BOREL DEFINABLE SUBGROUPS AND ALMOST INTERNALITY IN ROSY DEPENDENT GROUPS

東海大学理学部数学科 米田郁生 (IKUO YONEDA)
DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY

ABSTRACT. Let G be a rosy dependent group with a countable language, weak canonical bases and elimination of hyperimaginaries. Let p be a global p-generic type and Σ be an \emptyset -invariant family of partial types. Under a certain assumption on independence relations of global types we show that if $p|\emptyset$ is not foreign to Σ , then there exists a Borel definable subgroup H such that G/H is almost Σ -internal.

1. Preliminaries

We review some definitions and facts. We only consider theories having elimination of hyperimaginaries and we will work in the eq-structures. ROSY THEORIES (See [A]): Let T be rosy and \mathcal{M} be a big model. We work in \mathcal{M}^{eq} . We say that T has weak canonical bases if for any type p there exists the smallest algebraically closed subset $\operatorname{wcb}_{\mathfrak{p}}(p)$ such that p does not \mathfrak{p} -forks over $\operatorname{wcb}(p)$. In [A] Adler showed that if T has weak canonical bases then $\operatorname{wcb}_{\mathfrak{p}}(\bar{a}/B) = \operatorname{aker}((a_i)_{i<\omega}) := \{d \in \operatorname{acl}^{eq}((a_i)_{i<\omega}) : (a_i)_{i<\omega} \text{ is } d\text{-indiscernible }\}$, where $B = \operatorname{acl}^{eq}(B)$ and $(a_i)_{i<\omega}$ is a Morley sequence of $\operatorname{tp}(\bar{a}/B)$.

DEPENDENT THEORIES (See [HP]): Let T be dependent. In [HP], it is shown that a global type $p \in S(\mathcal{M})$ does not fork over an algebraically closed set $A \subseteq \mathcal{M}$ if and only if p is $\mathrm{acl^{eq}}(A)$ -invariant if and only if p is strongly Borel definable over $\mathrm{acl^{eq}}(A)$. (We say that p is strongly Borel definable over A if for any formula $\varphi(x,y)$, there exists a finite Boolean combination of partial types over A, say $D_{p,\varphi}(y)$, such that $\varphi(x,b) \in p$ if and only if $\models D_{p,\varphi}(b)$ for any p. It is also mentioned that a global type p is p is p invariant, then any Morley sequence of p over p has the same type over p.

ROSY GROUPS (See [EKP]): Let $(G(x), \cdot)$ be a rosy group over \emptyset and let $\bigcup^{\mathfrak{p}}$ be thorn-non-forking relation. There exists \mathfrak{p} -generic type $p \in S(A)$ for G over $A: p(x) \vdash G(x)$ and if $a, b \in G$ with $a \models p$ and $a \bigcup_{A}^{\mathfrak{p}} b$, then $b \cdot a \bigcup_{\emptyset}^{\mathfrak{p}} A, b$ holds. And then $\operatorname{tp}(b \cdot a/A)$ is also \mathfrak{p} -generic.

FOREIGNNESS and ALMOST INTERNALITY in ROSY THEORIES: Let

Date: August 29, 2008.

¹⁹⁹¹ Mathematics Subject Classification. 03C45.

Key words and phrases. Rosy dependent groups, internality.

東海大学理学部数学科 米田郁生 (IKUO YONEDA) DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY

 Σ be A-invariant family of partial types. $\bar{b} \models \Sigma | B$ denotes that $\operatorname{tp}(\bar{b}/B) \supseteq \Sigma_0$ for some $\Sigma_0 \subseteq \Sigma$. We say that $p \in S(A)$ is foreign to Σ if for any $B(\supseteq A), \bar{a}, \bar{b}$ such that $\bar{a} \downarrow^{\mathfrak{p}}_A B$ and $\bar{b} \models \Sigma | B$ we have $\bar{a} \downarrow^{\mathfrak{p}}_B \bar{b}$. We say that $p \in S(A)$ is Σ -internal if for any $\bar{a} \in p$ there exist $B \supseteq A$ and $\bar{b} \models \Sigma | B$ such that $\bar{a} \downarrow^{\mathfrak{p}}_A B$ and $\bar{a} \in \operatorname{acl}^{\operatorname{eq}}(B, \bar{b})$.

2. The proposition

Definition 2.1. Let G be a rosy group and let H be a Borel definable subgroup over B. We say that G/H is almost Σ -internal if for each $gH \in G/H$ there exist C and $D \models \Sigma | B$ such that $g \downarrow_B^{\mathfrak{p}} C$ and gH is $\operatorname{acl}^{eq}(B, C, D)$ -invariant.

Here, gH is an ultraimaginary element, we do not consider thorn-independence relation on ultraimaginaries, so we do not define $gH \, \bigcup_{B}^{\mathfrak{p}} C$.

Proposition 2.2. Let G be a rosy dependent group having weak canonical bases and a countable langage. Suppose that G is suficiently saturated and any global type (i.e. over G) does not \mathfrak{p} -fork over A if and only if it does not fork over A. Let p be a global \mathfrak{p} -generic type of G. If $p|\emptyset$ is not foreign to \emptyset -invariant family of partial types Σ , then there exists a Borel definable subgroup H such that $|G/H| \geq \omega$ and G/H is almost Σ -internal.

Proof. Note that p is $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$ -invariance: By the definition of \mathfrak{p} -generics, p does not \mathfrak{p} -fork over \emptyset . By our assumption p does not fork over \emptyset , so we see $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$ -invariance of p by dependence of G.

As $p|\emptyset$ is not foreign to Σ , there exist $A \subset G$, $a \models p|A$ and $\bar{b} \models \Sigma$ such that $a \not\perp_A^{\mathfrak{p}} \bar{b}$. We may assume $a, \bar{b} \downarrow_A^{\mathfrak{p}} G$. By our assumption we have $a, \bar{b} \downarrow_A^{\mathfrak{p}} G$, where $\downarrow^{\mathfrak{f}}$ denotes non-forking relation. Let $B := \operatorname{wcb}_{\mathfrak{p}}(a, \bar{b}/G) (= \operatorname{wcb}_{\mathfrak{f}}(a, \bar{b}/G))$.

Claim. Put $H = \{g \in G : g \cdot a, \bar{b} \equiv_B a, \bar{b}\}$ is a Borel definable (over B) subgroup of G.

 $H \leq G$: Let $g \in K$. As $g^{-1} \in G$, it holds that $a, \bar{b} = g^{-1} \cdot g \cdot a, \bar{b} \equiv_G g^{-1} \cdot a, \bar{b}$, we have $g^{-1} \in H$. Let $g, g' \in H$. As $g' \in G$, we have $g' \cdot g \cdot a, \bar{b} \equiv_G g' \cdot a, \bar{b} \equiv_G a, \bar{b}$, $g' \cdot g \in H$ follows.

The Borel definability of H over B: Let $\varphi(u \cdot x, \bar{y}, \bar{z}) \in L$ and put $q = \operatorname{tp}(a, \bar{b}/G)$. There exists a $D_{q,\varphi}(u, \bar{z})$ which defines a strongly Borel definable set over B such that $\varphi(d \cdot x, \bar{y}, \bar{c}) \in q$ if and if only $\models D_{q,\varphi}(d, \bar{c})$ for any $d \in G$, $\bar{c} \subset_{\omega} G$. As $H = \bigcap_{\varphi \in L} \{g \in G : D_{q,\varphi}(d, \bar{c}) \leftrightarrow D_{q,\varphi}(d \cdot g^{-1}, \bar{c}) \text{ for any } d \in G, \bar{c} \subset_{\omega} G\}$, the Borel definability of H over B follows.

Claim. $|G/H| \geq \omega$

As p is $\operatorname{acl^{eq}}(\emptyset)$ -invariant, take $(g_i)_{i<\omega}\subset G$ be the Morley sequence of p|B. As $a, \bar{b} \downarrow_B^{\mathfrak{p}}(g_i)_{i<\omega}$, $g:=g_j^{-1}\cdot g_i$ is \mathfrak{p} -generic over B, a, \bar{b} . So we have $g\cdot a\downarrow_B^{\mathfrak{p}}\bar{b}$.

BOREL DEFINABLE SUBGROUPS AND ALMOST INTERNALITY IN ROSY DEPENDENT GROUPS

As $a
ot \downarrow_B^{\mathfrak{p}} \overline{b}$, we see that $g \notin H$ as desired. Fix $g \in G$ and take a Morley sequence $(a_i)_{i < \omega} \subset G$ of p|B, g. Note that $g \perp_B^{\mathfrak{p}} (a_i)_{i < \omega}.$

Again take a Morley sequence $(g \cdot a_i', \bar{b}_i)_{i < \omega}$ of $\operatorname{tp}(a, \bar{b}/G) | B, g, (a_i)_{i < \omega}$. $(\operatorname{tp}(a, \bar{b}/G))$ is B-invariant.) As $(a_i)_{i<\omega}$ and $(g\cdot a_i')_{i<\omega}$ are Morley sequences of p|B,g,we have $(a_i)_{i<\omega} \equiv_{B,g} (g\cdot a_i')_{i<\omega}$. Let $(b_i')_{i<\omega} \subset G$ be such that $(a_i,b_i')_{i<\omega}$ is a Morley sequence of $\operatorname{tp}(a,\bar{b}/G)|B,h$. So $\operatorname{wcb}_{\mathbf{f}}(a,\bar{b}/G) = \operatorname{wcb}_{\mathbf{p}}(a,\bar{b}/G) \subseteq$ $\operatorname{acl}^{\operatorname{eq}}((a_i,b_i')_{i<\omega})$. Therefore $\operatorname{tp}(a,\bar{b}/G)$ is $\operatorname{acl}^{\operatorname{eq}}((a_i,b_i')_{i<\omega})$ -invariant and $b_i' \models$ $\Sigma | B$.

Claim. Let $\sigma \in \operatorname{Aut}(G/\operatorname{acl}^{\operatorname{eq}}((a_i, b_i')_{i < \omega}, B))$. Then $\sigma(gH) = gH$.

As $\operatorname{tp}(a, \bar{b}/G)$ is $\operatorname{acl^{eq}}((a_i, b_i')_{i < \omega})$ -invariant, we have $g \cdot a, \bar{b} \equiv_G \sigma(g) \cdot a', \bar{b}'$. As $\sigma(g) \in G$ and $\operatorname{tp}(a, \bar{b}/G)$ is B-invariant, we see $g \cdot a, \bar{b} \equiv_G \sigma(g) \cdot a', \bar{b}' \equiv_G \sigma(g) \cdot a'$ $\sigma(g) \cdot a, b,$ as desired.

We get $g \downarrow_B^{\mathfrak{p}}(a_i)_{i<\omega}, b'_i \models \Sigma|B \text{ and } gH \text{ is } \operatorname{acl^{eq}}((a_i, b'_i)_{i<\omega}, B)\text{-invariant.}$

- Question 2.3. (1) Let \mathcal{M} be a sufficiently saturated rosy model and any global type (i.e. over M) does not p-fork over A if and only if it does not fork over A. Then is M simple?
 - (2) Can we find a Borel definable NORMAL subgroup H as in the Proposition?
 - (3) Can we find a Σ -connected component G^{Σ} in a Borel definable way? (G^{Σ} want to be foreign to Σ , connected and invariant under any definable automorphism as in [W].)
 - (4) Does any superrosy field has monomial U^p-rank? If so, Nubling's proof [N] that any supersimple field is n-ample for any $n < \omega$ works for any superrosy field.

REFERENCES

- [A] H.Adler, Explanation of independence, Ph.D thesis, Freiburg, 2005, arXiv:math.LO/0511616 v1, 24 Nov 2005.
- [EKP] C.Ealy, K.Krupinski, A.Pillay, Superrosy dependent groups having finitely satisfiable generics, Annals of Pure and Applied Logic (151), 1-21, 2008.
- [HP] E.Hrushovski, A.Pillay, On NIP and invariant measures, arXiv:math.LO/0710.2330v1, 11 Oct 2007.
- [N] H.Nubuling, Reducts and expansions of stable and simple theories, Ph.D thesis, the University of East Anglia, 2004.
- [W] F. Wagner, Stable groups, London Mathematical Society Lecture Note Series, 240, Cambridge University Press, Cambridge, 1997.

DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY, 1117 KITAKANAME, HIRAT-SUKA, KANAGAWA, 259-1292, JAPAN

E-mail address: ikuo.yoneda@s3.dion.ne.jp