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ABSTRACT. In this paper, we state the recently obtained strong convergence theorem of
Browder’s type for firmly nonexpansivetype mappings in Banach spaces.

1. INTRODUCTION
The following is Browder’s strong convergence theorem [5] for nonexpansive mappings

in Hilbert spaces; see, for instance, Takahashi [24]:

Theorem 1.1 (Browder [5]). Let $H$ be a Hilbert space, $C$ a nonempty closed convex
subset of $H_{f}T$ a nonexpansive mapping from $C$ into itself such that $F(T)$ is nonempty,
and $x\in C$ . Then the following hold:

(1) For each $t\in(0,1)$ , there $e$ vists a unique $u_{t}\in C$ such that

$u_{t}=tx+(1-t)Tu_{t}$ ;

(2) the net $\{u_{t}\}$ converges strongly to $P_{F(T)}(x)$ as $t\downarrow 0$ , where $P_{F(T)}$ denotes the metric
projection from $H$ onto $F(T)$ .

This result was extended to accretive operators in Banach spaces by Reich [18] and
Takahashi and Ueda [27].

Recently, the authors [13] proposed the class of firmly nonexpansive-type mappings in
Banach spaces. It is a subclass of D-firm operators introduced by Bauschke, Borwein,
and Combettes [3]. This class contains the classes of firmly nonexpansive mappings in
Hilbert spaces and resolvents of maximal monotone operators in Banach spaces. In [14],
the class of nonspreading mappings in Banach spaces was also introduced. Every firmly
nonexpansive-type mapping is known to be nonspreading. Then fixed point theorems and
convergence theorems for these nonlinear operators were investigated [13, 14].

In this paper, we state a strong convergence theorem [15] of Browder’s type for firmly
nonexpansive-type mappings in Banach spaces.

2. PRELIMINARIES
Throughout the paper, every linear space is real. The set of real numbers is denoted by

$\mathbb{R}$ . The conjugate space of a Banach space $E$ is denoted by $E^{*}$ . We denote $x^{*}(x)$ by $\langle x,$ $x^{*}\rangle$

for all $(x, x^{*})\in E\cross E^{*}$ . For a sequence $\{x_{n}\}$ of $E$ , the strong and weak convergence of
$\{x_{n}\}$ to $x\in E$ is denoted by $x_{n}arrow x$ and $x_{n}arrow x$ , respectively.
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Let $E$ be a Banach space with norm $\Vert\cdot\Vert$ and let $S(E)=\{x\in E:\Vert x\Vert=1\}$ . Then the
duality mapping $J$ from $E$ into $2^{E}$ is defincd by

(2.1) $Jx=\{x^{*}\in E^{*}:\langle x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}$

for all $x\in E$ . It is known that $Jx\neq\emptyset$ for all $x\in E$ . The space $E$ is said to be smooth if
the limit

(2.2) $\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}$

exitsts for all $x,$ $y\in S(E)$ . In this case, the norm of $E$ is said to be G\^ateaux differentiable.
The norm of $E$ is also said to be uniformly G\^ateaux differentiable (resp. uniformly Fr\’echet
differentiable) if the limit (2.2) converges uniformly in $x\in S(E)$ for all $y\in S(E)$ (resp.
uniformly in $x,$ $y\in S(E))$ . The space $E$ is said to be uniformly smooth if the norm of $E$

is uniformly Fr\’echet differentiable.
The space $E$ is said to be strictly convex if $\Vert(x+y)/2\Vert<1$ whenever $x,$ $y\in S(E)$ and

$x\neq y$ . It is also said to be uniformly convex if for each $\epsilon\in(0,2]$ , there exists $\delta>0$ such
that $\Vert x-y\Vert\geq\epsilon$ and $x,$ $y\in S(E)$ imply that $\Vert(x+y)/2\Vert\leq 1-\delta$ . The space $E$ is said
to have the Kadec-Klee property if $x_{n}arrow x$ whenever $\{x_{n}\}$ is a sequence of $E$ such that
$x_{n}arrow x$ and $\Vert x_{n}\Vertarrow\Vert x\Vert$ . We know the following; see, for instance, [10,24]:

(1) If $E$ is smooth, then $J$ is single-valued;
(2) if $E$ is strictly convex, then $Jx\cap Jy\neq\emptyset$ implies that $x=y$ ;
(3) if $E$ is reflexive, then $J$ is onto;
(4) $E$ is uniformly smooth if and only if $E^{*}$ is uniformly convex;
(5) if $E$ is uniformly convex, then $E$ is a strictly convex and reflexive Banach space

with the Kadec-Klee property.
Let $E$ be a smooth Banach space. Following [1, 12], let $\phi$ be a mapping from $E\cross E$

into $\mathbb{R}$ defined by

(2.3) $\phi(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$

for all $x,$ $y\in E$ . It is obvious that

(2.4) $(\Vert x\Vert-\Vert y\Vert)^{2}\leq\phi(x, y)\leq(\Vert x\Vert+\Vert y\Vert)^{2}$

for all $x,$ $y\in E$ . If $C$ is a noncmpty closed convex subset of a smooth, strictly convex,
and reflexive Banach space $E$ , then for each $x\in E$ , there exists a unique $z\in C$ (denoted
by $\Pi_{C}x)$ such that $\phi(z, x)=\min_{y\in C}\phi(y, x)$ . The mapping $\Pi_{C}$ is called the generalized
projection [1] from $E$ onto $C$ . Similarly, for each $x\in E$ , there exists a unique $z\in C$

(denoted by $P_{C}x$ ) such that $\Vert z-x\Vert=\min_{y\in C}\Vert y-x\Vert$ . The mapping $P_{C}$ is called the
metric projection from $E$ onto $C$ . It is easy to see that

(2.5) $\Pi_{C}(0)=P_{C}(0)$ .

If $E$ is a Hilbert space, then $\Pi_{C}(x)=P_{C}(x)$ for all $x\in E$ . For $(x, z)\in E\cross C$ , the
following hold; see [1, 12,24]:

(1) $z=\Pi_{C}(x)$ if and only if $\langle y-z,$ $Jx-Jz\rangle\leq 0$ for all $y\in C$ ;
(2) $z=P_{C}(x)$ if and only if $\langle y-z,$ $J(x-z)\rangle\leq 0$ for all $y\in C$ .

Let $E$ be a smooth Banach space, $C$ a nonempty closed convex subset of $E$ , and $T$ a
mapping from $C$ into itself. The set of fixed points of $T$ is denoted by $F(T)$ . Then $T$ is
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said to be of firmly nonexpansive type [13] if
(2.6) $\langle Tx$ – $Ty$ , $Jx-JTx-(Jy-JTy)\rangle\geq 0$

for all $x,$ $y\in C$ . If $E$ is a Hilbert space, then $J=I$ (the identity operator on $E$) and hence
$T$ is of firmly nonexpansive type if and only if it is firmly nonexpansive in the classical
sense, that is,

(2.7) $\Vert Tx-Ty\Vert^{2}\leq$ {$Tx$ – $Ty$ , $x-y\rangle$

for all $x,$ $y\in C$ ; see, for example, [6, 8, 9, 11, 26]. It is easy to verify that the generalized
projection operator $\Pi_{C}$ is of firmly nonexpansive type and $F(\Pi_{C})=C$ . If $r>0,$ $C$ is a
nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space
$E$ , and $A\subset E\cross E^{*}$ is a monotone operator such that $D(A)\subset C\subset J^{-1}R(J+rA)$ , then
the resolvent $Q_{r}$ of $A$ defined by

(2.8) $Q_{r}x=(J+rA)^{-1}Jx$

for all $x\in C$ is a firmly nonexpansive-type mapping from $C$ into itself and $F(Q_{r})=A^{-1}0$ ;
see [13-15] for more details. The class of firmly nonexpansive-type mappings is included
in the class of D-firm opemtors [3], where $D$ stands for a Bregman distance. We also
know that $T$ is of firmly nonexpansive type if and only if
(2.9) $\phi(Tx, Ty)+\phi(Ty, Tx)+\phi(Tx, x)+\phi(Ty, y)\leq\phi(Tx, y)+\phi(Ty, x)$

for all $x,$ $y\in C$ ; see [3, 13]. In particular, if a firmly nonexpansive-type mapping $T$ has a
fixed point, then

(2.10) $\phi(u, Tx)+\phi(Tx, x)\leq\phi(u, x)$

for all $u\in F(T)$ and $x\in C$ . The mapping $T$ is also said to be nonspreading [14] if

(2.11) $\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(Tx, y)+\phi(Ty, x)$

for all $x,$ $y\in C$ . It is easy to see that every firmly nonexpansive-type mapping is non-
spreading. A point $u\in C$ is said to be asymptotic fixed point [19] of $T$ if there exists a
sequence $\{x_{n}\}$ of $C$ such that $x_{n}arrow u$ and $\Vert x_{n}-Tx_{n}\Vertarrow 0$ . The set of asymptotic fixed
points of $T$ is denoted by $\hat{F}(T)$ . The mapping $T$ is also said to be relatively nonexpan-
sive $[$ 16, 17] if the following conditions are satisfied:

(1) $F(T)$ is nonempty;
(2) $\hat{F}(T)=F(T)$ ;
(3) $\phi(u, Tx)\leq\phi(u, x)$ for all $u\in F(T)$ and $x\in C$ .

We know the following lemmas:

Lemma 2.1 ([14]). Let $E$ be a strictly convex Banach space with a uniformly G\^ateaux

differentiable norm, $C$ a nonempty closed convex subset of $E$ , and $T$ a nonspreading
mapping from $C$ into itself. Then $\hat{F}(T)=F(T)$ . Further, if $F(T)$ is nonempty, then $T$

is relatively nonexpansive.

Lemma 2.2 ([17]). Let $E$ be a smooth and strictly convex Banach space, $C$ a nonempty
closed convex subset of $E_{f}$ and $T$ a mapping from $C$ into itself such that $F(T)$ is nonempty
and $\phi(u,Tx)\leq\phi(u, x)$ for all $u\in F(T)$ and $x\in C$ . Then $F(T)$ is closed and convex.

Motivated by the technique in [23, 24], the following fixed point theorem for nonspread-
ing mappings in Banach spaces was shown:
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Theorem 2.3 ([14]). Let $E$ be a smooth, strictly convex, and reflexive Banach space, $C$

a nonempty closed convex subset of $E$ , and $T$ a nonspreading mapping from $C$ into itself.
Then $F(T)$ is nonempty if and only if there exists $x\in C$ such that $\{T^{n}x\}$ is bounded.

As a direct consequence of Theorem 2.3, we obtain the following:

Corollary 2.4 ([13]). Let $E$ be a smooth, strictly convex, and reflexive Banach space, $C$

a nonempty closed convex subset of $E$ , and $T$ a firmly nonexpansive-type mapping from
$C$ into itself. Then $F(T)$ is nonempty if and only if there exists $x\in C$ such that $\{T^{n}x\}$

is bounded.

The following lemma implies that the class of firmly nonexpansive-type mappings is
coincident with that of resolvents of monotone operators:

Lemma 2.5 ([14]). Let $E$ be a smooth, strictly convex, and reflexive Banach space, $C$ a
nonempty closed convex subset of $E$ , and $T$ a mapping from $C$ into itself. Then $T$ is of
firmly nonexpansive type if and only if there exists a monotone operator $A\subset E\cross E^{*}such$

that $D(A)\subset C\subset J^{-1}R(J+A)$ and $Tx=(J+A)^{-1}Jx$ for all $x\in C$ .

3. RESULTS

Using Lemmas 2.1, 2.2 and Corollary 2.4, we can show the following strong convergence
theorem of Browder’s type for firmly nonexpansive-type mappings in Banach spaces:

Theorem 3.1 ([15]). Let $E$ be a smooth, strictly convex, and reflexive Banach space, $C$ a
nonempty bounded closed convex subset of $E$ with $0\in C$ , and $T$ a firmly nonexpansive-type
mapping from $C$ into itself. Then the following hold:

(1) For each $t\in(0,1)$ , there exists a unique $u_{t}\in C$ such that
$u_{t}=(1-t)Tu_{t}$ ;

(2) if $E$ has the Kadec-Klee property and the norm of $E$ is uniformly G\^ateaux dif-
ferentiable, then the net $\{u_{t}\}$ converges strongly to $P_{F(T)}(0)$ as $t\downarrow 0$ , where $P_{F(T)}$

denotes the metric projection from $E$ onto $F(T)$ .

The following is a direct consequence of Theorem 3.1 and Lemma 2.5:

Theorem 3.2 ([15]). Let $E$ be a smooth, strictly convex, and reflexive Banach space and
$C$ a nonempty bounded closed convex subset of $E$ with $0\in C.$ Let $r$ be a positive real
number, $A\subset E\cross E^{*}$ a monotone operator such that $D(A)\subset C\subset J^{-1}R(J+rA)$ , and
$Q_{r}x=(J+rA)^{-1}Jx$ for all $x\in C$ . Then the follounng hold:

(1) For each $t\in(O, 1)$ , there eststs a unique $u_{t}\in C$ such that
$u_{t}=(1-t)Q_{r}u_{t}$ ;

(2) if $E$ has the Kadec-Klee property and the no$rm$ of $E$ is uniformly G\^ateaux differ-
entiable, then the net $\{u_{t}\}$ converges strongly to $P_{A^{-1}0}(0)$ as $t\downarrow 0$ , where $P_{A^{-1}0}$

denotes the metric projection from $E$ onto $A^{-1}0$ .

Corollary 3.3. Let $E$ be a smooth, strictly convex, and reflexive Banach space and $A\subset$

$E\cross E^{*}$ a maximal monotone operator such that $D(A)$ is bounded and $0\in\overline{D(A)}$ , where
$\overline{D(A)}$ denotes the norm closure of $D(A)$ . Let $r$ be a positive real number and $Q_{r}x=$

$(J+rA)^{-1}Jx$ for all $x\in\overline{D(A)}$ . Then the following hold:
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(1) For each $t\in(O, 1)$ , there exists a unique $u_{t}\in\overline{D(A)}$ such that

$u_{t}=(1-t)Q_{r}u_{t}$ ;

(2) if $E$ has the Kadec-Klee property and the no$rm$ of $E$ is uniformly G\^ateaux differ-
entiable, then the net $\{u_{t}\}$ converges strongly to $P_{A^{-1}0}(0)$ as $t\downarrow 0$ , where $P_{A^{-1}0}$

denotes the metric projection from $E$ onto $A^{-1}0$ .

Proof. We know that $\overline{D(A)}$ is closed and convex. In fact,

(3.1)
$\lim_{t\downarrow 0}J_{t}x=x$

for all $x\in$ co $D(A)$ , where co $D(A)$ denotes the closed convex hull of $D(A)$ and $J_{t}$ is
defined by $J_{t}=(I+tJ^{-1}A)^{-1}$ for all $t>0$ ; see [2, 25] for more details. Thus we have
$\overline{co}D(A)\subset\overline{D(A)}$ . This implies that $\overline{co}D(A)=\overline{D(A)}$ and hence $\overline{D(A)}$ is closed and
convex.

Since $A$ is maximal monotone, we know that $R(J+rA)=E^{*}$ see [2, 7, 22, 25]. Putting
$C=\overline{D(A)}$ , we know that $C$ is a bounded closed convex subset of $E$ with $0\in C$ ,

(3.2) $D(A)\subset C\subset E=J^{-1}E^{*}=J^{-1}R(J+rA)$ ,

and $Q_{r}$ is a firmly nonexpansive-type mapping from $C$ into itself. Thus, by Theorem 3.2,
we obtain the conclusion. 口

Let $E$ be a Banach space and $f$ a function from $E$ into $(-\infty, \infty]$ . Then $f$ is said to be
proper if the effective domain $D(f)=\{x\in E : f(x)\in \mathbb{R}\}$ of $f$ is nonempty. It is said to
be convex if

(3.3) $f(\alpha x+(1-\alpha)y)\leq\alpha f(x)+(1-\alpha)f(y)$

whenever $x,$ $y\in E$ and $\alpha\in(0,1)$ . It is also said to be lower semicontinuous if $\{x\in E$ :
$f(x)\leq r\}$ Is closed in $E$ for all $r\in \mathbb{R}$ . Let $x\in E$ be given. Then a point $x^{*}\in E^{*}$ is said
to be a subgradient of $f$ at $x$ if

(3.4) $f(x)+\langle y-x,$ $x^{*}\rangle\leq f(y)$

for all $y\in E$ . The set of subgradients of $f$ at $x$ is said to be the subdifferential of $f$ at $x$

and denoted by $\partial f(x)$ . The mapping $\partial f\subset E\cross E^{*}$ is called the subdifferential mapping
of $f$ .

Using Corollary 3.3, we can also show the following corollary:

Corollary 3.4 ([15]). Let $E$ be a smooth, strictly convex, and refle zzve Banach space, $r$

a positive real number, and $f$ a proper lower semicontinuous convex function from $E$ into
$(-\infty, \infty]$ such that $D(f)$ is bounded and $0\in\overline{D(f)}$ . Then the following hold:

(1) For each $t\in(O, 1)$ , there $e$ vists a unique $u_{t}\in\overline{D(f)}$ such that

$u_{t}=(1-t) \cdot\arg\min_{y\in E}\{f(y)+\frac{1}{2r}\phi(y, u_{t})\}$ ;

(2) if $E$ has the Kadec-Klee property and the no$7vn$ of $E$ is uniformly G\^ateaux differ-
entiable, then the net $\{u_{t}\}$ converges strongly to $P(O)$ as $t\downarrow 0$ , where $P$ denotes
the metric projection from $E$ onto $\arg\min_{y\in E}f(y)$ .
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Proof. Brndsted and Rockafellar’s theorem [4] implies that $D(\partial f)$ is norm dense in $D(f)$ ,
that is, $D(f)\subset\overline{D(\partial f)}$ ; see also [25]. This gives us that $\overline{D(\partial f)}=\overline{D(f)}$ . Rockafellar’s
theorem [20,21] also ensures that the subdiflerential $\partial f$ of $f$ is maximal monotone; see
also [25]. We also know that

(3.5) $Q_{r}x= \arg\min_{y\in E}\{f(y)+\frac{1}{2r}\phi(y, x)\}$

for all $x\in C=\overline{D(f)}$, where $Q_{r}x=(J+r\partial f)^{-1}J$ for all $x\in C$ ; see, for instance,
[12, 25]. It is also known that $( \partial f)^{-1}(0)=\arg\min_{y\in E}f(y)$ and $D(\partial f)\subset D(f)$ . Thus, by
Corollary 3.3, we obtain the conclusion. $\square$

We do not know the answers to the following problems:

Problem 3.5. Is it possible to prove Theorem 3.1 without assuming that $C$ is bounded?

Problem 3.6. Is it possible to prove Theorem 3.1 for a net of the form: $x\in C$ and

(3.6) $u_{t}=tx+(1-t)Tu_{t}$

for all $t\in(0,1)$ ?

Problem 3.7. Is it possible to obtain an analogous result of Browder’s strong convergence
theorem for nonspreading mappings in Banach spaces?
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