the L-valued fuzzy case. Now there are
a number of articles on fuzzy topology (for example, see ??).

Deflnition 4.1. Let $S$ be a set and $\mathcal{O}$ a subset of $L^{S}$ . $(S, \mathcal{O})$ is an L-fuzzy
topological space iff the following hold:

$\bullet 0,1\in O$;

$\bullet$ if $\mu,$
$\lambda\in \mathcal{O}$ , then $\mu\wedge\lambda\in \mathcal{O}$ ;

$\bullet$ if $\{\mu_{i};i\in I\}\subset \mathcal{O},$ then $\{\mu_{i};i\in I\}\in \mathcal{O}$ ,

where $0$ (resp. 1) is the constant function whose value is always $0$ (resp. 1).
We call $\mathcal{O}$ an L-fuzzy topology of $S$ and an element of $\mathcal{O}$ an L-fuzzy open set
on $S$ .
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In order to define the notion of L-fuzzy closed sets, we equip $L$ with
an operation which is suppoed to have similar properties as the usual set
theoretic complement:

Definition 4.2. We assume that $L$ is equipped with an operation

$(-)^{c}:Larrow L$

which satisfies the following properties:
$\bullet$ $0^{c}=1$ and 1c $=$ 0;

$\bullet$ if $x<y$ then $y^{c}<x^{c}$ ;

$\bullet(x^{c})^{c}=x$ ;

$\bullet$ $( \bigwedge_{i\in I}x_{i})^{c}=_{i\in I}(x_{i})^{c}$ and $(_{i\in I}x_{i})^{c}= \bigwedge_{i\in I}(x_{i})^{c}$ ;

where $x,$ $y,$ $x_{i}$ are arbitrary elements in $L$ .

We give a typical example of $(-)^{c}$ . Let $L=[0,1]$ . Define $(-)^{c}$ : $Larrow L$ by
$a^{c}=1-a$ . Then, $(-)^{c}$ satisfies the above four properties. Note that $\tau_{a}$ does
not commute with $(-)^{c}$ in this case.

Definition 4.3. Let $(S, \mathcal{O})$ be an L-fuzzy topological space. For an L-fuzzy
open set $\mu$ on $S,$ $\mu^{c}$ is called an L-fuzzy closed set on $S$ , where $\mu^{c}$ is defined
by $\mu^{c}(x)=(\mu(x))^{c}$ for $x\in S$ .

An open (resp. closed) subset of $\mathbb{R}^{n}$ equipped with the Euclidean topology
is called a crisp open (resp. closed) subset of $\mathbb{R}^{n}$ .

We equip $\mathbb{R}^{n}$ with an L-fuzzy topology as follows.

Deflnition 4.4. For $a,$ $b\in L$ with $a<b$ , let $\mathcal{O}_{a,b}$ be the set of all L-fuzzy
sets $\mu$ on $\mathbb{R}^{n}$ such that the range of $\mu$ is contained in $\{a, b\}$ and $\mu^{-1}(b)$ is a
crisp open subset of $\mathbb{R}^{n}$ .

Then, we can equip $\mathbb{R}^{n}$ with the L-fuzzy topology generated by

$\cup\{\mathcal{O}_{a,b}$ ; $a,$ $b\in L$ and $a<b\}$ .

Note that every constant function from $\mathbb{R}^{n}$ to $L$ is an L-fuzzy open set on
$\mathbb{R}^{n}$ and that the $L_{2}$-fuzzy open (resp. closed) sets on $\mathbb{R}^{n}$ coincide with the
crisp open (resp. closed) subsets on $\mathbb{R}^{n}$ .

If $a$ is upward inaccessible in $L$ , then $\tau_{a}$ transforms an L-fuzzy closed set
on $\mathbb{R}^{n}$ into a crisp closed subset of $\mathbb{R}^{n}$ :
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Proposition 4.5. Let $a\in L$ be upward inaccessible in $L$ and $\mu$ an L-fuzzy
closed set on $\mathbb{R}^{n}$ . Then, $\tau_{a}0\mu$ is a crisp closed subset of $\mathbb{R}^{n}$ .

The ordinary definition (using open covers) of compactness is naturally
extended to the L-fuzzy case as follows.

Deflnition 4.6. An L-fuzzy set $\mu$ on $\mathbb{R}^{n}$ is an L-fuzzy compact set iff, for any
L-fuzzy open sets $\lambda_{i}(i\in I)$ on $\mathbb{R}^{n}$ , if $\mu\leq\{\lambda_{i};i\in I\}$ then $\mu\leq\{\lambda_{j};j\in J\}$

for some finite subset $J$ of $I$ .

A compact subset of $\mathbb{R}^{n}$ equipped with the Euclidean topology is called a
crisp compact subset of $\mathbb{R}^{n}$ . The $L_{2}$-fuzzy compact sets on $\mathbb{R}^{n}$ coincide with
the crisp compact subsets of $\mathbb{R}^{n}$ .

Remark 4.7. For any $[0,1]$ -fuzzy set $\mu$ on $\mathbb{R}^{n}$ , if $\mu\neq 0$ , then $\mu$ is not a
$[0,1]$ -fuzzy compact set, which is shown as follows: Let $x_{0}\in \mathbb{R}^{n}$ be such that
$\mu(x_{0})\neq 0$ . Take a strictly increasing sequence $(a_{n})_{n\in\omega}$ of real numbers such
that $a_{n}>0$ for any $n\in\omega$ and $(a_{n})_{n\in\omega}$ converges to $\mu(x_{0})$ . For $n\in\omega$ , define
$a[0, 1]$ -hzzy open set $\mu_{n}$ on $\mathbb{R}^{n}$ by

$\mu_{n}(x)=\{\begin{array}{ll}a_{n} if x\in(x_{0}-1, x_{0}+1)0 otherwise.\end{array}$

Define a $[0,1]$ -fuzzy open set $\lambda$ on $\mathbb{R}^{n}$ by

$\lambda(x)=\{\begin{array}{ll}0 if x=x_{0}1 otherwise.\end{array}$

Now we have

$\mu\leq\lambda\vee(_{n\in\omega}\vee\mu_{n})$ .

By the choice of $(a_{n})_{n\in\omega}$ , we have, for any $n\in\omega$ ,

$\mu\leq\lambda\vee\mu_{0}\vee\ldots\vee\mu_{n}$ .

Therefore, $\mu$ is not a $[0,1]$ -fuzzy compact set on $\mathbb{R}^{n}$ .
Thus, $0$ is the only $[0,1]$ -fuzzy compact set on $\mathbb{R}^{n}$ . If we replace the

definition of L-fuzzy compactness with another one, we can see many non-
$t_{7}\dot{n}vial$ $[0,1]$ -fuzzy compact sets on $\mathbb{R}_{f}^{n}$ though we omit the details here.
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If $a$ is upward inaccessible in $L$ , then $\tau_{a}$ transforms an L-fuzzy compact
set on $\mathbb{R}^{n}$ into a crisp compact subset of $\mathbb{R}^{n}$ :

Proposition 4.8. Let $a\in L$ be upward inaccessible in $L$ and $\mu$ an $L- fi\iota zzy$

compact set on $\mathbb{R}^{n}$ . Then, $\tau_{a}\circ\mu$ is a crisp compact subset of $\mathbb{R}^{n}$ .

If we drop the assumption that $a\in L$ is upward inaccessible in $L$ , then
the above proposition dose not necessarily hold: Consider the four-element
Boolean algebra $L=\{0, a, b, 1\}$ . Note that $a$ and $b$ are incomparable. Now,
define $\mu$ : $\mathbb{R}arrow L$ by

$\mu(x)=\{\begin{array}{ll}a if x\in[0,1)b if x\in[1,2]0 otherwise.\end{array}$

Then, $\mu$ is L-fuzzy compact and $\tau_{a}\circ\mu$ is not crisp compact.

5 Main Results
In this section, we state main theorems and sketch the proofs of them.
Roughly speaking, by using the above properties of $\tau_{a}$ , we can show that
the main theorems follow from corresponding classical versions. Note that
if $L$ is isomorphic to $L_{2}$ then the main theorems coincide with the classical
versions of them.

We first review the classical versions.
The following is the classical version of Carath\’eodory’s theorem. For a

set $X,$ $|X|$ denotes the cardinality of $X$ . For $X\subset \mathbb{R}^{n},$ $H(X)$ denotes the
convex hull of $X$ in the ordinary sense.

Proposition 5.1. For $X\subset \mathbb{R}^{n}$ and $x\in \mathbb{R}^{n}$ , the following are equivalent:

$\bullet x\in H(X)$ ;

$\bullet$ there is $Y\subset \mathbb{R}^{n}$ such that $Y\subset X,$ $x\in H(Y)$ , and $|Y|\leq n+1$ .

The following is the classical version of Radon’s theorem.

Proposition 5.2. Let $X\subset \mathbb{R}^{n}$ with $|X|\geq n+2$ . Then, there are $Y,$ $Z\subset \mathbb{R}^{n}$

such that $X=Y\cup Z,$ $Y\cap Z=\emptyset$ and $H(Y)\cap H(Z)\neq\emptyset$ .

The following is the classical version of finite Helly’s theorem.
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Proposition 5.3. Let $\mathcal{F}$ be a finite family of crisp convex subsets of $\mathbb{R}^{n}$ with
$n+1\leq|\mathcal{F}|$ . $If\cap X\neq\emptyset$ for any $X\subset \mathcal{F}$ with $|X|=n+1_{f}then\cap \mathcal{F}\neq\emptyset$ .

The following is the classical version of infinite Helly’s theorem.

Proposition 5.4. Let $\mathcal{F}$ be a family of cntsp compact convex subsets of $\mathbb{R}^{n}$ .
$If\cap X\neq\emptyset$ for any $X\subset \mathcal{F}$ with $|X|=n+1,$ $then\cap \mathcal{F}\neq\emptyset$ .

The following is the classical version of Kakutani’s fixed point theorem.
$\mathcal{P}(S)$ denotes the powerset of $S$ for a set $S$ .
Proposition 5.5. Let $S\neq\emptyset$ be a compact convex subset of $\mathbb{R}^{n}$ . Consider
$\Phi$ : $Sarrow \mathcal{P}(S)$ with a closed graph such that, for every $x\in S,$ $\Phi(x)$ is
non-empty and convex. Then, there is $x\in S$ with $x\in\Phi(x)$ .

The following are the main theorems in this paper.

Theorem 5.6 (L-valued Carath\’eodory’s theorem). Let $\mu$ be an L-fuzzy set
on $\mathbb{R}^{n},$ $x\in \mathbb{R}^{n}$ and $a\in L$ . Then, the following are equivalent:

1. $H_{L}(\mu)(x)=a$ ;

2. there exists an L-fuzzy set $\lambda$ on $\mathbb{R}^{n}$ such that the following hold:

$\bullet\lambda\leq\mu$ ;
$\bullet H_{L}(\lambda)(x)=H_{L}(\mu)(x)=a$;
$\bullet|\{y;\lambda(y)>0\}|\leq n+1$ .

Proof. We show that (1) implies (2). Assume $H_{L}(\mu)(x)=a$ . Consider $\tau_{a}\circ\mu$ ,
which is a crisp convex subset of $\mathbb{R}^{n}$ by Proposition 3.5. By Proposition 3.8
and Proposition 3.7, we have

$H_{L_{2}}(\tau_{a}0\mu)(x)=H_{L}(\tau_{a}\circ\mu)(x)=\tau_{a}(H_{L}(\mu)(x))=\tau_{a}(a)=1$.

Thus, by the classical version of Carath\’eodory’s theorem, there exists a crisp
set $\lambda_{0}$ such that $\lambda_{0}\leq\tau_{a}0\mu,$ $H_{L_{2}}(\lambda_{0})(x)=1$ and $|\{y;\lambda_{0}(y)>0\}|\leq n+1$ .
Define an L-fuzzy set $\lambda$ by

$\lambda(x)=\{\begin{array}{ll}a (if \lambda_{0}(x)=1)0 (otherwise).\end{array}$

Then, $\lambda$ satisfies the required three properties.
The converse is easily verified.
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Theorem 5.7 (L-valued Radon’s theorem). Let $\mu$ be an L-fuzzy set on $\mathbb{R}^{n}$

and $a\in L$ . Assume $|C_{a}(\mu)|\geq n+2$ . Then, there exist two L-fuzzy sets $\lambda_{1},$ $\lambda_{2}$

on $\mathbb{R}^{n}$ such that the following hold:

$\bullet\lambda_{1}\vee\lambda_{2}=\mu$;

$\bullet\lambda_{1}\wedge\lambda_{2}=0$ ;

$\bullet$ $H_{L}(\lambda_{1})\wedge H_{L}(\lambda_{2})$ is non-empty relative to $a$ .

Proof. Consider a crisp set $\tau_{a}\circ\mu$ . By the assumption, we have

$|\{x;\tau_{a}\circ\mu(x)=1\}|\geq n+2$ .

Thus, by the classical version of Radon’s theorem, there exist two crisp sets
$\nu_{1},$ $\nu_{2}$ such that $\nu_{1}\vee\nu_{2}=\tau_{a}\circ\mu,$ $\nu_{1}\wedge\nu_{2}=0$ and $(H_{L_{2}}(\nu_{1})\wedge H_{L_{2}}(\nu_{2}))(x)=1$

for some $x\in \mathbb{R}^{n}$ .
Define an L-fuzzy set $\kappa_{1}$ by

$\kappa_{1}(x)=\{\begin{array}{ll}a (if \nu_{1}(x)=1)0 (otherwise).\end{array}$

SImilarly, define an L-fuzzy set $\kappa_{2}$ by

$\kappa_{2}(x)=\{\begin{array}{ll}a (if \nu_{2}(x)=1)0 (otherwise).\end{array}$

Then, we have $\kappa_{1}\wedge\kappa_{2}=0$ and $(H_{L}(\kappa_{1})\wedge H_{L}(\kappa_{2}))(x)=a$ for some $x\in \mathbb{R}^{n}$ .
Now, define an $Larrow$fuzzy set $\lambda_{1}$ by

$\lambda_{1}(x)=\{\begin{array}{ll}\mu(x) (if a\leq\mu(x) and \kappa_{1}(x)=a)\mu(x) (if a\not\leq\mu(x) and \kappa_{1}(x)=0)0 (otherwise).\end{array}$

Define an L-fuzzy set $\lambda_{2}$ by

$\lambda_{2}(x)=\{\begin{array}{ll}\mu(x) (if a\leq\mu(x) and \kappa_{2}(x)=a)0 (otherwise).\end{array}$

Then, we can verify that $\lambda_{1}\vee\lambda_{2}=\mu$ and $\lambda_{1}\wedge\lambda_{2}=0$ . Recall that $(H_{L}(\kappa_{1})\wedge$

$H_{L}(\kappa_{2}))(x)=a$ for some $x\in \mathbb{R}^{n}$ . Since $\kappa_{1}\leq\lambda_{1}$ and $\kappa_{2}\leq\lambda_{2}$ , we have
$(H_{L}(\lambda_{1})\wedge H_{L}(\lambda_{2}))(x)\geq a$ for some $x\in \mathbb{R}^{n}$ .
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Theorem 5.8 (L-valued finite Helly’s theorem). Assume the following:
$\bullet$ $\{\mu_{1}, \ldots, \mu_{k}\}$ is a family of L-fuzzy convex sets on $\mathbb{R}^{n}$ ;

$\bullet|\{\mu_{1}, \ldots, \mu_{k}\}|\geq n+1$;

$\bullet$ for any $X\subset\{\mu_{1}, \ldots, \mu_{k}\}$ with $|X|=n+1,$ $\wedge X$ is non-empty relative
to $a$ .

Then, $\wedge\{\mu_{1}, \ldots, \mu_{k}\}$ is non-empty relative to $a$ .

Proof. Consider the set

$\mathcal{F}_{a}=\{\tau_{a}0\mu_{1}, \ldots, \tau_{a}0\mu_{k}\}$ .

Note that $\tau_{a}\circ\mu_{i}$ is is $a\cdot crisp$ covex subset of $\mathbb{R}^{n}$ by Proposition 3.5.
In order to apply the classical version of Helly’s theorerm, we need to

show that for any $Y\subset \mathcal{F}_{a}$ with $|Y|=n+1$ , there exists $y\in \mathbb{R}^{n}$ such
that $(\wedge Y)(y)=1$ , which is proved by a similar argument as in the second
paragraph of the proof of Theorem 5.9 below.

Therefore, by the classical version of Helly’s theorerm, there is $z\in \mathbb{R}^{n}$

$sua$.
ch that $(\wedge \mathcal{F}_{a})(z)=1$ . By Proposition 2.6, we have

$(\wedge\{\mu_{1}, \ldots, \mu_{k}\})(z)$

Theorem 5.9 (L-valued infinite Helly’s theorem). Assume the following:

$\bullet$ $a\in L$ is upward inaccessible in $L$ ;

$\bullet$
$\mathcal{F}$ is a family of L-fuzzy compact convex sets on $\mathbb{R}^{n}$ ;

$\bullet$ for any $X\subset \mathcal{F}$ with $|X|=n+1_{f}\wedge X$ is non-empty relative to $a$ .

Then, $\wedge \mathcal{F}s$ non-empty relative to $a$ .

Proof. Consider the set

$\mathcal{F}_{a}=\{\tau_{a}\circ\mu;\mu\in \mathcal{F}\}$ .

For $\mu\in \mathcal{F},$ $\tau_{a}0\mu$ is a crisp compact covex set by Proposition 3.5 and
Proposition 4.8.

In order to apply the classical version of infinite Helly’s theorerm, we
show that for any $Y\subset \mathcal{F}_{a}$ with $|Y|=n+1$ , there exists $y\in \mathbb{R}^{n}$ such
that $(\wedge Y)(y)=1$ . Let $Y\subset \mathcal{F}_{a}$ with $|Y|=n+1$ . Then, there exists
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$X\subset\{\mu\in \mathcal{F};\tau_{a}\circ\mu\in Y\}$ such that $Y=\{\tau_{a}0\mu;\mu\in X\}$ and, if $\mu_{1},$ $\mu_{2}\in X$

and $\tau_{a}\circ\mu_{1}=\tau_{a}\circ\mu_{2}$ then we have $\mu_{1}=\mu_{2}$ . Clearly, $|X|=n+1$ . Thus, by
the assumption of the theorem, there exists $y\in \mathbb{R}^{n}$ such that $(\wedge X)(y)\geq a$ .
Since $Y=\{\tau_{a}\circ\mu;\mu\in X\}$ , it follows from Proposition 2.6 that $(\wedge Y)(y)=1$ .

Therefore, by the classical version of infinite Helly’s theorerm, there ex-
ists $z\in \mathbb{R}^{n}$ such that $(\wedge \mathcal{F}_{a})(z)=1$ . Hence, by Proposition 2.6, we have
$(\wedge \mathcal{F})(z)\geq a$ . $\square$

Deflnition 5.10. Let $a\in L$ and $\mu$ an L-fuzzy set on $\mathbb{R}^{n}$ . For a function
$\Phi$ : $C_{a}(\mu)arrow L^{C_{a}(\mu)}$ , an L-fuzzy set $G(\Phi)$ on $\mathbb{R}^{2n}$ is defined by

$G(\Phi)((x, y))=\{\begin{array}{ll}\Phi(x)(y) (if (x, y)\in C_{a}(\mu)\cross C_{a}(\mu))0 (otherwise).\end{array}$

Intuitively, we can consider $G(\Phi)$ as the L-fuzzy graph of $\Phi$ .
Theorem 5.11 (-valued Kakutani’s fixed point theorem). Let $\mu$ be an L-
fuzzy set on $\mathbb{R}^{n}$ . Consider a function $\Phi$ : $C_{a}(\mu)arrow L^{C_{a}(\mu)}$ . Assume:

$\bullet$ $a\in L$ is upward inaccessible in $L$ ;

$\bullet$

$\mu$ is non-empty relative to $a$ and L-fuzzy compact convex;

$\bullet$ $\Phi(x)$ is non-empty relative to $a$ and L-fuzzy convex for any $x\in C_{a}(\mu)$ ;

$\bullet$ $G(\Phi)$ is an L-fuzzy closed set on $\mathbb{R}^{2n}$ .

Then, there exists $x\in C_{a}(\mu)$ with $\Phi(x)(x)\geq a$ .

Proof. Consider $\tau_{a}\circ\mu$ , which is a crisp compact convex subset of $\mathbb{R}^{n}$ by
Proposition 3.5 and Proposition 4.8. Note that $(\tau_{a}\circ\mu)^{-1}(\{1\})=C_{a}(\mu)$ . By
the assumption, we have $\tau_{a}\circ\mu(x)=1$ for some $x\in \mathbb{R}^{n}$ .

Define a function $\Psi$ from $C_{a}(\mu)$ to $L_{2}^{C_{a}(\mu)}$ by
$\Psi(x)=\tau_{a}\circ\Phi(x)$ .

Then, we have $\tau_{a}oG(\Phi)=G(\Psi)$ . By Proposition 4.5, $\tau_{a}\circ G(\Phi)$ is a crisp
closed subset of $\mathbb{R}^{n}$ . By the assumption, for every $x\in C_{a}(\mu)$ there exists
$y\in C_{a}(\mu)$ with $\Psi(x)(\dot{y})=1$ .

Thus, by the $cla_{\llcorner}^{q}sica1$ version of Kakutani’s fixed point theorem, there
exists $x\in C_{a}(\mu)$ with $\Psi(x)(x)=1$ . Therefore, there exists $x\in C_{a}(\mu)$ with
$\Phi(x)(x)\geq a$ .

Intuitively, we can consider $x\in C_{a}(\mu)$ with $\Phi(x)(x)\geq a$ as an L-fuzzy
flxed point of $\Phi$ relative to $a$ .
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6Conclusions and Future Work
In this paper, we obtained the L-fuzzy versions of the five classical theorems
in convex geometry, by using a-cut operators $\tau_{a}$ . By letting $L$ be the two-
element Boolean algebra, we can recover the classical version from the L-fuzzy
version of each theorem.

It is expected that we can extend other theorems in convex geometry
to the L-fuzzy case in similar ways. In particular, we conjecture that, as a
generalization of Theorem 5.7, we can obtain an L-fuzzy version of Tverberg)$s$

theorem, which is a generalization of Radon’s theorem, and that we can
obtain a slightly stronger version of Theorem 5.6 by exploiting the idea of [9,
Theorem 3.3].

The notion of L-fuzzy compactness in $\mathbb{R}^{n}$ employed in this paper (see
Definition 4.6) become trivial in the $[0,1]$ -fuzzy case as is explained in Re-
mark 4.7 and so it may be better to employ another definition of L-fuzzy
compactness in $\mathbb{R}^{n}$ and develop L-fuzzy versions of infinite Helly’s theorem
and Kakutani’s fixed point theorem based on the new definition.

Our ultimate aim is to develop a mechanical procedure to obtain L-fuzzy
versions of theorems in classical mathematics. This may be accomplished as
follows: Fix an appropriate formal language of classical mathematics and that
of L-fuzzy mathematics, and then construct a translation from the former to
the latter so that the translation preserves the validity of any formula. This
paper seems to provide some insights on how to constmct such a translation.
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