
Computing a Sequence of Circumscribing Polygons
for Convex Polygon

Kensuke Onishi* Mamoru Hoshi\dagger

Abstract
For a given convex polygon P , compute a sequence of polygons $\{P_{k}\}_{k\geq 3}$ circumscribing P such

that each P_{k} with k vertices circumscribes P . For this problem we propose two algorithms: one is
to compute optimal k-gons, called optimal algonthm and another is to compute k-gons by adding

smallest triangle, called greedy algorethm.
We implemented these two algorithms and executed computational experiments for some convex

polygons. The results show that the greedy algorithm works well from the viewpoint of area, except

$k=3$ (triangle).

1 lntroduction
Polygon is a fundamental object in computational geometry. Many kinds of problems about polygon

have been investigated, and collected in [4].
Consider “similarity” between polygons for retreeval of shape. Many similarity measures have been

already proposed [5]. For example, Hausdorff distance is often used as a similarity measure between
polygons and its error bounds are analyzed in some cases [3]. Since to calculate these similarities we
need to match polygons, or vertices, the computation of similarity is time consuming. If the load due to
the matching is none, or less, the computation of similarity is fast. Boxer et al. proposed an algorithm
to reduce edges of general polygon for approximation [2]. When the problem below is solved, the load of
matching is reduced. We investigate the following problem in this paper:

Problem Given a convex polygon P with n vertices. Compute a sequence of polygons P_{k} with k

vertices $(k=3, \ldots, n-1)$. where P_{k} circumscribes P .

This problem can be solved by Aggrawal’s algorithm [1] for computing a minimum area k-gon cir-
cumscribing P . Applying the algorithm to P , we have a sequence $\{P_{k}\}$ such that each k-gon P_{k} has a
minimum area among all k-gons circumscribing P .

We propose another algorithm, called greedy algorethm: first, compute a $(n-1)$-gon P_{n-1} from the
n-gon $P(=P_{n})$ and, next compute $(n-2)$-gon P_{n-2} from the P_{n-1} . This step is repeated until we have
a 3-gon. The sequence obtained by the greedy method is also an answer to the problem above. That is,

each polygon P_{k} of the sequence circumscribes $P_{k+1}(k=3, \ldots, n-1)$.
We consider a situation where we search an object with a special shape, like a knife, in videos taken by

some stream cameras. Currently, such a check is done by a watchdog. He has to pay attention to many
monitors in his business hours.

Consider a support system for the search. The system does the following tasks on a server/servers:

1. divide the videos into many pictures;
2. check objects in each picture;
3. report to watchdog if doubtful objects are found;

*Department of Mathematical Sciences, Tokai University, 1119 Kitakaname, Hiratsuka, Kanagawa, 259-1292. Email:
KensukeOni$\epsilon hi0\cdot\infty$. org, oni $hlQ\epsilon\epsilon$. u-tokai. ac. Jp

\dagger Graduate School of Information Systems, The University of Electro-Communications

数理解析研究所講究録
第 1641巻 2009年 90-98 90

$\overline{\frac{A1gorithm1Optima1A1go\iota it\}\}m}{InputP:convexpo1ygonwithnvertices;}}$

Output $\{P_{k}\}$: a sequence of polygons, each P_{k} has k vertices, $P_{k}\supset P$ $(k=3\ldots. , n-1)$;
for $k:=3$ to $n-1$ do

Compute optimal k-gon by Aggrawal’s algorithm.
–

If every cameras send all video data to the server, the system works very slowly, and we have to get
so expensive computers with high performance as the server. Or, we ask the cameras work harder, i.e.,
execute step 1 and step 2 to reduce the load on the server. Since the cameras have only low computing
power, the cameras can execute only simple algorithms with small memory, like a greedy algorithm.

The rest of this paper is organized as follows: In section 2, we explain two algorithms: optimal and
greedy. In section 3, we describe our computational experiment and its results. And we discuss the
experimental results in section 4.

2 Algorithm
In this section we explain two algorithms: optimal and greedy. Their time and space complexities are

analyzed.

2.1 Optimal algorithm
We explain an optimal algorithm for computing a sequence of k-gons of a given convex polygon P .
For a given P and a positive integer $k(=3, \ldots , narrow 1)$, a ininimum area k-gon is computed in $o(kn+$

$n\log n)$ time and $O(kn)$ space by Aggra.wal’s algorithm [1]. We use Aggrawal’s algorithm in the optimal
algorithm repeatedly (Algorithm 1).

The output convex polygon with k vertices by Aggrawal’s algorithm is called optimal k-gon, or optimal
polygon in this paper.

The time and spece complexities of the optimal algorithm are given by those of Aggrawal’s algorithm.
Theorem 1 The optimal algorithm compute a sequence of k-gons circumscribing a convex polygon P

with n vertices in $O(n^{2}\log n)$ time and $O(n^{2})$ space. The optimal k-gon has the minimum area among
all k-gons circumscribing P .
Proof: Aggrawal’s algorithm has two phases: (1) compute a minimal rooted k-gon*1 in $O(kn)$ time and
(2) find a minimal k-gon among rooted k-gons in $O(n\log n)$ time. The first phase is done step-by-step:
a minimal rooted 3-gon is computed in $O(n)$ time. Next, a minimal rooted 4-gon is computed from the
3-gon in $O(n)$ until a minimal rooted k-gon is constructed.

In our algorithm, we compute a minimal rooted 3-gon in $O(n)$ time and find a minima13-gon in
$O(n\log n)$ time. Next, we compute a rooted 4-gon from the rooted 3-gon in $o(n)$ time and find a
minimal 4-gon in $O(n\log n)$ time. We repeat these steps until a minimal $(n-1)$-gon is found. So, the
total computation time is

$\sum_{k=3}^{n-1}\{O(n)+O(n\log n)\}=O(n^{2}\log n)$.

Since each execution is independent, used memory is $O(kn)$ space in each step. Then the space
complexity is $\max_{k=3,\ldots,n-1}O(kn)=O(n^{2})$ in the optimal algorithm. \square

$\overline{*1}$Amoted polygon isapolygon which hasa given point as a root.

91

2.2 Greedy algorithm
We propose a greedy algorithm. The algorithm is based on the following lemma.

Lemma 1 Let $P=(p_{0},p_{1}, \ldots,p_{n-1})$ be a convex polygon with n vertices. Let l_{i} be the line through
$p_{i},$ p_{i+1} . The minimum area flush’2 $(n-1)$-gon circumscribing P is $(p_{0}, \ldots , p_{i-1}, q_{i}, p_{i+2}, \ldots, p_{n-1})$,
where q_{i} is the cross point between two lines $l_{i-1},$ l_{i+1} and the area of $\triangle q_{i}p_{i+1}p_{i-1}$ is the smallest for
$i=0,$ $\ldots,$ $n-1$.
Proof: Consider four consecutive vertices $p_{i-1},$ $p_{i},$ $p_{1+1},$ p_{i+2} of P (see Figure 1). When l_{i-1} and l_{i+1}

intersects at q_{i} in the half-plane determined by l_{i} and in the outside of P , consider a flush polygon Q_{i}

obtained from P by replacing the points p_{i},p_{i+1} with q_{i} . The triangle $\triangle q_{i}p_{i+1}p_{i}$ is called added treangle
T_{i} . The area of Q. is determined by the area of T..

Running the $ikom1$ to n , we have a minimum flush polygon with $(n-1)$ vertices. \square

Fig. 1 cross point $q\iota$ and added triangle T_{i}

[Remark] Non-flush $(n-1)$-gons may have smaller area than flush $(narrow 1)$-gon. In this subsection we
deal with only flush polygon.

From lemma 1, we have a greedy algorithm (Algorithm 2).

$\frac{A1gorithm2GreedyA1gorithm}{InputP:convexpo1ygonwithnvertices;}$
Output $\{P_{k}\}$: a sequence of polygons, each P_{k} has k vertices, $P_{k}\supset P$ $(k=3, \ldots , n-1)$;

1. for $i:=0$ to $n-1$ do
(1) Compute the cross point q_{i} and the area S_{i} of added triangle T_{i} , if exists.
(2) Add the pair (q_{i}, S_{t}) with key S_{i} to heap H .

2. for $k:=n-1$ downto 3 do
(1) Get a pair from H (S_{i} of the pair is smallest in H). Let i be the index of the S_{i} .
(2) Output k-gon P_{k} computed from P_{k+1} by replacing the points p_{t},p_{i+1} with q_{i} .
(3) Update $(q_{i-1}, S_{i-1}),$ (q_{l+1}, S_{i+1}) on H .

The output convex polygon with k vertices by Algorithm 2 is called greedy k-gon, or greedy polygon in
this paper.

The first step in Algorithm 2 needs to $O(n)$ time and $O(n)$ space. The pairs (q_{i}, S_{i}) can be managed by
heap in $O(n)$ space. The construction of heap is $O(n)$ time. A update is $O(\log n)$ time. Then, Algorithm
2 is done with $O(n\log n)$ time and $O(n)$ space except output of k-gons. In the output, we report $(n-3)$
polygons each of which has at most $(n-1)$ vertices in Step 2.(2), then we need $O(n^{2})$ time.

$*2$ A polygon Q is flush for P if every edge of Q contains a edge of P .

92

Theorem 2 The greedy algorithm compute a sequence of k-gons circumscribing a convex polygon P

with n vertices in $O(n^{2})$ time and $O(n)$ space. The greedy k-gon circumscribes the greedy $(k+1)$-gon.
Since P_{k} is obtained from P_{k+1} by replacing the points $p_{i},$ p_{i+1} with q_{i} , it is sufficient to output

the sequence { q_{i} and its index i} instead of the sequence $\{P_{k}\}$. We propose a modified greedy algorithm
defined by replacing Step 2.(2) in the greedy algorithm with

(2) Output q_{i} and its index i .

So the output of the modified greedy algorithm is a sequence of $\{q_{i}\}$ and its index, the size is only $o(n)$.
Thus the computation time of the modified greedy algorithm is reduced to $O(n\log n)$. We can obtain a
greedy k-gon for P from P by replacing $(n-k)$ vertices using the output sequence in $O(n-k)=O(n)$
time.

3 Experimental resuits
In this section we show experimental results of optimal algorithm and greedy algorithm.

[Implement] We implemented two methods: optimal algorithm and greedy algorithm.

$h\mu \mathfrak{n}po3\cdot-4_{\mathfrak{g}on^{-}}\ovalbox{\tt\small REJECT}_{|00}-$

Fig. 2 Result of optimal algorithm

$h\mu A\beta d3_{Q\circ n}^{go\mathfrak{n}}-d_{\triangleleft-}^{\mathfrak{g}\circ n-}on\ldots\ldots.$.

Fig. 3 Result of greedy algorithm

Figure 2 shows optimal k-gons circumscribing an input convex polygon. Figure 3 shows greedy k-gons
circumscribing the input convex polygon. These k-gons are not optimal, but circumscribing $(k+1)$-gons.
[Experiment] We experimented on sets of polygons with two algorithms as follows.

1. fix n $(=10,20$, 30,40, 50 $)$;
2. generate ten polygons with n vertices on a circle;
3. for each polygon

(1) compute $\{P_{k}\}$ by the algorithms and compute the area of P_{k} ;
(2) calculate the ratio of area of greedy k-gon to that of optimal k-gon;

4. compute the average of the ratio over ten polygons;
Since we generated a set of points on a circle, called random set in this paper, all the points are vertices
of convex polygon., A polygon computed from a random set is called random polygon. The input polygon
in Figure 2 is a random polygon with 10 vertices.

The x-axis and the y-axis in Figure 4 are the number of vertices of output polygon and the average
ratio of the area of the greedy polygon to that of optimal, respectively.

93

$Sg\xi$

Fig. 4 Results for random polygons with n vertices $(n=10,20,30,40,50)$

We also generated other sets of polygons for experiment. We selected $j(<n)$ points on a circle and for
each selected point p , generated new points in the vicinity of the p . The set has j clusters on a circle,

and is called skew set in this paper. A polygon computed from the skew set is called skew polygon. In

the experiment we used polygons with 30 vertices and 2, 3, 4, 5, 6 clusters.
Axes in Figure 5 are the same as the axes in Figure 4.

4 Discussion
In this section we discuss the experimental results.

Comparison of Figure 2 and Figure 3
Figure 2 and Figure 3 show the results of optimal algorithm and greedy algorithm for one convex

polygon with 10 vertices, respectively.
Compare the optima15-gon and the greedy 5-gon in the figures. These 5-gons are similar except only

one part and the area ratio is 1.00390. The greedy k-gon is the same as optimal k-gon for $k=6,7,8,9$.
On other hand, 3-gons and 4-gons show much difference and the area ratios are 1.12228 and 1.01094,

respectively.

Area ratio for random polygon
In Figure 4, we show the average area ratio of random polygon with n vertices $(n=10,20,30,40,50)$.

For each n-gon, the average area ratio of k-gon is almost 1.00 for $k\geq 5$. The average area ratios are
less than 1.07 and 1.63 for $k=4$ and $k=3$, respectively. The maximum ratios are less than 1.17 and

3.87 for $k=4$ and $k=3$, respectively. These results show that greedy k-gon is a good approximation of

optimal k-gon ior $k=4,5,$ $\ldots,$ $n-1$. However, the optimal and greedy 3-gons have much difference for
many polygons.

94

Fig. 5 Results for skew polygons with j clusters $(j=2,3,4,5,6)$ and for random polygons with 30 vertices

The average area ratios of 3-gons are 1.04700, 1.34554, 1.32365, 1.38190, 1.62466 for $n=10,20,30$.
40, 50, respectively. This suggests that the ratio increases with increasing number of vertices of input
convex polygon.

Area ratio for skew polygon
Figure 6 shows optimal and greedy k-gons $(k=3,4)$ for a convex polygon the vertices of which cluster

two regions. The greedy 4-gon is similar to the optima14-gon. The area ratio of 4-gon is about 1.00585,
and that of $3rightarrow gon$ is about 3.62299, which is the worst case in the experiments for skew polygons.

The average area ratio of 3-gon are 1.46956, 1.05859, 1.04731, 1.14039, 1.17446 for the number of
cluster $j=2,3,4,5,6$, respectively. These ratios are smaller than the ratio 1.32365 of random polygon
with 30 vertices (except $j=2$).

When there are j clusters in the set, the points in a cluster are near to each other and the area of
added triangle consisting of the near points is small. If the distance between clusters is sufficiently far, a
cluster consisting of vertices $p_{i},p_{i+1},$ \ldots,p_{j} becomes an angle $\angle p_{t}qp_{j}$ where q is the cross point between
l_{i} and l_{j-1} (see Figure 7). Suppose we have an l-gon when all clusters become angles, then $p_{i}q$ and qp_{j}

are the edges of the l-gon. Since we have j clusters, $2j$ edges are found in the l-gon. On the other hand,
there are at most j edges connecting the angles. The l-gon, therefore, has at most $2j+j=3j$ edges, i.e.,
$l\leq 3j$. The l depends on the number of clusters j , not the number of vertices n . The l-gon obtained is
regarded as random polygon with $l(<n)$ vertices.

In our experiments for skew polygons the ratio is smaller than that of random 30-gons. The average
and the maximum of the area ratios of 4-gon are less than 1.02 and 1.03, respectively.

5 Concluding remark
In this paper we dealt with the algorithms for computing a sequence of k-gons $\{P_{k}\}(P_{k}\supset P)$ for a given

convex polygon P . We proposed two algorithms: optimal and greedy and implemented these algorithms.

95

Fig. 6 Results of optimal and greedy algorithms for a skew set (2 clusters)

\backslash

Fig. 7 a cluster $p_{i},$ \ldots,p_{j} in a skew set and the angle $\angle p_{*}qpj$

We experimented on two type polygons: random polygon and skew polygon. The experimental results

show that greedv algorithm works as well as the optimal algorithm do except for the 3-gon.

Note that the problem of this paper can be dealt in the dual space. In the dual space, the problem is
formulated as follows:

Problem Given a convex polygon P with n vertices. Compute a sequence of polygons P_{k} with k

vertices $(k=3, \ldots n-1)$, where P_{k} inscribes P .

This problem is also solved by optimal and greedy algorithms.

References
[1] A. Aggrawal and J.K. Pach. Note on searching in multidimensional monotone arrays. In Proc. 29th

Annu. IEEE Sympos. Found. Comput. Sci., pages 479-512, 1988.
[2] L. Boxer, C.-S. Chang, R. Miller and A. Rau-Chaplin. Polygonal approximation by boundary re-

duction, Pattern Rec. Letters 14, pages 111-119, 1993.
[3] P. Brass. On the approximation of polygons by subpolygons. In Proc. European Workshop Comput.

96

Geom. (EuroCG). pages 59-61, 2000.
[4] J.E. Goodman and J. O’Rourke ed. Handbook of Discrete and Computational Geometry, second

edition, Chapman&Hall, 2004.
[5] P.M. Gruber. Approximation of Convex Bodies. In Handbook of Convex Geometry, Vol. A (P.M. Gru-

ber and J.M. Wills, ed.), North-Holland, pages 319-345, 1993.

Appendix A Calculation of cross point and of area of added triangle
In this section we explain the computation of the cross point q and area of added triangle for four

consecutive vertices $p_{i-1},p_{i},p_{i+1},p_{i+2}$ on a convex polygon (see Figure 8). Let $(x_{i}.y_{i})$ be the coordinate
of vertex p_{i} .

Fig. 8 coordinate of cross point q

The line l_{i} through p_{i},p_{i+1} is expressed by

l_{i} : $(y_{i+1}-y_{i})x-(x_{i+1}-x_{i})y+X_{i+1y_{i}arrow x_{i}y_{i+1}=0}$

The coordinate of cross point q between l_{i-1} and l_{i+1} is

We show a relation among areas of triangles. Let $S,$ $S_{1},$ S_{2} and S_{3} be the area of the triangles $\triangle p_{i+1}p_{i}q$,
$\triangle p_{i-1}p_{i}p_{i+1},$ $\triangle p_{i-1}p_{i+1}p_{i+2}$ and $\triangle p_{i}p_{i+1}p_{\iota+2}$, respectively.

Consider $\triangle p_{\iota+2}p_{i}q$. The triangle is divided into two triangles by the line segment $\overline{p_{i}p_{i+1}}$ and let their
areas be S and S_{3} , respectively. Then the ratio of $\Vert\overline{qp_{i+1}}\Vert$ (the length of $\overline{qp_{i+1}}$) to 1 $\overline{p_{i+1}p_{i+2}}\Vert$ is that of S

to S_{3} . Similarly, the ratio of $\Vert\overline{qp_{i}}\Vert$ to $\Vert\overline{p_{i}p_{i-1}}\Vert$ is that of S to S_{1} . So the ratio of the area of $\triangle p_{i+2}p_{i-1}q$

to that of $\triangle p_{v+2}p_{i}q$ is $S/(S+S_{1})$ and the ratio of area of $\triangle p_{i+1}p_{i}q$ to that of $\triangle p_{i+2}p_{i}q$ is $S/(S+S_{3})$.
Then, the ratio of area of $\triangle p_{i+2}p_{i-1}q$ to that of $\triangle p_{i+1}p_{i}q$ is

$\frac{S}{S+S_{1}}\cdot\frac{S}{S+S_{3}}$.

97

Since the area of $\triangle p_{i+2}p_{i-1}q$ is $S+S_{1}+S_{2}$, then the ratio above is equal to $S/(S+S_{1}+S_{2})$. So, we
have the following equation:

$\frac{S}{S+S_{1}+S_{2}}=\frac{S}{S+S_{1}}\cdot\frac{S}{S+S_{3}}$.

We solve the equation for S :

$S= \frac{S_{1}\cdot S_{3}}{S_{2}-S_{3}}(S_{2}\neq S_{3})$.

When $\overline{p_{i-1}p_{i}},\overline{p_{l+1}p_{j+2}}$ are parallel, then $S_{2}=S_{3}$ and q does not exist. When q is in the interior of
convex polygon, we have $S_{2}<S_{3}$. So, we only compute S when q is in the outside of convex polygon,
i.e., $S_{2}>S_{3}$. Moreover, q is calculated only when S is the smallest among added triangles.

98

