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1. Introduction
The subject of vortex dynamics can fairly be said to have been initiated by the seminal paper

[23] of Hermann Ludwig Ferdinand Helmholtz 150 years ago. In this paper Helmholtz established
his three laws of vortex motion in roughly the form they are found today in textbooks on fluid
mechanics. One motivation seems to have been his interest in frictional phenomena, camied over
from his interest in energetics; another was his growing awareness of the power of Green’s theorem
in hydrodynamics. In a speech [25] at a banquet on the occasion of his 70th birthday– an event
that brought together 260 friends and admirers at Kaiserhof on November 2, 1891 -Helmholtz
gave the following account:

I have also been in a position to solve several problems in mathematical physics, some of which the
great mathematicians since the time of Euler had worked on in vain – for example, problems concerning
vortex motion and the discontinuity of motion in fluids, the problem of the motion of sound waves at the
open ends of organ pipes, and so on. But the pride whlch I might have felt about the final result of these
$invesuga0ons$ was considerably lessened by my knowledge that I had only succeeded in solving such
problems, after many erroneous attempts, by the gradual generalization of favorable examples and by a
series of fortunate guesses. I would compare myself to a mountain climber who, not knowing the way,
ascends slowly and painfully and is often compelled to retrace his steps because he can go no farther;
who, sometimes by rcasoning and sometimes by $acciden\zeta hiLs$ upon signs of a ffcsh path, which leads
him a little farther: and who finally, when he has reached the summit, discovers to his annoyance a royal
road on which he might have ridden up if he had been clever enough to find the right starting poim at the
beginning. In my papers and memoirs I have not, of course, given the reader an account ofmy wanderings,
but have only described the beaten path along which one may reach the summit without trouble.

Until the appearance of Helmholtz’s paper the integrals of the hydrodynamical equations had been
deternined almost exclusively on the assumption that the cartesian components of the velocity
of each fluid particle are partial first derivatives of the velocity potential. Helmholtz eliminated
this limitation, and took into account the effects of ffiction between different elements of the fluid
or between the fluid and a solid boundary. At the time the effect of friction had not been fully
understood mathematically. Helmholtz endeavored to identify aspects of the motion that frictional
forces will produce in a fluid. Key among these is the spin-up of individual fluid particles, which
is measured by the vector field known as the vorticity.

It is somewhat rare that a subject in a rather ”mature” science such as fluid mechanics has so
clear a starting date. Usually when this happens it is due to a seminal paper by a luminary of the
field, a paper that is far ahead of anything else produced by his contemporaries, and a paper that
is quickly embraced by the community and sets the stage for developments for decades to come.
The early papers in the new field of vortex dynamics were scattered among many joumals in many
countries and were written in a multitude of languages, primarily English, French, German, Italian
and Russian. This diversity of publication venue and language, unfortunately, often makes the
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literature rather difficult to identify and access for the modem researcher. An attempt to assemb] $e$

a comprehensivc bibliography for the first century of vortex dynamics may be found in [47]. For
additional background on Helmholtz and his work in hydrodynamics see [14].

2. Case studies
Some of the older papers collected in the bibliography [47] have maintained themselves into

modem research while others have been long forgotten. For example, the thesis of Gr\"obli [19,20]
and the later paper by Synge [69] on the solution of the three-vortex problem were revived about
30 years ago through the independent rediscoveries by Novikov [53] and Aref [2]. For a review
of the history of solution, neglect and re-discoveiy see [6]. While the three-vortex problem is
very interesting of its own accord, the discovery of chaos in the four-voitex problem (cf. [3])
immediately propelled this kind of problem to the front lines of ”modern science”. See also \S 2.2
below.

Another example of this kind may be found in the extensive series of works by Da Rios ([13]
and several later papers) on vortex filament motion under the so-called localized induction approx-
imation. In spite of having been done as a thesis under T. Levi-Civita, one the most illustrious
mathematicians of his day, this work, somehow, never “took”. It was not until the $19ffl$’s when
Arms&Hama [8] and Betchov [11] re-introduced this idea-and Batchelor included it in his well
known text [9]-that it finally became a standard part of the subject. The beautiful transformation
of Hasimoto [21], and the idea that vortex filaments can support soliton waves, also played a role
in this ”assimilation” into modem research. The histoiy of Da Rios’ work has been reviewed by
Ricca [58,59].

2.1 Helmholtz’s paper
Helmholtz discovered a series of fundamental propositions in hydrodynamics that had entirely es-
caped his predecessors. He pointed out that already Euler had mentioned cases of fluid motion in
which no velocity-potential exists, for example, the rotation of a fluid about an axis where every
element has the same angular velocity. A minute sphere of fluid may move as a whole in a definite
direction, and change its shape, all while spinning about an axis. This last motion is the distinguish-
ing characteristic of vorticity. Helmholtz was the first to elucidate key properties of those portions
of a fluid in which vorticity occurs. His investigation was restricted to a frictionless, incompress-
ible fluid. He proved that in such an ideal substance vortex motion could neither be produced from
irrotational flow nor be destroyed entirely by any natural forces that have a potential. If vorticity
exists within a group of fluid particles, they are incapable of transmitting it to particles that have
none. They cannot be entirely deprived of their vorticity themselves (although the vorticity of any
individual particle may change in three-dimensional flow; in two-dimensional flow the vorticity of
each particle is a constant of the motion). For an ideal fluid the laws of vortex motion establish a
curious and indissoluble fellowship between fluid particles and their state of rotation.

In the Introduction to his paper Helmholtz states:

Hence it appeared to me to be of importance to investigate the species of $mo\dot{u}on$ for which there is no
velocity-potential.

The following investigation shows that when there is a velocity-potential the elements of the fluid
have no rotation, but that there is at least a portion of the fluid elements in rotation when there is no
$vel\propto ity-\mu ten\dot{0}d$ .

By vortex-lines (Vvirbellinien) 1 denote l\’ines drawn through the fluid so as at eveiy point to coincide
with the instantaneous axis of rotation of the corresponding fluid element.

By vortex.filaments (VVirbelfdden) I denote porions of the fluid bounded by vortex-lines drawn through
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every point of the boundary of an infinitely small closed curve.
The investigation shows that, if all the forces which act on the fluid have a potential, –
1. No element of the fluid which was not originally in rotation is made to rotate.
2. The elements which at any time belong to one vortex-line, however they may be translated, remain

on one vonex-line.
3. The product of the section and the angular velocity of an infinitely thin vortex-filament is constant

throughout its whole length, and retains the same value during all displacements of the filament. Hence
vortex-filaments must either be closed curves, or must have their ends in the bounding surface of the fluid.

According to Tmesdell [75, p.58] the name vorticity was introduced by Lamb [35] for the
vector, $\omega$ , whose Cartesian components, $(\xi, \eta, \zeta)$ , are given in terms of the components $(u, v, w)$
of the (Eulerian) velocity vector $u$ by

$\xi=\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}$ , $\eta=\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}$ , $\zeta=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}$ . (1)

In modem vector notation
$\omega=\nabla\cross u$ . (2)

Helnholtz’s result in \S 1 of his paper that an arbitrary instantaneous state of continuous motion
of a defomtable medium is at each point the superposition of a uniform velocity of translation, a
motion of extension, a shearing motion, and a rigid rotation, precipitated an extended debate with
the French academician Bertrand.

The mird law contains two statements, $viz$ that “vortex-filaments must either be closed curves”,
or that they‘must have their ends in the bounding surface of the fluid”. The first statement excludes
the possibility of vortex lines that wander aperiodically and never close, as one finds, for example,
in a chaotic, three-dimensional flow2. The second is, in principle, correct only for vortex lines,
although an example of a thin vortex filament that ends at a point in the interior of the fluid has,
so far as we are aware, never been given. The vorticity distribution in such a sffucture would be
near-singular. See [18] for a modem perspective on this problem.

In \S 3 of his paper [23] Helmholtz addresses the inverse problem of finding the components of
the velocity $u,$ $v,$ $w$ ffom the components of vonicity $\xi,$ $\eta,$

$\zeta$ (up to a potential flow that covers
the boundaiy conditions). He independently obtains the representations of Stokes for the classical
problem of vector analysis of determining a vector field of known divergence $($ ‘hydrodynamic
integrals of the first class” in his terminology) and curl (“hydrodynamic integrals of the second
class“). Determination of the velocity field for incompressible fluid leads to the Biot-Savart law
of electromagnetism, which in the present case reads that each rotating element of fluid induces
in every other element a velocity with direction perpendicular to the plane through the second
element that contains the axis of the first element. The magnitude of this induced velocity is
directly proportional to the volume of the first element, its angular velocity, and the sine of the angle
between the line that joins the two elements and the axis of rotation, and is inversely proportional
to the square of the distance between the two elements.

Helmholtz also establishes analogies between the induced velocity and the forces on magnetized
particles. Most of these relations would today come under the heading of potential theory.

In \S 4 ofhis paper [23] Helmholtz derives an elegant expression for the conserved kinetic energy,
“vis viva” in his terminology, of infinite fluid with a compact distribution of vorticity within it.

2The best lcnown examples may be thc $ABC/lows$ studicd by severul authors ever sincc their inuoduction in 1965-66 by Arnoki and $H\ell non$;
see [4] for a lxief desnipoon in the context of.chaotic advection“. There are many other instanccs where vortex lines do not close. Iodeed, closed
$v\propto tex$ lines $m$ the exception.
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Figure 1: Motion of two paraUcl rcctilnear vortices (or point $vom\infty s$). Top: (a) circulations of the same sign; $Cb$)

circulations of opposite sign. Bottom: Motion of a vortex pair. From [27].

In \S 5, entitled “Straight parallel vortex-filaments”, Helmholtz studies certain simple cases in
which the rotation of the elements occurs only in a set of parallel rectilinear vortex-filaments. In
particular, he considers several infinitely thin, parallel vortex-filaments each of which carries a
finite, limiting value, $m$ , of the product of the cross-sectional area and the angular velocity. This
is the now celebrated concept of a point vonex. Helmholtz considers simple cases of the dynamics
of such vortices. He establishes the law of conservation of the center of vomcity of an assembly
of point vortices. The discussion is phrased in terms of the ”center of gravity” of the vortices
(considering their values of $m$ as the analog of ”masses”): “The centre of gravity of the vortex-
filaments remains stationary during their motions about one another, unless the sum of the masses
be zero, in which case there is no centre of gravity:’ Without further explanation Helmholtz notes
the following two consequences:

1. If there be a single rectilinear vortex-filament of indefinitely small section in a fluid indefinite in all
directions perpendicular to it, the motion of an element of the fluid at finite dlstance from it depends only
on the product $(\zeta dadb=m)$ of the velocity of rotation and the section, not on the form of that $\sec\dot{u}on$.
The elements of the fluid revolve about it with tangential velocity $= \frac{m}{\pi r}$ , where $r$ is $A\epsilon$ distance fmm the
centre of gravity of the filament. ne position of the centre of gravity, the angular velocity, the area of the
$s\propto uon$ , and therefore, of course, the magnimde $m$ remain unaltered, even if the form of the indefinitely
small $\sec 0on$ may alter.
2. lf there be two rectilinear vortex-fllaments of indeflnitely small section in an unlimited fluid, each
will cause the other to move in a direction perpendicular to the line joining hem. Thus the length of
$mis$ joining line $wm$ not be altered. They will thus tum about their common centre of yavity at constant
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Figure 2: Self-induced forward motion of a vortex ring. From [27].

distances from it. If the rotation be in the same direction for both (that is, of the same sign) their centre
of gravity lies between them. If in opposite directions (that is, of different signs), the centre of gravity
lies in the line joining them produced. And if, in addition, the product of the velocity and the section be
the same for both, so that the centre of gravity is at an infinite distance, they travel forwards with equal
$ve1\infty ity$, and in parallel directions perpendicular to the line joining them.

See Fig. 1 for later illustrations of these motions. In addition to introducing this notion of a vortex
pair” Helmholtz describes the motion of a $sing$] $e$ vortex-filament near an infinite plane to which it
is parallel. He states that the boundary condition will be fulfilled if instead of the plane there is an
infinite mass of fluid with another vortex-filament as the image (with respect to the plane) of the
first, and concludes: “From this it follows that the vortex-filament moves parallel to the plane in
the direction in which the elements of the fluid between it and the plane move, and with one-fourth
of the velocity which the elements at the foot of a perpendicular from the filament on the plane
have:’

In \S 6, entitled “Circular vortex-filaments”, Helmholtz smdies the axisymmetric motion of sev-
eral circular vortex-filaments whose planes are parallel to the xy-plane, and whose centers are on
the z-axis. Here he considers the problem in full detail and amives at the conclusion that “in a
circular vortex-filament of very small section in an indefinitely extended fluid, the centre of gravity
of the section has, from the commencement, an approximately constant and very great velocity
parallel to the axis of the vortex-ring, and this is directed towards the side to which the fluid flows
through the ring.” (See Fig.2 for a later illustration.)

When two such rings of infinitesimal cross-section have a common axis and the same direction
of rotation, they travel in the same direction. As they approach, the first ring widens and travels
more slowly, the second contracts and travels faster. Finally, if their velocities are not too different,
the second ring overtakes the first and travels through it. This same process of “leapfrogging” is
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Figure 3: mustration of leapfrogging” by two vortex pairs. The induced velocities arc indicated by arrows. From [27]
based upon Gr(Sbli’s calcuhuons [19, 20].

then repeated indefinitely (in principle- in reality the finite cores of the rings and the effects of
viscosity $wiU$ only allow one or two cycles of this motion). If two vortex rings have equal radii and
opposite angular velocities, they will approach each other and widen one another; and when they
are very near to one another, their velocity of approach becomes smaller and smaller, and their rate
of widening faster and faster. Just as in the case of the straight vortex filament near the plane wall,
this motion is similar to the motion of a single vortex ring mnning up against a plane wall. The
image of the ring in the wall is another similar ring with the opposite sense of circulation.

Lanchester saw this type of motion involving several vomces to be relevant to vortex formation
behind a wing of finite span. He wrote [36, p. 122]:

Groups of fllaments or rings behave in a similar manner to pairs: thus a group of rings may play “leap-
frog“ collectively so long as $Ae$ total number of rings does not exceed a certain maximum; congregations
of vortex filaments likewise by their mutual interaction move as a part of a concentrated system, like
waltzers in a ball-room; when the number exceeds a certain maximum the whole system consists of a
number of lesser groups.

Only in rare cases does a single paper put foiward so many profound ideas and open so many
avenues for further investigation. Almost fifty years later, in 1906, Lord Kelvin, who had himself
conducted many great smdies developing vortex dynamics further, wrote in the preface to a book
about Helmholtz [33] that “his admuirable theory of vortex rings is one of the most beautiful of all
the beautiful pieces of mathematical work hitherto done in the dynamics of incompressible fluids.’‘
Surprisingly Helmholtz never continued his investigations of the topic established in his ground-
breaking paper [23]. Instead he wrote another remarkable paper [24] on discontinuous motion of
an inviscid fluid in which he used the notion of a vortex sheet from [23].

2.2 Point vomces
A vast area of research started by Helmholtz’s paper is the smdy of the motion of straight, parallel,
infinitely thin vortex filaments (rectilinear vortices) in incompressible inviscid fluid or, equiva-
lently, the two-dimensional problem of point vortices on a plane. Through pioneering work of
Rosenhead [62] and Westwater [76] in the $1930$’s the discretization of two-dimensional hydrody-

6



150 Years of Vortex DynanuCs

namics provided by such vortex elements became the foundation for an entire family of numerical
methods for flow simulation today collective]y known as vortex methods.

The problem of $N$ interacting point vortices on the unbounded xy-plane, with vortex $\alpha=$

$1,$
$\ldots,$

$N$ having strength $\Gamma_{\alpha}$ (which is constant according to Helmholtz’s theorems) and position
$(x_{\alpha},y_{\alpha})$ , consists in solving the folowing system of $2N$ first-order, nonlinear, ordinary differential
equations

$\frac{dx_{\alpha}}{dt}=-\frac{1}{2\tau 1}\sum_{\beta=1}^{N}/\Gamma_{\beta}\frac{y_{\alpha}-y_{\beta}}{l_{\alpha\beta}^{2}}$ , $\frac{dy_{\alpha}}{dt}=\frac{1}{2\pi}\sum_{\beta=1}^{N}’\Gamma_{\beta}\frac{x_{\alpha}-x_{\beta}}{l_{\alpha\beta}^{2}}$ , (3)

where $\alpha=1,2,$
$\ldots,$

$N,$ $l_{\alpha\beta}=\sqrt{(x_{\alpha}-x_{\beta})^{2}+(y_{\alpha}-y_{\beta})^{2}}$ is the distance between voitices $\alpha$ and
$\beta$, and the prime on the summation indicates omission of the singular term $\beta=\alpha.$ TypicaUy, an
initial value problem is addressed with the initial positions of the vortices and their strengths given
so as to capture or model some flow situation of interest.

The system (3) can also be written as $N$ ODEs for $N$ complex coordinates $z_{\alpha}=x_{\alpha}+iy_{\alpha}$

$\frac{dz_{\alpha}^{*}}{dt}=\frac{1}{2\pi i}\sum_{\beta=1}^{N}’\frac{\Gamma_{\beta}}{z_{\alpha}-z_{\beta}}$ , $\alpha=1,2,$
$\ldots,$

$N$, (4)

where the asterisk denotes complex conjugation.
In his lecmres [32, Lecmre 20] Kirchhoff demonstrated that the system (3) can be cast in Hamil-

ton’s canonical $fomi^{3}$ :

$\Gamma_{\alpha}\frac{dx_{\alpha}}{dt}=\frac{\partial H}{\partial y_{\alpha}}$ , $\Gamma_{\alpha}\frac{dy_{\alpha}}{dt}=-\frac{\partial H}{\partial x_{\alpha}}$ , $\alpha=1,2,$
$\ldots,$

$N$, (5)

wheie the Hamiltonian,

$H=- \frac{1}{4\pi}\sum_{\alpha,\beta=1}^{N}/\Gamma_{\alpha}\Gamma_{\beta}\log l_{\alpha\beta}$ , (6)

is conserved during the motion of the point vonices. (Here and in what follows $\log$ denotes the
namral logarithm.)

In addition to $H$ the Hamiltonian system (5) has three independem first integrals:

$Q= \sum_{\alpha=1}^{N}\Gamma_{\alpha}x_{\alpha}$ , $P= \sum_{\alpha=1}^{N}\Gamma_{\alpha}y_{\alpha}$ , $I= \sum_{\alpha=1}^{N}\Gamma_{\alpha}(x_{\alpha}^{2}+y_{\alpha}^{2})$ . (7)

Regardless of the values of the vortex strengths, the integrals $H,$ $I$, and $P^{2}+Q^{2}$ are in involution,
that is, the Poisson bracket between any two of them is zero; see the review paper [3] or the
monograph $[50]^{4}$ . According to Liouville’s theorem in analytical dynamics the Hamiltonian system
(5) for $N=3$ is then integrable regardless of the values of the vortex strengths. A terse general
statement to this effect was included by Poincar\’e in his lecmres [56, \S 77].

An extensive analytical smdy of integrability and of several special cases of three-vortex motion
had already been performed by Gr\"obli in his noteworthy 1877 G\"ottingen disseitation [19] (later

3A complete $cor\ddagger espnden\infty$ follows by $set\dot{0}ng$ the $gener|hzd$ coordinates“ $q_{\alpha}=x_{\alpha}$ and the $genei\cdot hrr4moment\iota’ p_{a}=\Gamma_{a}y_{\Phi}$. This
results in the $oem\alpha\cdot ble$ insight that the.phase space –in the sense of Hamiltonian dynamics–for a point vortex system is, in essence, its
configuration space, a fact later exploited by Onsager in a seminal paper [54] on thc statistical mechanics of a system of point vortices.

$4m\iota$ rcccnt monograph also contUns a very useful bibliography connecting voncx dynamics and dynamical systans theory.
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also published as an extensive paper [20] $)$ that must rightly be considered a classic of the vortex
dynamics literature. An account of the life, scientific achievements and tragic death of the Swiss
scientist and mathematician Walter Gr\"obli (1852-1903) may be found in [6].

The solution of the three-vortex problem and the dissertation itself were mentioned in footnotes
by Kirchhoff in the third (1883) edition of his ]$ecmres$ [$32,$ Lecmre 20, \S 3] and in the fundamental
treatise by Lamb [35, \S 155] (although in a way that does not fully reveal the comprehensive namre
of Grobli’s investigations). Based on these cursory citations it is not difficult to understand that
almost a cenmry later Batchelor would write in his important text [9] that the details of motion
of three point vortices “are not evident”. A lengthy excerpt (in English translation) from Gr\"obli’s
dissertation is given in [6].

The Hamiltonian (6) depends only on the mumal distances $l_{\alpha\beta}$ between the vortices which
suggests that one can write equations of motion that involve only these distances. Such equations
were obtained by Gr\"obli and later by Laura [37] who also expounded on the canonical formalism.
They are

$\frac{dl_{\alpha\beta}^{2}}{dt}=\frac{2}{\pi}\sum_{\lambda=1}^{N}//\Gamma_{\lambda}\epsilon_{\alpha\beta\lambda}A_{\alpha\beta\lambda}(\frac{1}{l_{\beta\lambda}^{2}}-\frac{1}{l_{\lambda\alpha}^{2}}I,$ $\alpha,$ $\beta=1,2,$
$\ldots,$

$N$, (8)

where the two primes on the summation sign now mean that $\lambda\neq\alpha,$ $\beta$ . The quantity $\epsilon_{\alpha\beta\lambda}=+1$ if
vortices $\alpha,$ $\beta$ and $\lambda$ appear counterclockwise in the plane, and $\epsilon_{\alpha\beta\lambda}=-1$ if they appear clockwise.
Finally, $A_{\alpha\beta\lambda}$ is the area of the vortex triangle $\alpha\beta\lambda$ which can, in mm, be expressed in terms of the
three vortex separations (the sides of the vortex mangle) by Hero’s formula. Interestingly, Eqs.(8)
were re-discovered independently at least twice: by Synge [69] in 1949 and by Novikov [53] in
1975. For $N$ vortices one has $\frac{1}{2}N(N-1)$ quantities $l_{\alpha\beta}$ and, thus, $\}N(N-1)$ equations of the
form (8). However, only $2N-3$ of these are independent.

It can be shown that

$\frac{1}{2}\sum_{\alpha,\beta=1}^{N}\Gamma_{\alpha}\Gamma_{\beta}l_{\alpha\beta}^{2}=(\sum_{\alpha=1}^{N}\Gamma_{\alpha})I-P^{2}-Q^{2}$. (9)

The equations (8), then, have two general first integrals, $viz$ the Hamiltonian (6) and the quantity on
the left hand side of (9). Using these two integrals the three ODEs for $l_{12},$ $l_{23}$ and $l_{31}$ may be reduced
to a single ODE that can be solved by quadramre, and this was, in essence, the solution method
outlined by Gr\"obli in his dissertation [19, 20]. The case $N=3$ thus appears as a critical one since
for more vortices additional “scales of motion” appear without any obvious integrals to constrain
them. One may, therefore, expect the problem to become non-integrable. Indeed, this is what
happens and the connection to the recent interest in the emergence of chaos in nonlinear dynamics
is established. The appearance of chaos in point vortex dynamics as one goes from three to four
vortices is analogous to the appearance of chaos in the gravitational N-body problem of celestial
mechanics as one goes from two to three bodies. For the case of point masses the appearance
of chaos or the absence of integrability became part of the legacy of Poincar\’e. For inexplicable
reasons the analogous discussion for point vortices had to wait for more than a cenmry after the
solution of the three-vortex problem. Both Gr\"obli [19, 20] and later Laura [37] outlined how to
determine the ”absolute motion” of the vorices provided the solution for the ”relative motion” as
given by equations (8) was already known.

The namre of the motion of two vortices had already been outlined by Helmholtz [23]. The
motion of three vortices–both the relative and the absolute motion–with various intensities
and initial conditions was extensively analyzed by Gr\"obli [19, 20]. The relative motion of three
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arbitrary voitices, based upon Eqs.(8), was studied and classified by Synge [69] by introducing
triangular coordinates in a ”phase space” of the three distances between the vortices. Gr\"obli had
actually found such a representation for the case of three identical vortices, and this consmiction
was found independently a cenmry later by Novikov [53]. Synge’s comprehensive analysis was re-
discovered independently in [2]. Thus, today the three-vortex problem may be considered to have
a rather complete solution. Gr\"obli [19,20] also discovered an unusual case where the three vortices
converge on a point in afinite time. Except for Synge’s smdy [69], which was itself overlooked, this
intriguing case of vonex collapse also went unnoticed for a century. It is admittedly a somewhat
special case requiring both that the harmonic mean of the three vortex strengths be zero and that
the integral of motion (9) vanish.

The integrable pmblem of four vortices arranged as two coaxial pairs has been addressed in
many papers. Gr\"obli [19, 20] investigated the case of ’ieapfrogging” when all vortices have the
same absolute strength, and obtained an analytical representation for the vortex trajectories, cf.
Fig.3. His analysis was repeated independently by Love [40] and Hicks [26].

The case of uniform rotation of a regular polygon of $N$ vortices was addressed in the Adams
Prize essay of J. J. Thomson [71]. He proved that the regular N-gon is stable to infinitesimal
permrbations for $N=2,3,4,5,6$ but becomes unstable for $N>7$ . (For $N=7$ the polygon is
marginally stable to linear order and one must go to the next order to decide the stability issue.)
This smdy was extended by Havelock [22] and others, and the problem continues to be addressed
in the hteramre in various forms. See the recent review [5] and also the extension to ”triple rings”
by Aref&van Buren [7].

Helmholtz was also the first to address problems of point vortices interacting with rigid bound-
aries [23]. As we have seen, he considered the case of a point vortex in the space bounded by a
plane wall. Using an “image” vortex of opposite strength situated at the reflection of the original
vortex in the plane boundary he reduced the problem to that of the motion of a vortex pair on the
unbounded plane. This use of the ”method of images” has since been widely employed in various
problems of the motion of a single point vortex in various bounded $\beta omains$ . A particular case of
an equilibrium of a vortex pair behind a cylinder in a uniform potential flow is known as the $F6ppl$

problem” after the senuinal paper [17].
$\Pi e$ general case of the motion of point vortices in an arbitraiy domain was $smAed$ by Routh

[63] using the theory of conformal mappings. . The velocity of a point vortex in the transformed
plane is not equal to the velocity obtained by simple $substim\dot{u}on$ of the conformal mapping into
the expression for the velocity in the original plane- one requires also the influence of the images
which is capmred by the so-called Routh correction”. A complete mathematical theory was devel-
oped by Lin [39] who showed that the problem is always Hanuiltonian with a Hamiltonian function
that is a hybrid of Kirchhoff’s Hanuiltonian (6) for the unbounded plane and the Hamiltonian that
Routh found for motion of a single vortex in a bounded domain [63].

W. Thomson [72] was the first to show that a vortex pair in steady motion on the unbounded
plane is accompanied by an ”atmosphere“, i.e., a fixed, $c$]osed volume (area) of fluid particles that
move forward with the vortex pair. The bounding curve of this ”atmosphere” is today sometimes
called the ‘Kelvin oval”. Figure 4 reproduces the original drawing from [72] where we find this
description:

$\Pi e$ diagram represents precisely the convex outline referred to, and the lines of motion of the interior
fluid camied along by the vortex, for the case of a double vortex consisting of two infinitely long, parallel,
sffaight vorices of equal $rota0ms$ in opposite directions. The curves have been drawn by Mr. D. McFar-
lme, from calculations which he has performed by means of the $equa\dot{u}on$ of the system of cmes, which
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Figure 4: The “atnosphere” traveling with a vortex pair. Fmm [72].

is
$\frac{y^{2}}{a^{2}}=\frac{2x}{a}\frac{N+1}{N-1}-(1+\frac{x^{2}}{a^{2}})$ , where $\log N=\frac{x+b}{a}$ .

The motion of the surrounding fluid must be precisely the same as it would be if the space within this
surface were occupied by a smooth solid.

Each passive fluid particle may be considered ‘a point vortex of zero strength”, and the equa-
tions of motion for all particles advected by the translating vortex system are integrable. The defor-
mation of a line of fluid connecting two vortices within the moving body was studied analytically
by Riecke [60]; see [48] for additional illustrations.

2.3 Vonex atoms
In the $1860’ sW^{\cdot}m$am Thomson, later Lord Kelvin, became very interested in vortex dynamics
since he was convinced that atoms were to be modeled as vortex configurations in the aether.
Tait made a complete English translation of Helmholtz’s paper [23] for his own use. He also de-
vised some extremely clever experiments to illustrate the vortex theory using smoke vortex rings
in air. Following completion of their famous Treatise on Natural Philosophy, referred to sim-
ply as ”Thomson and Tait”, and the successful laying of the Atlantic cable in 1866 (for whch
Thomson was knighted and became Sir Wilhiam Thomson), Thomson visited Tait in Edinburgh in
nid-January 1867 and saw the smoke rings with his own eyes. Tait’s translation of Helmholtz’s
paper was published that same year in Philosophical Magazine. One must imagine that Kelvin
encouraged his ffiend and colleague to prepare this translation for publication.

Thomson’s prodigious talent produced several first rate studies of vortex dynamics which, al-
though ultimately wrong-headed in terms of atomic physics, have had a lasting influence on fluid
dynamics. The idea of circulation, for example, is from this period. The circulation is defined as
the contour integral of the projection of the flow velocity on the tangent to the contour,

$\Gamma=\oint_{C}V\cdot ds$ . (10)

He showed that for any material contour moving according to Euler’s equation for incompressible
flow, the circulation is an integral of the motion, a result known today as Kelvin $s$ circulation theo-
rem. This theorem was considered by Einstein [15] among the most important scientific results of
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Figure 5: Thit’s drawings, reproduced in [74], that capture Thomson’s ideas on how atoms arise as vortex strucmres in
the aether.

W. Thomson (Lord Kelvin). This profound insight has continued to exert an influence on the entire
field of fluid mechanics, including in such areas as the assessment of the accuracy of numerical
methods and in mrbulence modeling. Circulation is a distinctly topological entity, independent
of the shape of the vortex and measurable by integration along any circuit that loops around the
vortex. In this sense, the notion of circulation may be taken as one of the earliest introductions of
topological considerations into fluid mechanics. Tait’s seminal work on the classification of knots
on closed curves is a spin-off of his interest in vortex atoms. It has stood the test of time and is
today recognized as an important contribution to topology, knot theory and graph theory. Maxwell
was an important catalyst for Tait’s work on knots, since he had also become interested in topo-
logical ideas. Today the intersection of fluid mechanics and topology, in its multiple forms, has
matured into a subfield often referred to as topological fluid dynamics. The permanence of circu-
lation in an ideal fluid was one of the comerstones of vortex atom theory. Like atoms, vortices in
the aether could neither be created nor destroyed.

Thomson’s fascination with the floating magnet experiments by Mayer, e.g., [45, 46], and his
role in the re-publication of these works in joumals such as Nature and Philosophical Magazine,
were also outgrowths ofhis conviction that vortices and atoms are intimately related. See Snelders’
article [66] for a comprehensive historical review of this topic. The famous quote from Thomson
that ”Helmholtz’s [vortex] rings are the only tme atoms” summarizes the theme of this research
thrust. Figure 5 depicts the kind of things he envisioned.

Although it ultimately faded, the vortex atom idea maintained itself for many years and through
Kelvin’s boundless energy and great influence spread widely in the scientific community. The
extensive work by J. J. Thomson, discoverer of the electron, on vortex dynamics in was stimulated
by vortex atom theory. Even in his great paper of 1897 entitled ”Cathode Rays”, in which the
discovery of the electron is announced, we find these remarks: “If we regard the system of magnets
as a model of an atom, the number of magnets being proportional to the atonic weight, ... we
should have somethuing quite analogous to the periodic law...”, where by “periodic law” he means
the periodic table of the elemerts. The reference to the floating magnets is to Mayer’s experiments
mentioned above. We see what a profound role these demonstration experiments played in the
tluinking of these great scientists. We should not forget that at the time analog expeniments were
one of the only ways of exploring solutions to nonlinear equations that did not easily yield to
analytical methods. Computers and numerical solutions were stil many years in the mmre.

The vortex atom theory received considerable attention from Maxwell [44] in his article on the
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atom written for the 1878 edition of Encyclopedia Britannica. He provided a detailed description
of properties of vortices in ideal fluid and strongly supported the idea of vortex atoms. Apparently,
he was reminded of his own earlier articles in which his celebrated electromagnetic theory was
initially formulated based upon a mechanical model that also made reference to Helmholtz’s paper
[23].

2.5 Vonex rings In spite of the great popularity ofTait’s [70, pp. 291-294] smoke box for generating
vortex rings in air, the first observation of vortex rings probably corresponds with the introduction
of smoking tobacco! Northmp [51, p.211] writes:

It is not improbable thal the first observer of vortex motions was Sir Walter Raleigh; if popular badition
may be credited regarding his use of tobacco, and probably few smokeis since his day have failed to
observe the curiously persistent foms of white rings of tobacco smoke which they delight to make. But
some two hundred eighty years went by, after the romantic days of Raleigh and Sir Francis Drake, who
made tobacco popular in England, before a scientific explanation of smoke rings was attempted.

Edwin Fitch Northmp (1866-1940) was a professor of physics at Princeton and author of a science
fiction book entitled “Zero to Eighty: Being my Lifetime Doings, Reflections, and Inventions;
also my Joumey around the Moon.” The book was published in Princeton in 1937 under the
pseudonym Akkad Pseudoman. It gives a fictional account, supported by valid scientific data, of
a Morris County resident’s trip around the moon. It appears to have a sustained following in the
world of science fiction.

By curious coincidence the first experimental observations of the generation of vortex rings in
air were performed by Rogers [61] in the same year (1858) that Helmholtz published his seninal
paper [23]. William Barton Rogers $(1804arrow 1882)$ will be better known today as the founder of MIT.
Indeed, he was heavily engaged in this enterprise at about the time his paper on vortex rings was
written.

The extensive smdy by Northrup [51, 52] should also be mentioned here. It contains a very
detailed description of a ”vortex gun”, including all the parameters, together with beautiful photos
of interacting vortex rings and vortex rings interactng with rigid obstacles, e.g., with a small watch
chain. The modem reader may be intrigued to see in these $neararrow cenmy$ old papers an essentially
contemporary elucidation of the interaction of two circular vortex rings tilted towards one anothcr
so as to interact $aRer$ having propagated for some dismce, cf. Fig.6.

Theoretical smdies of the motion of a ciicular vortex ring of closed toroidal shape with core
radius $a$ and radius $R$ of the center line of the toms, where $a\ll R$, in an ideal fluid led to a formula
for the self-induced translational velocity $V_{ring}$ , directed normally to the plane of the ring:

$V_{ring}= \frac{\Gamma}{4\pi R}(\log\frac{8R}{a}-C)+O(a/R)$

Here $\Gamma$ is the (constant) intensity of the voitex ring, equal to the circulation along any closed
path around the vortex core, and $C$ is a constant. There was some disagreement in the literamre
conceming the value of $C$ . The value $C= \frac{1}{4}$ was given (without $pr\infty f$) by W. Thomson [73] and
later by Hicks, Basset, Dyson and Gray. This corresponds to the case where the vonicity inside
the core varies $d\dot{u}$ectly as the distance from the centerline of the ring. The value $C=1$ was given
by Lewis [38], J. J. Thomson [71], Chree, Joukovsk\"u, and Lichtenstein for a uniform distribution
of vorticity within the core. For a hollow vortex core, or if one assumes the fluid inside the core
is stagnant, the value $C= \frac{1}{2}$ results $[$?$]$ . The review by Shariff and Leonard [65] on vortex ring
dynamics traces further evolution of this $in\alpha iguing$ subject.
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Figure 6: Sketch of interaction of two identical vortex rings launched on a collision course. From Northmp [52].

2.5 Vonex streets
Most students of fluid mechanics know that the common staggered array of vortices that forms in
the wake of a cylinder (or any bluff body) is called the K\’amdn vonex street. The concept of the
vortex street is among the best known in all of fluid mechanics, in the same ’ieague” as Reynolds
number, Bemoulli’s equation and the concept of the boundary layer. The fornation and smcmre
of vortex wakes downstream of bluff bodies had been smdied extensively in experiments going
back to Leonardo da Vinci, but von $K4rm4n$’s theory was the first real analysis of the phenomenon.
In his charnuing book [30] he explains that his interest was aroused by an early picmre of such
vortices in a fresco in one of the churches in Bologna, Italy, where St. Christopher is shown
carrying the child Jesus across a flowing stream. Altemating vortices are seen behind the saint’s
foot; see [49] for a beautiful color picmre of this fresco at the Church of St Dominic, entitled
Madonna $con$ bambino $tra$ I Santi Domenico, Pietro Mamre $e$ Critoforo, painted by an unknown
artist of the fourteenth $cenmi\gamma$.

Altemating vortices in air were observed and imaged by the English scientist Mallock [41,42]
while impressive photos of such vortices in water were obtained by the German scientist Ahlbom
[1]. The French scientist B\’enard [10] also observed the altemating formation of detached vortices
on the two sides of a bluff obstacle in water and later in many viscous fluids and in colloidal
solutions.

Analysis shows that only two such configurations will propagate in the streamwise direction:
The vortices must either be arranged in a symmetric or in a staggered configuration. Numerically
the intensities of the vortices, $\Gamma$ , are $aU$ equal, but the vortices on the two horizontal rows have
opposite signs. In remarkable theoretical investigations [28, 29] von K4rm\’an examined the ques-
tion of stability of such processions in unbounded, incompressible, inviscid, two-dimensional flow
with embedded point vortices. He became interested in this problem when he was appointed as a
graduate assistant in G\"ottingen in Prandtl’s laboratory in 1911. Prandtl had a doctoral candidate,
K. Hiemenz, to whom he had given the task of constructing a water channel in order to observe the
separation of the flow behind a cylinder. Much to his surprise, Hiemenz found that the flow in his
channel oscillated violently, and he failed to achieve symmetrical flow about a circular cylinder.
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Figure 7: Schematic of a symmetric and a staggeoed vortex street downstream of a bluff body. From [30].

Von $K4rm4n$ addressed the model problem of two infinite rows of point vortices and derived a
criterion for when such a configuration is not unstable to linearized perturbations. He showed that
the symmetnic configuration, cf. Fig.7, is always unstable and that the staggered configuration is
also unstable unless the spacing between successive vortices in either row and the distance between
th$e$ rows has a definite ratio.

If the spacing between successive vortices in the same row is called $l$ , and if the distance be-
tween the two parallel rows is called $h$ , von Kkmdn’s criterion [29] is

$\cosh\frac{\pi h}{l}=\sqrt{2}$ , or $\frac{h}{l}=0.283$ . (11)

The velocity, $U$, of horizontal translation of the infinite rows is found to be

$U= \frac{\Gamma}{2l}\tanh\frac{\pi h}{l}$ . (12)

$7bis$ is today very well known. What is probably less well known is that in the original paper
[28] von $K4rm4n$ found the criterion (11) with $\sqrt{3}$ $(or h/l=0.365)$ on the right hand side rather
than $($the $correct)\sqrt{2}$ , which was confirmed subsequently in [31, 64] (with reference to the then
newly created theory of an infinite system of linear differential equations due to O. Toeplitz in
1907) and by Lord Rayleigh [57]. The original drawings [31] of the streamlines in a coordinate
system moving steadily with the vortices are reproduced in Fig.8. (When the ratio $h/l$ is given by
Eq.(ll), the propagation speed of the street, $U$ , in Eq.(12) is $\Gamma/l\sqrt{8}.)$

The erroneous value was, for example, later used by Synge [68] in his re-denivation of the
$Karm4n$ drag fomiula, although the analysis is easily corrected.

Von $K4 4n$’s analysis precipitated huge amounts of work, both experimental, analytical-
and much later–numerical. On July 18, 1922, a young W. Heisenberg, then a smdent of A.
Sommerfeld at the Instimte for Theoretical Physics at University of M\"unchen, submitted an article
$[$ ? $]$ in which he tried to define an absolute size of the K\’arm\’an vortex street behind a flat plate
of width $d$ placed perpendicularly to the oncoming flow of velocity $U_{\infty}$ far upstream. Based on
physical arguments he amived at Ae numerical values $l/d=5.45$ and $h/d=1.54$ . These values
fit von $K4rmdn$ ’s second value for the ratio of width to intra-row spacing, $h/l=0.283$ and the
ratio of the speed of propagation of the row relative to the flow speed at infinity, $U/U_{\infty}=0.229$ .
Heisenberg’s thoughts at this time were already mming to other topics, most notably the creation
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Figure 8: Sbeamlines of a voilex $sn\cdot eet$ in the co-moving $\hslash ame$ based on $m\epsilon$ point vortex model [31].

of a new matrix” version of quanmm mechamics for which he was to receive the Nobel prize in
1933 together with E. Schrodinger and P. A. M. Dirac. Nevertheless, his doctoral dissertation,
completed in July 1923, was on hydrodynamics, in particular stability theory and mibulence, and
he would retum briefly to the topic of fully developed turbulence in the period following World
War II.

The necessary condition for absence of linear instability was generalized to vortex streets mov-
ing obliquely to the direction of the “free stream” by Dolaptschiew and Maue. Wluile the paper
by Maue [43] will probably be famuiliar, in part because this work was highlighted in the well-
known ]$ecmres$ of Sommerfeld [67], the extensive work of Dolaptschiew is less well known than
it ought to be. Insofar as assimilation into the literamre in the West is concemed, the simation was
not helped by several of Dolaptschiew’s papers being published in Bulgarian and Russian, albeit
usually with an abstract or summary in Gennan.

3. Conclusion
History, to paraphrase Leibnitz, is a useful thing, for its smdy not only gives to the researchers

of the past their just due but also provides those of the present with a guide for the orientation of
their own endeavors. While Helmholtz’s 1858 paper on vortex dynamics and vorticity is of great
importance and spawned the new subfield of vortex dynamics, one must admit that in the greater
scheme of things Helmholtz is today primarily remembered for other contributions to science.
There are several individuals who would not today be immediately associated with the field of
vortex dynamics, since they did work in other fields– often well outside fluid mechanics–that
became of even greater importance. We may list Dirichlet, Fiiedmann, Hankel, Heisenberg, Klein,
Lin, Love, J. J. Thomson, Zermelo and probably even Lord Kelvin.

In the “case studies” in Section II we have focused on what one may call the classical applica-
tions of Helmholtz’s vortex theory. It is the test of any significant advance that it elicits interest
far beyond the boundaries anticipated by its creator. Thus, the importance of vortex dynamics was
realized in meteorology and oceanography by such towering figures as Vilhelm Bjerknes whose
seminal work [12] bears the title “On the dynanics of the circular vortex: with applications to the
atnosphere and atmospheric vortex and wave motions.” At the offier end of the size-scale spec-
tmm we may cite the application of classical vortex dynamics to superfluid Helium [16], where
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the famous footnote in [54] announced the quantization of circulation in this case. As one surveys
the now vast literamre in vortex dynamics some 150 years after Helmholtz’s paper one is stmck
by the richness of the subject matter, and by how the vanious aspects enter different applications in
almost infinitely varied ways. Kuchemann’s figurative characterization of vortices as “the sinews
and muscles of fluid motions” [34] is no less apt today than it was when it was written 40 years
ago.
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