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Abstract. In 999, there is a global convergent theorem for boolean network
that have been proved. Next, the global convergent theorem for XOR boolean
network have been proved in 2007, it is a counterpart of the global convergent
theorem for boolean network. This result, we extended the global convergent
behaviours to any map from the product of n finite Boolean algebra into itself,
where n is a positive integer.
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1. Introduction
Let {0, 1} be with operations +, @, and - defined as follows,

0+0=0800=1®1=1:-0=0-1=0-0=0,
1+41=140=0+1=100=0p1=1-1=1,
0=1,and 1 =0.

For a,b € {0,1}, ab is the abbreviation of a - b. For each positive integer n,
let {0,1}"™ be the set of ordered n-tuples,

]

with components z; € {0,1}( = 1,...,n). We may think of x as a bit
string of length n, thus we may write £ = %2+ Tn. We also write z =
(€1, Za,-++ ,Tn). The zero element of {0,1}" is the n-tuple 0 = (0,0, - ,0).
For j € {1,...,n}, the j-th unit vector e; is the element of {0,1}", all of
whose coordinates are 0 except for the j-th component is 1. The order “<”
in {0,1} is given by 0 < 0 < 1 < 1. For z,y € {0,1}", z < y is meant
that.z; < y; (i = 1,...,n). For z,y € {0,1}"*, A,y € {0, 1}, define



125

max{z1, 1} max{\, z1} o)
x+y - : ] Ax = .:- b a'nd x®y - . H
max{Zn, Yn} max{\, T, } Yn
where v; = 0 if z; = y;; otherwise, v; =1 (i = 1,...,n). Hence
1+ ¢+ xy 1 Dy
z+y=1| : , CT = : ,and TPy =
Zn + Yn c+zx, Tn D Yn

Boolean network of n elements is a mapping F : {0,1}" — {0,1}". XOR
boolean network is a boolean network that replace the operation + with .
Throughout this paper, a boolean matriz is meant to be a matrix over {0,1}.
The set of n x n boolean matrix is denoted by €2,. The symbol I stands
for the identity matrix in €,. Let a be a nonempty subset of {1,2,-- - ,n}.
For any M € 2, M(a) stands for the principal submatrix of M that lies in
rows and columns indexed by a. Boolean matrix multiplication is the same
as in the case of complex matrices but the concerned products of entries are
boolean. For a boolean network, boolean matrix addition is the operation +,
it is the same as in the case of complex matrices but the concerned sums of
entries are boolean. For an XOR boolean network, boolean matrix addition
_is the operation @ instead of the operation +. |

A non-zero element u € {0,1}" is called a (boolean) eigenvector of M €
2, if there exists an A in {0, 1} such that Mu = Au; X is called the (boolean)
eigenvalue associated with eigenvector. For M € ,, the symbol o(M)
denote the (boolean) spectrum of M, it is the set of all eigenvalues of M, so
that o(M) C {0,1}. The (boolean) spectral radius of M, which is denoted
by p(M), is defined to be the largest eigenvalue of M.

For an element z of {0,1}", the von Neumann neighborhood of z is the
set V, = {z,2',--- ,Z"}. Here %7 (i = 1,...,n) is the j-th neighbor of
z, which is defined to be the element (zi,---,Zj,-:,%,). According to
Robert(see[6, p.97]), the boolean Jacobian matriz of the map F from {0, 1}
to itself evaluated at x is defined by F'(z) = (f;;(x)), where

fis(@) = { 1 if fi(z) # fi(@),

0 otherwise.

Robert usually called the boolean Jacobian matrix of a map as the boolean
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derivative of a map. The incidence matrix of F' is the n x n Boolean matrix
B (F) = (b;;) where b;; = 0 if f; does not depend on z;; otherwise b;; = 1.

Let us remark that the boolean network F : {0,1}" — {0,1}" is global
convergent to a fixed point £ if £ is a global attractor for the boolean network,
that is, the trajectory z'*! = F(z') tends forward to £ for any starting
at 2% of {0,1}"; that is, there exists a positive integer p(< 2") such that
FP(z%) = 2P = ¢ for any starting 2° € {0,1}". The material of following
notations can be found in the fundamental paper by Robert[1], [2] and [3],
and also in the book by Robert[4], [5] and [6].

2. Boolean Global Convergent Theorems

In 1999, Shih and Ho proved a global convergent theorem for boolean
network|[7]:

Theorem 1. Suppose the map F' from {0, 1}" to itself defines a boolean
network satisfies following conditions:

(1) F(Vz) C Ve for all z € {0,1}";
(2) p(F'(z)) =0 for all z € {0,1}".

Then F has a unique fixed point and the boolean network is global convergent
to this fixed point.

In 2007, Ho proved a global convergent theorem for boolean network|8]
that is equipped with a XOR boolean structure:

Theorem 2. Suppose the map F from {0,1}" to itself defines a XOR
boolean network satisfies following conditions:

(1) F(V,) C V(g forall z € {0,1}";
(2) 1 ¢ o(F'(z)) for all z € {0,1}".

Then F has a unique fixed point and the boolean network is global convergent
to this fixed point.

In this paper, this result is extended to any map F' from A" into itself,
where A is a finite Boolean algebra[9] and n is a positive integer.
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Define a € A to be an atom of A if 0 < a but there is no z in A satisfying
0 < z < a. We denoted by At(A) the set of atoms of A. We say A is atomic
if for each positive element z of A , there is some atom a such that a < z. We
say A is complete if the least upper bound and the greatest lower bound of
D belong to A for each D C A. Write the cardinality of At(A) by #At(A).

Remark that for every Boolean algebra A, the map f from A into the
power set algebra P(At(A)) defined by

f(z) = {a € At(A) : a < z}

is a homomorphism. It is an embedding if A is atomic, and f is an epimor- -
phism if A is complete.(see [9, Proposition 2.6] )

Let the map F from A" into itself, where A is a finite Boolean algebra
and n is a positive integer. Let m be the cardinality of the set of atoms of A.
We will construct a map F from {0, 1} into itself and conclude that if this
map F satisfies conditions(1)and(2) then F has a unique fixed point £ and

there exists a positive integer p(< 2™) such that FP(z) = £ for any element
x in A™.

Lemma 1. Let A be a finite Boolean algebra and let
F: A" — A" (n is a positive integer)
be a map. Then there is a map
F:{0,1}™ — {0,1}™ (m = #At(A))
and two isomorphisms n and ¢ such that

F = (np)™ Fne
Proof. Define the map from A into the power set algebra P(At(A)) by

©* () = {a € At(A) : a < z}

Since A is a finite Boolean algebra, At(A) is finite and A is both complete

and atomic. Hence ¢* is an isomorphism.(see [9, Corollary 2.7] )
Define the map from A" into [P (At(A))]" by

Y (LE) =@ (ml’ R xn)
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= (¢* (@1), - ¢* (T0))

Then ¢ is also an isomorphism.
Since A is finite ,we may assume

At(A) = {a1,...,am}

and define n* : P(At(A)) — {0,1}™ by

0 if D= ¢,
n*(D) — € if D= {aj},
> e; otherwise.
a; €D

Obviously, n* is a bijection. For any Dy, Dy € P(At(A))

m(DiUDy)= 5 e= Y e+ > e  (Boolean sum)

a;€D1UD; a;€Dy a;ED2
= n*(D1) + 1" (D2)

" (DiNDy)= 3 e= 3 € D €

ajEDlﬂDz a,—GDl CL_.,'EDz
= n* (D1) - n* (Da)
7* (¢) = (0,...,0)

7 (AHA)) = (1, .., 1)

(D)= Y e= > ¢ = n(D).

a;€De° a;€D

Hence n* is a homorphism(see [9, p.8] ), and so n* is an isomorphism.
Define the map from [P (At (A))]" into {0,1}™ by

W(D) =7 (Dla ey D‘n)
= (77* (Dl) ) '",77* (Dn))

Then 7 is also an isomorphism.

Define f;: {0,1}™" — {0,1}™ by
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fi=ne*f; ()™,

where f; are the components of F. i.e.,

Ar L, [P(At(A)]" /AN {0,1}mn
fil ) VoS
A P(At(A)) I, {0,1}m

For z = (z1,...,%m) in {0,1}™ , 7; is defined by
mi(z)=z; (j=1,...,m)

Now we define the components fj of F by

f‘= Wﬂfgz-}—lif J=am+ (3,0 < G <m,
! Wmfa if ] = am, ] =1,..mn.

Then £ is a map from {0, 1}™" into {0, 1}™".
For any z in {0, 1}™",

) fl [fl(m)a afm(x)]T
Fl)=1 : @@= ) : )
Jmn [fm(n—1)+1(-'r), T ,fmn(x)]T
[mfi (@), T fi (z)]T | [7*¢* f1 (np) ™" (x)]T
M (@), T fo ()] (170" fn (0) ™ ()]
fi
=ne| i | (me)7 (z) =neF (np)™" ().
fn

Therefore, F = (np) ™ Fnp. O

We call F' is the ne-mapping of F'. The aim of this paper is to prove the
following theorem.
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Theorem 3. Let A be a finite Boolean algebra and let
F : A™ — A" (n is a positive integer)
be a map such that its np-mapping F satisfies following conditions:

(1) F(V,) Vi) forallz e {0, 1}";
(2) p(F'(x)) =0 for all z € {0,1}".

Then F has a unique fixed point £ and there exists a positive integer p(< 2™)
such that FP(z) = £ for any element = in A™.

3. Proof of Theorem 3

Let A be a finite Boolean algebra and let F' : A — A"™. Lemma 1 and
the hypothesis of Theorem 3 shows that its ny-mapping EF {0,1}™* —
{0,1}™" (m = #At(A)) is actually a boolean network that satisfies condi-
tions(1)and(2). By Theorem 1, there is a unique fixed point ¢ of F' such that
this boolean network F: {0, 1}"‘" — {0,1}™ is global convergent to c.

Let £ = (np) ™' (c). Then € € A™ and we have

Fle)=c
= neF(np)~(c) =c

= F(np)~(c) = (np)~(c)
& F (€)=

Since (np) " is an isomorphism, £ is a unique fixed point of F'. Since this
boolean network £ : {0,1}™ — {0,1}™" is global convergent to c, there is
a positive integer p(< 27) such that F?(z) = ¢ for any z € {0, 1}""‘ For any
y in A", there exist an element x in {0, 1}™" such that y = (np)~" (z). Then

Fr(z) = ¢
= npF? (np) ™" (z) =c

= F? (np) ™" (z) = (n9) ™" (0)
= F?(y) =
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Hence p is also the positive integer such that FP(y) = £ for any y € A™. This
completes the proof of Theorem 3.

4. Remarks

The incidence matrix of F is the n x n Boolean matrix B (F) = (b;;)
where b;; = 0 if f; does not depend on zj; otherwise b;; = 1. f; are the
components of F. [6] Now we compare B(F) with B(F).

Remark 1. Let A, F, F be described above. Let B(F) = (bi;)nxn and
B(F) = (Bij)nxn Where B;; is an m x m Boolean matrix with m = #At(A).
Then b;; = 0 if and only if B;; = Opx, = O ,the m X m zero matrix.
Proof. b,;j = ()

< fi does not depend on z; for z = (zy,...z,) € A®

< n*¢* f; does not depend on z;

< finy does not depend on z; ,

< f; does not depend on a(j—1ym+1, ---Gjm for a = (ai,...amn) € {0, 1}™".

& 7r1fi, e 7rmf;- does not depend on a(_1)ym+1; s Gjm

< fli-1ym+1,..., fim does not depend on a¢—1ym+1, - Gjm ) )

= b(i——l)m+s,(j—1)m+t =0 ( S = ]., eamy t= 1, ceey M B(F) = (bij)mnxmn )

= B,'j =0. O

If B;j # O then b;; = 1; but b;; = 1 can not imply B;; = I ,the m x m
identity matrix. We will show it with the following counterexample. So we
can not apply this condition to Theorem 3.

Example 1. If A= {a,b,¢c,d} witha<b<danda<c<d, then it is
a finite Boolean algebra and m = #At(A) = #{b,c} = 2.
Consider n = 2. Let the map F : A2 — A? be defined by

v [ (@) | (B*) | (c%) | (d,%)
F(y) | (a,a) | (a,0) | (a,b) | (a,d)

where * is any element in A , we have
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= (2 9)

From

L -

{a'v b, c, d} <5 {¢) {b} ) {C} ) {b’ C}} - (0’ 0) ) (O’ 1) ) (1’ O) ) (1’ 1)

we have, for any z = (z1, z2, 23, 74) € {0,1}™" = {0,1}*,

F(z) = noF (n) ™" (z) = (0,0, 22, 21)

Hence

00 00

R 00 00
B(F) = 01 00
10 00

Though By = Byjg = Byy = O, By # I. The claim follows. O

References

1. F. Robert, Théorémes de Perron-Frobenius et Stein-Rosenberg booléens,
Linear Algebra Appl. 19(1978), 237-250. |

2. F. Robert, Itérations sur des ensembles finis et automates cellulaires con-
tractants, Linear Algebra Appl. 29(1980), 393-412.

3. F. Robert, Dérivée discriye et convergence local d’une iteration booléenne,
Linear Algebra Appl. 52(1983), 547-589.

4. F. Robert, Les systémes dynamiques discrets, volume 19 of Mathématiques
et Applications. Springer, 1995.

5. F. Robert, Basic results for the behaviour of discrete iterations, NATO
ASI Series in Systems and Computer Science, F20, Springer Verlag, Berlin,
Heidelberg, New York, 1986, pp.33-47.

6. F. Robert, Discrete Iterations, Springer Verlag, Berlin, Heidelberg, New
York, 1986.



133

7. M.-H. Shih and Juei-Ling. Ho, Solution of the Boolean Markus-Yamabe
problem, Advances in Applied Mathematics, 22(1999), 60-102.

8. Juei-Ling. Ho, Global Convergence for the XOR Boolean Networks, Tai-
wanese Journal of Mathematics, accept in 2007.

9. J. D. Monk, Handbook of Boolean Algebras - Volume 1, Elsevier Science
Publishers B.V., Amsterdam- New York-Oxford-Tokyo, 1989.



