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Abstract

The k-vertex guarding problem is to find a smallest set $G$ of vertices in a simple polygon $P$

such that every point in $P$ is visible from at least $k$ vertices of $G$ . Recently, Salleh [8] proved an
upper bound of $\lfloor 2n/3\rfloor$ for 2-vertex guarding a simple polygon and an upper bound of $\lfloor 3n/4\rfloor$

for 3-vertex guarding a convexly quadrilateralizable simple polygon.
In this paper we show that Fisk’s coloring argument can be used to prove these bounds.

The proofs lead to linear time guard placement algorithms. We also show that the problem of
k-vertex guarding of a spiral polygon can be solved in linear time.

1 Introduction

Let $P$ bc a simple polygon. Two points $p,$ $q$ of $P$ are visible if the line segment joining $p$ to $q$ does

not intersect the exterior of $P$ . Recently, Salleh [8] studied k-vertex guarding. A polygon $P$ is

called k-vertex guardable if there is a subset $G$ of the vertices of $P$ such that each point in $P$ is

visible from at least $k$ vertices of $G$ . Obviously, the l-vertex guarding is the classical art gallery

problcm. Salleh proved an upper bound for the number of guards for 2-vertex guarding a simple

polygon.

Proposition 1 (Salleh [8]) For any n-gon $P,$ $\lfloor 2n/3\rfloor$ vert$ex$ guards are sufficient and sometimes
necessary to 2-vertex guard P. In particular, for every triangulation $T$ for $P$ , there exists a guad

set $G$ that 2-vertex guards $P$ such that

(i) each side of $P$ contains at least one guard, and

(ii) each ear $e$ of $T$ has guards at both of the vertices of $e$ in $P\backslash e$ .

Salleh also proved an upper bound for the number of guards for 3-vertex guarding a convexly

quadrilateralizable simple polygon.

Proposition 2 (Salleh [8]) For any convexly quadrilateralizable n-gon $P,$ $\lfloor 3n/4\rfloor$ vertex guards

are sufficient and sometimes necessary to 3-vertex guard P. In particular, for any convex quadri-

lateralization $Q$ for $P$ , there exists a guard set that 3-vertex guards $P$ such that

(i) $each$ side of $P$ contains at least one guard, and

(ii) each ear $e$ of $Q$ has guards at the vertices of $e$ in $P\backslash e$ and one guard at any vertex of $e$ not
in $P\backslash e$ .
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Propositions 1 and 2 are proven using Chv\’atal’s inductive argument. For 2-vertex guarding
polygons, the proof uses Chv\’atal’s Lemma [3] that aiiy triangulation of a simple n-gon with at least
6 vertices contains a diagonal cutting off exactly 4,5, or 6 edges. For 3-vertex guarding polygons,
Salleh [8] proved that, if a simple n-gon with at least 8 vertices admits a convex quadrilateralization
$Q$ , then $Q$ contains a diagonal cutting off exactly 5 or 7 edges. Using these proofs Salleh provides
algorithms for finding guards in $O(n^{2})$ time.

In this paper we show that Fisk’s coloring argument can be used to prove the bounds of Propo-
sitions 1 and 2. The proofs lead to linear time guard placement algorithms.

The k-vertex guarding problem is to find a smallest set $G$ of vertices in a simple polygon $P$

such that every point in $P$ is visible $hom$ at least $k$ vertices of $G$ . Lee and Lin [6] proved that 1-
vertex guarding problem is NP-hard. However, polynomial time algorithms exist for some classes of
polygons. For example, Nilsson and Wood [7] designed a linear time algorithm for finding minimum
number of guards in a spiral polygon. We design two algorithms solving k-vertex guarding problem
for spiral polygons for $k=1$ and $k=2$. Both algorithms run in linear time.

A different kind of k-guardability has been previously studied by Belleville et al. [1]. A simple
polygon is called k-guardable if there exists a set $G$ of points that belong to the interior of edges
of $P$ such that no edge of $P$ contains more than one element of $G$ , and such that every point of
$P$ is visible $hom$ at least $k$ elements of $G$ . It has been shown [1] that (i) not all simple polygons
are 3-guardable, and (ii) every simple polygon with $n$ vertices is 2-guardable using at most $n-1$
guards.

2 Proofs and Algorithms

Theorem 3 For any simple polygon $P$ with $n$ venices, a 2-vertex guard set of size at most $\lfloor 2n/3\rfloor$

can be computed in $O(n)$ time.

Necessity of $\lfloor 2n/3\rfloor$ is shown in [8] using a hooked version of Chv\’atal’s comb for $n=3m+2$ .
We show a slightly different comb for $n=3m+2$ in Fig. 1 (c). For completeness, we also show
examples for $n=3m$ and $n=3m+1$ in Figure 1.

(a) (b) (c)

Figure 1: Lower bound for 2-vertex guarding. (a) $n=3m,$ $m=4$. (b) $n=3m+1,$ $m=4$. (c)
$n=3m+2,$ $m=3$ .

Proof: As in Fisk’s proof [4] take any triangulation and 3-color it. Let $V_{i},$ $i=1,2,3$ be the set
of vertices of ith color and let $n_{i}=|V_{i}|$ . Without loss of generality $n_{1}\leq n_{2}\leq n_{3}$ . We show that
$G=V_{1}\cup V_{2}$ is a 2-vertex guard set of size at most $\lfloor 2n/3\rfloor$ . Indeed, every point in $P$ is visible from
at least 2 vertices in $G$ . The size of $G$ can be bounded as follows. We have $n_{3}\geq\lceil n/3\rceil$ . Then
$n_{1}+n_{2}=n-n_{3}\leq n-\overline{|}n/3|=\lfloor 2n/3\rfloor$ . The later equality can be verified by taking $n$ modulo 3.
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If $n=3k$ then $n_{3}=k$ and $n-k=\lfloor 2n/3\rfloor$ . If $n=3k+1$ then $n_{3}=k+1$ and $n-(k+1)=$
$2k=\lfloor 2n/3\rfloor$ . If $n=3k+2$ then $n_{3}=k+1$ and $n-(k+1)=2k+1=\lfloor 2n/3\rfloor$ .

Computation. A triangulation $T$ of $P$ can be computed in linear timc [2]. The coloring of $T$

can be done in linear time by constructing the dual graph and pruning its lcaves. Therefore the
total time is $O(n)$ . .

$\dagger$
$\uparrow$

$\uparrow$

$l$

$\iota$

$\sim\tau^{J}$

$\sim^{J}\sim_{r’}$

(a) (b) (c)

Figure 2: (a) An orthogonal polygon P. (b) A quadrangulation $Q$ and its dual graph D. (c)

4-coloring.

For 3-vertex guarding polygons, we consider convexly quadrilateralizable simple polygons. Or-
thogonal polygons (simple polygons whose edges are horizontal and vertical) fall into this class.
Kahn, Klawe, and Kleitman [5] proved that $\lfloor n/4\rfloor$ guards suffice for l-vertex guarding. They
proved that any orthogonal polygon is convexly quadrilateralizable. Then a quadrangulation is
colored into four colors such that the vertices of every quadrangle are distinct, see Fig. 2. The
guards are placed at each vertex colored by the least frequently used color. We use the fact that
any convexly quadrilateralizable simple polygon (not just an orthogonal polygon) can be 4-colored
to prove thc following theorem.

Theorem 4 Let $Q$ be a convex quadrangulation of a simple polygon $P$ with $n$ vertices. A 3-vertex
guard set of size at most $\lfloor 3n/4\rfloor$ can be computed in $O(n)$ time.

Note that any convexly quadrilateralizable simple polygon has even number of vertices. Ne-
cessity of $\lfloor 3n/4\rfloor$ is shown in [8] using the orthogonal version of Chv\’atal’s comb for $n=4m$. For
completeness, we show an example for $n=4m+2$ in Figure 3.

Figure 3: Lower bound for 3-vertex guarding a convexly quadrilateralizable polygon with $n=4m+2$

vertices. This 1-gon requires 10 guards.
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Proof: Color $Q$ in four colors such that the vertices of every face are colored using all four colors
as follows. Let $D$ be the dual graph of $Q$ . It has no cycles and is a tree (since it is connected). If
$n=4$ then the coloring is obvious. Suppose that $n>4$ . Remove the quadrangle $q$ corresponding
to a leaf. Then $P\backslash q$ is a simple polygon with $n-2$ vertices and $Q\backslash q$ is its quadrangulation. $q$

shares two vertices with $Q\backslash q$ . Assuming that $Q\backslash q$ is 4-colored (the induction hypothesis), we
color two remaining vertices of $q$ .

Let $V_{i},$ $i=1,2,3,4$ be the set of vertices of ith color and let $n_{i}=|V_{i}|$ . Without loss of generality
$n_{1}\leq n_{2}\leq n_{3}\leq n_{4}$ . We show that $G=V_{1}\cup V_{2}\cup V_{3}$ is a 3-vertex guard set of size at most $\lfloor 3n/4\rfloor$ .
Indeed, every point in $P$ is visible from at least 3 vertices in $G$ . The size of $G$ can be bounded as
follows. We have $n_{4}\geq\lceil n/4\rceil$ . Then $n_{1}+n_{2}+n_{3}=n-n_{4}\leq n-\lceil n/4\rceil=\lfloor 3n/4\rfloor$ . The later can
be verified by taking $n$ modulo 4.

If $n=4k$ then $n4=k$ and $n-k=\lfloor 3n/4\rfloor$ . If $n=4k+1$ then $n_{4}=k+1$ and $n-(k+1)=$
$3k=\lfloor 3n/4\rfloor$ . If $n=4k+2$ then $n_{4}=k+1$ and $n-(k+1)=3k+1=\lfloor 3n/4\rfloor$ . If $n=4k+3$ then
$n_{4}=k+1$ and $n-(k+1)=3k+2=\lfloor 3n/4\rfloor$ .

The algorithm follows from the proof. A coloring of $Q$ can be computed in linear time by
constructing the dual graph and pruning its leaves. $\blacksquare$

3 Spiral Polygons

Lee and Lin [6] proved that l-vertex guarding problem is NP-hard. Nilsson and Wood [7] studied
guarding of spiral polygons. A polygon is spiral if its convex vertices form a chain and its reflex
vertices form a chain. Their approach is based on the following lemmas.

Lemma 5 (Nilsson and Wood [7]) A collection of guards sees a spiral polygon if and only if
they see all the edges of the reflex chain.

Lemma 6 (Nilsson and Wood [7]) Let $m$ be the minimum number of guards guarding a spiral
polygon. The polygon can be guarded by $m$ guards placed on the convex chain of the polygon.

Note that the guards in Lemma 6 can be placed anywhere in the polygon not just at vertices.
We study the problem of guarding spiral polygons with vertex guards. Lemma 5 still holds for
vertex guards. However, Lemma 6 cannot be used for vertex guards. Figure 4 shows an example
where the minimum number of vertex guards is two but they must be selected from the reflex chain.

Figure 4: A spiral polygon such (i) the minimum number of guards is two and (ii) a unique set of
two guards.
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3.1 Vertex Guards in Spiral Polygons

Let $P$ be a spiral polygon with reflex vertices $p_{1},p_{2},$ $\ldots$ , $p_{k}$ and convex vertices $q_{1},$ $q_{2},$ $\ldots$ , $q_{n-k}$ such
that $q_{1}p_{1}$ and $p_{k}q_{n-k}$ are the edges of $P$ . By Lemma 5 it suffices to guard only edges of the chain
$q_{1}p_{1}p_{2}\ldots p_{k}q_{n-k}$ . Consider the first segment $q_{1}p_{1}$ of the chain. Draw the ray $q_{1}p_{1}$ and let $p_{1}’$ be
the first crossing with the boundary of $P$ , see Fig. 5. The polygon $q_{1}q_{2}q_{3}q_{4}p_{1}’$ can be guarded by
one vertex guard. It can be placed at $p_{1}$ or $q_{4}$ . The edge $p_{1}p_{2}$ is visible $hom$ both $p_{1}$ and $q_{4}$ . Since
$p_{2}p_{3}$ is visible ffom $q_{4}$ but not $p_{1}$ we place a guard at $q_{4}$ . This can be turned into an algorithm.

Figure 5: The best position for guarding segment $q_{1}p_{1}$ is $q_{4}$ .

Theorem 7 The minimum number of vertex guards in a spiral polygon utth $n$ vertices can be
computed in $O(n)$ time.

Proof: We show that the following algorihm VERTEXGUARDS finds the minimum number of
guards. In the first for loop, we find all vertices of the convex chain that see $p_{i-1}p_{i}$ . Then $G$ is
initialized as the empty set. The last guard added to $G$ is denoted by $g$ .

In the second for loop, we check weather $p_{i-1}p_{i}$ is guarded by $g$ or not. If it is not guarded
then a guard should be placed at one of the vertices $p_{i-1},p_{i},$ $q_{a}.,$ $q_{a:+1},$ $\ldots,$ $q_{b_{i}}$ . Since none of the
vertices $p_{i+1},p_{i+2},$ $\ldots,p_{n-k}$ is visible from $p_{i-1}$ and $p_{0+1}$ is visible from $p_{i},$ $p_{i}$ has a preference over
$p_{iarrow 1}$ for placing a guard. $q_{b_{t}}$ has a preference over $p_{i-1},p_{i},$ $q_{a}.,$ $q_{a_{t}+1},$ $\ldots,$ $q_{b_{i}-1}$ .

If $i\geq k$ then only one guard at $p_{i}$ can be used to guard both $p_{i-1}p_{i}$ and $p.p_{i+1}$ $(if i=k)$ .
Suppose that $i<k$ . If $b_{i}<a_{i+2}$ then $p_{i+1}p_{i+2}$ is not visible $homq_{b_{i}}$ and we place a guard at $p_{i}$ . If
$b_{i}\geq a_{i+2}$ then $p_{i+1}p_{i+2}$ is visible from $q_{b_{i}}$ and we place a guard at $q_{b_{*}}.$ .

Running time. The first for loop can be implemented in $O(n)$ time since the sequences
$a_{1},0_{2},$ $\ldots,$ $a_{k+1}$ and $b_{1},$ $b_{2},$

$\ldots,$
$b_{k+1}$ are non-decreasing. Clearly, the second for loop takes linear

time. $\blacksquare$

Figure 6 illustrates the guard placement by VERTExGuARDs.
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$\ovalbox{\tt\small REJECT} Algorithml:VERTEXGUARDS(P)$
input : A spiral polygon $P$ with reflexvAertispiralpolygon with reflex tices $p_{1},p_{2},$ $\ldots,p_{k}$ and convex vertices

$q_{1},$ $q_{2},$
$\ldots,$ $q_{n-k}$ .

output: A set $G$ of vertex guards.
$p_{0}arrow q_{1}$

$p_{k+1}arrow q_{n-k}$

for $i=1$ to $k+1$ do
L Find $a_{i}$ and $b_{i}$ such that $p_{i-1}p_{i}$ is visible from the convex vertices $\{q_{a_{i}}, q_{a_{i}+1}, \ldots, q_{b_{*}}\}$ .

$Garrow\emptyset$

$garrow nul1$

for $i=1$ to $k+1$ do

$\{$

$|//p_{i-1}p_{i}isnotguardedyetifg\neq nu||then\lfloor Lcontinue$

if $i\geq k$ or $b_{i}<a_{i+2}$ then
$\llcorner g=p_{i}$

else
$\llcorner g=q_{b_{i}}$

$G=G\cup\{g\}$

–

3.2 2-Vertex Guards in Spiral Polygons
Theorem 8 The minimum number of 2-vertex guards in a spiral polygon with $n$ vertices can be
computed in $O(n)$ time.

Proof: A sct $G$ of vertices in a spiral polygon $P$ is 2-vertex guarding if every edge of the reflex
chain is visible kom at least two guards in $G$ . The algorithm is similar to computing vertex guards
by VERTEXGUARDS. First, compute $a_{i}$ and $b_{i}$ for $i=1,2,$ $\ldots,$ $k+1$ . Then, for all $i=1,2,$ $\ldots,$ $k+1$ ,
find two guards as follows.

If the segment $p_{i-1}p_{i}$ is already guarded by two vertices of $G$ , then proceed with next $i$ .
If the segment $p_{i-1}p_{i}$ is not guarded by any vertex of $G$ , then find a guard as in VERTExGuARDs

and add it to $G$ .
Suppose that the segment $p_{i-1}p_{i}$ is guarded by exactly one vertex $g$ of $G$ . If $g=p_{i}$ , then add

$q_{b_{l}}$ to $G$ . Suppose that $g=q_{b_{i}}$ . Then $i<k$ . If $b_{i}-1\geq a_{i+2}$ then add $q_{h-1}$ to $G$ ; otherwise add $p_{i}$

to $G$.
Similar to $ERTExGuARDS$, this algorithm can be implemented in linear time. $\blacksquare$
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Figure 6: Vertex guards in a spiral polygon.
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Figure 7: 2-Vertex guards in a spiral polygon.

113


