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1. Introduction

1'1.

Recently in [5] and [6] with M. Kashiwara, the author presented an analogue of the LLTA con-
jecture for the affine Hecke algebra of type B. In [6], we considered U,(g) and its Dynkin diagram
involution 6 and constructed an analogue By(g) of the reduced v-analogue B, (g) (for the definition,
see Definition 2.9 below). We gave a By(g)-module V,()\) for a dominant integral weight )\ such that
6(A) = A, which is an analogue of the B,(g)-module U; (g) (for the definition, see Definition 2.10
below). We defined the notion of symmetric crystals and conjectured the existence of the global basis.
In the case g = gl , I = Z.44, 6(¢) = —i and )\ = 0, we constructed the PBW type basis and the lower
(and upper) global basis parametrized by the -restricted multi-segments. We conjectured that irre-
ducible modules of the affine Hecke algebras of type B are described by the global basis associated
to the symmetric crystals.

In the paper [4], we construct the lower global basis for the symmetric crystals by using a geometry
of quivers (with a Dynkin diagram involution). Hence for any symmetric quantized Kac-Moody alge-
bra U, (g), we establish the existence of a crystal basis and a global basis for V3(0). This is analogous
to Lusztig’s geometric construction of U; (g) and its lower global basis.

1.2'

Lusztig’s theory is summarized as follows.

Let g be a symmetric Kac-Moody algebra and I an index set of simple roots of g. For a fixed set
of arrows (2, we consider (I,Q) as a (finite) oriented graph. We call (I, Q) a quiver. For an I-graded
vector space V, we define the moduli space of representations of quiver (1,2) by

Ev.a= @ Hom(V;, V;).
PRIV
The algebraic group Gv = [],.; GL(V;) acts on Ev . Lusztig introduced a certain full subcate-
gory Qv q of 2(Ev q) where 2(Ey q) is the bounded derived category of constructible complexes of
sheaves on Ev q (for the definition, see section 3). Let K(2v q) be the Grothendieck group of 2v q.
He constructed the induction operators f; and the restriction operators e} on the Grothendieck group
Kq = &vK(Z2v,q), where V runs over the isomorphism classes of I-graded vector spaces. He proved
the following theorem. '

Theorem 1.1 (Lusztig).

(i) The operators e and f; define the action of the reduced v-analogue B,(g) of g on K, ®z(v,v-2]Q(v),
and Kq ®zj, -1 Q(v) is isomorphic to U, (g) as a B,(g)-module. The involution induced by the
Verdier duality functor coincides with the bar involution on U; (g).

(ii) The simple perverse sheaves in Py, 2v q give the lower global basis of U; (g).
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1.3.

This paper is a summarized version of [4].

We introduce the notion of #-quivers. This is a quiver (/,Q2) with an involution 8 : I — I (and
6 : Q@ — Q) satisfing some conditions (see Definition 4.1). This notion is partially motivated by Syu
Kato’s construction [11] of the irreducible representations of the affine Hecke algebras of type B.

We also introduce the 6-symmetric I-graded vector spaces. This is an I-graded vector space V =
(Vi)ier endowed with a non-degenerate symmetric bilinear form such that V; and V; are orthogonal
if j # 6(i). For a 6-quiver (I,Q2) and a §-symmetric I-graded vector space V, we define the moduli
space °Ey q of representations of (I, Q) adding a skew-symmetric condition on Ev,q with respect to
the involution 6.

Similarly to Lusztig’s arguments, we consider a certain full subcategory %2v  of 2(°Evy q) and
its Grothendieck group °Kv . We define the induction operators F; and the restriction operators E;
on °Kq := &vKv q where V runs over the isomorphism classes of the #-symmetric I-graded vector
spaces. We prove the following main theorem which is an analogous result of Lusztig’s geometric
construction.

Theorem 1.2 (Theorem 5.12). °Kg ®zw,v-1] Q(v) = Vp(0) as By(g)-modules. The simple perverse
sheaves in °Kq give a lower global basis of V(0).

Though Lusztig proved Theorem 1.1 using some inner product on K, we prove Theorem 1.2 using
a criterion of crystals (Theorem 2.14) and certain estimates for the actions of E; and F; on simple
perverse sheaves (Theorem 5.3).
Theorem 5.3 and Lemma 5.5 are the most essential points of our proof of Theorem 1.2. But we
omit the proof of them. But in the latter of section 5, we can know how to use them for our proof.

Remark 1.3. We give two remarks on a difference from the "folding” procedure and an overlap with
perverse sheaves arising from graded Lie algebras by Lusztig.

(i) Our construction is different from Lusztig’s construction, "Quiver with automorphisms”, in his
book [15, Chapter.12-14].

He considered actions a : I — I and a : H — H induced from a finite cyclic group C gen-
erated by a. Put an orientation Q such that out(a(h)) = a(out(h)) and in(a(k)) = a(in(h)). He
said this orientation "compatible”. Let V* be the category of I-graded vector spaces V such that
dimV; = dim V) for any ¢ € I. For V € V%, a induces a natural automorphism on Ev n and
a functor a* : 2(Ev o) — 2(Evn). He introduced "C-equivariant” simple perverse sheaves
(B, ), where B is a perverse sheaf and ¢ : a* B = B. Then he proved that the set Livey. By g of
C-equivariant perverse sheaves gives a lower global basis of U (g). Here g has a non-symmetric
Cartan matrix which is obtained by the "folding” procedure with respect to the C-action on I.

But in our construction, a §-orientation is not a compatible orientation. Moreover the most es-
sential difference is that his construction has no skew-symmetric condition in our sence. Hence
the set of simple perverse sheaves @y,  and the space °Kq, ®zfv,v-1] Q(v) = Vp(0) are different
from By o and U (g), respectively. The detailed crystal structure of V5(0) is unknown except
for the case g = gl., I = Z,4a and 6(i) = —i in [6].

(ii) In some special case, the lower global basis which constructs in this paper is obtained by Lusztig
([16] and [17]). Let us consider the case G = SO(2n,C). Let g be the Lie algebra of G and T a
fixed maximal torus of G. Set €3;_; (1 < ¢ < n) the fundamental characters of T. Asuume g € C*
is not a root of unity. We choose a semisimple element s € T such that €;;_,(s) € g%44.20 for any
i and put dz;_1 = {j|e2;-1(8) = ¢*~'}. Then the centralizer G(s) of s acts on

g2 = {X €5 sXs™! = X}

which has finitely many G(s)-oribits. Lusztig considered the category 2(g;) of semisimple G(s)-
equivariant complex on g; and constructed the canonical basis B(g;) of K(g;) which is the
Grothendieck group of 2(g2).

On the other hand, let us consider the §-symmetric vector space V such that wt(V) = Yo d2im1(02io+



o_9;41) and the following #-quiver of type A,, and the #-orientation 0:

o< 5 ...— %0 o ) o) ) [ o

—2n+1 -5 -3 -1 1 3 5 2n -1

In this case, we have G(s) = [, GL(d2i—1) = °Gv and g; = °Ey q. Thus the set °%®y g of
simple perverse sheaves conincide with B(gz).

Remark 1.4. After writing the paper [4], the author found the notion of #-quivers has been already
introduced by Derksen-Weyman in [3].
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2. Preliminaries

2.1. Quantum enveloping algebras
2.1.1 Quantum enveloping algebras and reduced v-analogue

We shall recall the quantized universal enveloping algebra U,(g). In this paper, we treat only the
symmetric Cartan matrix case. Let I be an index set (for simple roots), and Q the free Z-module
with a basis {a;}icr. Let (¢, +) : Q X @ — Z be a symmetric bilinear form such that (o4, ;) = 2 and
(04, 5) € Zgo for i # j. Let v be an indeterminate and set K := Q(v). We define its subrings Ag, Ao
and A as follows. :

Ao = {feK| fisregularatv =0},
A, = {feK| fisregularatv = oo},
A = Q[u,v1].

Definition 2.1. The quantized universal enveloping algebra U,(g) is the K-algebra generated by
elements e;, f; and invertible elements t; (i € I) with the following defining relations.

(1) The t;’s commute with each other:
(2) tje; t;.'l = v(@%) e, and tjf,-tj”l =ov~(@%) f; foranyi,j eI

t— ¢
v—ov-1

3) [ei,fj] = 5,']' for 2, _] el

(4) (v-Serre relation) For i # j,
b b
D (Drefeel"™ =0, 3o (-1F AR £V =0,
k=0 k=0
Here b=1 - (a;,a;) and

e = eb/lkl!, 0 = fE/RL!, (Klo = (0% —o%) /(v — oY), [K]! = [L]y--- [K], -

Let us denote by U (g) the subalgebra of U,(g) generated by the f;’s.
Let ¢] and e} be the operators on U, (g) defined by

(ela)t; — t;7ela

fesya) = S LEE (0 U (g)).



These operators satisfy the following formulas similar to derivations:
e;(ab) = (eja)b+ (Ad(t;)a)eld.
The algebra U, (g) has a unique symmetric bilinear form (+, «) such that (1,1) = 1 and
(eia,b) = (a, fib) for any a,b € U, (g).
It is non-degenerate. The left multiplication operator f; and ¢! satisfy the commutation relations
eifj = v fiel 4 6,4, (1)
and the e/’s satisfy the v-Serre relations (Definition 2.1(4)).

Definition 2.2. The reduced v-analogue By (g) of g is the Q(v)-algebra generated by €, and f; which
satisfy (1) and the v-Serre relations for €, and f; (i,j € I) as the defining relations.
2.1.2 Review on crystal bases and global bases of U~
Since e; and f; satisfy the v-boson relation, any element a € U (g) can be uniquely written as
a= Zfi(")an with eja, = 0.

n>0

Here f{™ = [—::]3—'-

Definition 2.3. We define the modified root operators €; and f, on U, (g) by
ga=3 f("Van, fa=3 f"Van.

n>1 n>0

Theorem 2.4 ([8]). We define

L(c0) = > Aofufu-1cUs(a),
£20, 13,...,i,€1
B(oo) = {fu--fi-l modvL(00)| €2 0,0, ,is € I} C L(00)/vL(co).
Then we have

(1) &L(oo) C L(c0) and fiL(oo0) C L(o0),

(2) B(oo) is a basis of L(oo)/vL(oco),

(3) f:B(c0) C B(co) and & B(co) C B(co) U {0}.

We call (L(c0), B(c0)) the crystal basis of U; (g).

Definition 2.5. We define ¢;(b) := max{m € Z>o|elb # 0} for i € I and b € B(oo).

Let — be the automorphism of K sending v to v~!. Then A, coincides with A..
Let V be a vector space over K, L, an A-submodule of V, L., an A,.- submodule, and V, an
A-submodule. Set £ := LoN Ly NVa.

Definition 2.6 ([8]). We say that (Lo, Lo, Va) is balanced if each of Lo, Lo and Va generates V as a
K-vector space, and if one of the following equivalent conditions is satisfied.

(1) E — Lo/vLg is an isomorphism,
(2) E — Loo/v~'L is an isomorphism,
(3) (LoNVa)® (v Lo NVa) — Vais an isomorphism.

(4) Ag®QE — Lo, A ® E — Loo, A ®q E — Va and K ®q E — V are isomorphisms.



Let — be the ring automorphism of U, (g) sending v, ;, €;, f; to v=1, 7%, e, fi.
Let U,(g)a be the A-subalgebra of U,(g) generated by el(-") , f,.(") and ¢;. Similarly we define
Uy (g)a-
Theorem 2.7. (L(oo), L(co)™,U; (g)a) is balanced.
Let
G"": L(c0)/vL(00)~E := L(00) N L(c0)™ N U (g)a

be the inverse of E—L(c0)/vL(cc). Then {G"¥(b) | b € B(co)} forms a basis of U, (g). We call it a

(lower) global basis. It is first introduced by G. Lusztig ([13]) under the name of “canonical basis” for
the A, D, E cases.

Definition 2.8. Let{G"P(b) | b € B(co)}be the dual basis of {G"¥(b) | b € B(co)} with respect to the
inner product («, +). We call it the upper global basis of U, (g).

2.2. Symmetric Crystals

Let 6 be an automorphism of I such that 62 = id and (6(iy, @6(5)) = (@4, ;). Hence it extends to an
automorphism of the root lattice Q by 6(«c;) = ag(;), and induces an automorphism of U, (g).

Definition 2.9. Let By(g) be the K-algebra generated by E;, F,, and invertible elements T;(i € I)
satisfying the following defining relations:

(i) the T;’s commute with each other,

(i) Tysy = T; for any i,
(iil) TyE;T7 = o(® + 202D B and T, FyT = o(®+ 2= @) F for i, € I,

(v) E;F; = v~ (*®) FE; + (8; 5 + Og(iy 5T3) for 4,5 € I,

(V) the E;'s and the F}’s satisfy the v-Serre relations.

We set F{™ = Fr/[n]y.
Proposition 2.10 ([6, Proposition2.11.]). Let
A€ Py :={A€ Hom(Q,Q) | AM(e;) € Z>¢ forany i€ I}

be a dominant integral weight such that 9()\) = )\

(i) There exists a By(g)-module Vy(\) generated by a non-zero vector ¢, such that

(a) E;¢=0foranyi€ I,
(b) Tigr = vl Ng, forany i€ I,
©) {ueVo(\) | Bu=0foranyic I} =Kg¢y.

Moreover such a V() is irreducible and unique up to an isomorphism.

(ii) There exists a unique non-degenerate symmetric bilinear form («, « ) on Vy()) such that (dx,02) =
1 and (E;u,v) = (u, Fyv) for any i € I and u,v € Vp(\).

(iii) There exists an endomorphism — of V4()\) such that ¢ = ¢, and av = av, Fv = Fioforanya € K
and v € V().

Hereafter we assume further that

there is no i € I such that 6(i) = 1.

In [6], we conjectured that V3()\) has a crystal basis. This means the following. Since E; and F;
satisfy the v-boson relation E;F; = v~ (®+*) F; E; + 1, we define the modified root operators:

Ei(u) - Z Fi(n—l)un and E(u) — Z Fi(n+1)um

n>1 n>0



when writing u = ¥, F{”un with Eju, = 0. Let Lg()) be the Ag-submodule of V()\) generated by
F,,---F,¢» ¢>0andiy,...,i; € I), and let Bg()) be the subset

{le .. F,¢x mod vLe(N) | £> 0,4y,...,5¢ € I}

of Lg(\)/vLe ().
Conjecture 2.11. Let ) be a dominant integral weight such that 6()\) = ).
(1) FiLe()\) € Le(A) and E;Ls()) C Ls()),
(2) Bg()\) is a basis of Lg(\)/vLe(N),
(3) F;Bg()) C Bs()), and E;Bs()) C Be(2) U {0},
(4) FE;(b) = b for any b € Bg()) such that E;b # 0, and E;F;(b) = b for any b € Be()).
Moreover we conjectured that V() has a global crystal basis. Namely we have
Conjecture 2.12. (Ls()), Lo()), Vo(\)2¥) is balanced. Here Va(\)8Y := U (g)a P
Example 2.13. Suppose g = gl_, the Dynkin diagram involution 8 of I defined by 6(i) = —i for

1 €I = Zygq.
]

e

o o o o

-5 -3 -1 1 3 5

And assume A = 0. In this case, we can prove

Vo(0) 2 US /D Uy (fi — fay)-

iel
Moreover we can construct a PBW type basis, a crystal basis and an upper and lower global basis on
Vs(0) parametrized by "the 0-restricted multisegments”. For more details, see [6].
2.3. Criterion for crystals

Let Kle, f] be the ring generated by e and f with the defining relation ef = v=2fe + 1. We call this
algebra the v-boson algebra. Let P be a free Z-module, and let o be a non-zero element of P. Let M
be a Kle, f]-module. Assume that M has a weight decomposition M = ®¢cpM; and eMy C My, and
fMy C M)_,. Asuume the following finiteness conditions:

for any )\ € P, dim M < oo and M, = 0 for n > 0.

Hence for u € M, we can write u = Engo f™u, with eu, = 0. We define endmorphisms € and f of M

by
eu = Z f(n_l)um fu = Z f(n+l)un-

n>1 n>0

Let B be a crystal with weight decomposition by P in the following sense. We have wt: B — P,
f:B— B,e: B— BU{0} and e: B — Zy satisfying the following properties, where By, = wt~1()\):

(i) fBx C Br_q and €By, C By, LI {0} for any \ € P,

(i) feb=1biféb#0,and&o f =idp,
(iii) for any A € P, B, is a finite set and By yno = ¢ forn > 0,
@iv) £(b) = max{n > 0| é"b # 0} for any b € B.



Set ord(a) = sup{n € Z | a € v Ay} for a € K. We understand ord(0) = oo.
Let {G(b)}sep be a system of generators of M with G(b) € M, (5). Asuume that we have expres-

sions:
eG(b) = Y EpyG(b), fG(b) = FuG(®)
veB beB
Now consider the following conditions for these data, where £ = £(b) and £’ = ¢(V'):

ord(Fppr) > 1 -2, . 2)
ord(Ep,p) > —¢, 3)
Fy 7 € v™4(1 + vAo), 4)
Eb,]'b € Ul—l(l +vAp), (5)
ord(Fyp) >1—¢ if€ < ¢ and b/ # fb, (6)
ord(Epp) > — if £ < £ +1 and b # &b. )

Theorem 2.14 ([6, Theorem 4.1, Corollary 4.4]). Assume the conditions (2)«(7). Let L be the Ao-
submodule ", p AoG(b) of M. Then we have €L C L and fL C L. Moreover we have

€G(b) = G(eb) mod vL, FG(b)=G(fb) mod vL
for any b € B. Here we understand G(0) = 0.

In [6], this theorem is proved under weaker assumptions.

2.4. Perverse Sheaves
24.1 Perverse Sheaves

In this paper, we consider algebraic varieties over C. Let 2(X) be the bounded derived category
of constructible complexes of sheaves on an algebraic variety X. For a morphism f: X — Y of
algebraic varieties X and Y, let f* be the inverse image, f; the direct image with proper support and
D: 2(X) — 2(X) the Verdier duality functor. Let (°P2<°(X),?22°(X)) be the perverse t-structure
and Perv(X):=P2<0(X)NP22°(X). Let °H*(+ ) be the k-th perverse cohomology sheaf. We say that an
object L in (X)) is semisimple if L is isomorphic to the direct sum @©xPH*(L)[—k| and if each PH*(L)
is a semisimple perverse sheaf. Assume that we are given an action of a connected algebraic group
G on X. A semisimple object L in 2(X) is said to be G-equivariant if each ?H(L) is a G-equivariant
perverse sheaf. We denote by 1x the constant sheaf on X.

2.4.2 Fourier-Sato-Deligne transforms

Let E — S be a vector bundle and E* — S the dual vector bundle. Hence C* acts on E and E*. We
say that L € 2(F) is monodromic if H7(L) is locally constant on every C*-orbit of F. Let Ziono(E)
be the full subcategory of 2(F) consisting of monodromic objects. Then we can define the Fourier
transform

q’E/S: 9mono(E) — Dmono(E™)-
2.5. Quivers
Let I and o;’s be as in 2.1.

Definition 2.15. A double quiver (I, H) associated with the symmetric Cartan matrix is a following
data:

(i) a set H,
(ii) two maps out,in: H — I such that out(h) # in(h) for any h € H,
(iii) an involution h — h on H satisfying out(k) = in(h) and in(h) = out b,



(iv) #{h € H|out(h) = i,in(h) = j} = — (a4, ;) for i # ;.

An orientation of a double quiver (I, H) is a subset Q of H such that QN = ¢ and QU = H. For
an orientation ), we call (I,Q) a quiver.
For a fixed orientation ), we call a vertex i € I a sink if out(h) # i for any h € Q.

Definition 2.16. Let V be the category of I-graded vector spaces V = (V;); with morphisms being
linear maps respecting the grading. Put wt(V) = 3_,.;(dim V;)a.

Let S; be an I-graded vector space such that wt(S;) = a; .
Definition 2.17. For V € V and a subset Q of H, we define

Ev,a: = @ Hom(Vou(n), Vineh)-
heN

The algebraic group Gv = [[;c; GL(V;) acts on Ev q by (g9,z) — gr where (gz) = gin(h)xhg;ult(h).
The group (C*)% also acts on Ev q by z, — cpzy (h € Q, ¢, € C*).
For z € Ev q, an I-graded subspace W C V is z-stable if Zh(Wout(n)) € Win(n) for any h € Q.

Note that Eg,q 2 {pt}.

3. A Review of Lusztig’s geometric construction

We give a quick review on Lusztig’s theory in [13] and [14] (cf. [15]). For a sequence i = (i1,...,in) €
I'™ and a sequence a = (aj,...,am) € Z3,, a flag of type (i,a) is by definition a finite decreasing
sequence F = (V = FO D F! 5 ... > F™ = {0}) of I-graded subspaces of V such that the I-graded
vector space F¢~! /F¢ vanishes in degrees # i, and has dimension a, in degree i,. We denote by .77',,.;9

the set of pairs (z, F) such that z € Ey o and F is an z-stable flag of type (i,a). The group Gy acts
on Fi a;n. The first projection m a: Fi a0 — Ev o i8 8 Gy-equivariant projective morphism.

By the decomposition theorem [2], Li a0: = (mi,a)1(1 ;.l_m) € 2(Ev ) is a semisimple complex. We
define Py q as the set of the isomorphism classes of simple perverse sheaves L ¢ Z(Evy q) satisfying
the following property: L appears as a direct summand of L; q.q[d] for some d and (i,a). We denote
by 2v q the full subcategory of 2(Ev q) consisting of all objects which are isomorphic to finite direct
sums of complexes of the form L[d] for various L € Py q and various integers d. Any complex in
Pv ., is Gy x (C*)*-equivariant.

Let T, W,V be I-graded vector spaces such that wt(V) = wt(W)+wt(T). We consider the following
diagram

Era xEwga <2 Eb 2, E(—') P Ev a.

Here Ef) is the variety of (z, W) where z € Ev,n and W is an z-stable I-graded subspace of V such
that wt W = wt W. The variety Ef; consists of (x, W,o%W,¢T) where (z, W) € Ej, oW: W =« W,
and ¢T: T = V/W. The morphisms p;,p; and ps are given by p;(z, W,oW,¢T) = (z|p,zlw),
p2(z, W, oW, oT) = (z,W) and p3(x, W) = z. Then p, is smooth with connected fibers, p; is a prin-
cipal Gt x Gw-bundle, and p3 is projective. For a Gr-equivariant semisimple complex K1 and a
Gw-equivariant semisimple complex Kw, there exists a unique semisimple complex K" satisfying
pi(KT R Kw) = p3K”. We define K1 * Kw: = (pa)i(K"”) € 2(Ev ).

For an I-graded subspace U of V such that V/U = T, we also consider the following diagram

Ergq x Eyq <2—E(U,V)o——> Eva.

Here E(U, V)q is the variety of z € Ev q such that U is z-stable. For K € 2(Ev q), we define
ReST‘U(K) L= ng*(K).

We define K'v q as the Grothendieck group of 2y q. It is the additive group generated by the
isomorphism classes (L) of objects L € 2v q with the relation (L) = (L') + (L") when L = L' @ L".
The group Kv q has a Z[v,v!|-module structure by v(L) = (L[1]) and v=}(L) = (L[-1]) for L € 2y q.



Hence, Kv g is a free Z[v,v~!]-module with a basis {(L)|L € Pv o}. We define Kq: = @y Kva
where V runs over the isomorphism classes of I-graded vector spaces. Recall that S; is an I-graded
vector space such that wt(S;) = a;. Then we can define the induction f;: Kw.a — Kv,q and the
restriction e}: Kv o — Kw,q by

fi(K):

Then Lusztig’s main theorem is stated as follows.

dimW.v+E‘ Q .dimW,« -dimW,-+Z, o . dimW
=v i—=j =g

(1s, * K), e€(K): =v ’ Resg; v(K).
Theorem 3.1 (Lusztig).

(i) The operators € and f; define the action of the reduced v-analogue B,(g) of gon Kq ®z[v,v-1]Q(v).
The B,(®)-module Kq ®zy,,-1] Q(v) is isomorphic to U, (g). The involution induced by the
Verdier duality functor coincides with the bar involution on U (g).

(ii) The simple perverse sheaves in Liy Py q give a lower global basis of U; (g).

4. Quivers with an Involution 4

4.1. Quivers with an involution ¢
Definition 4.1. A double 9-quiver is a data:

(1) a double quiver (I,H),

(2) involutions 0: I — I'and 6: H — H,
satisfying

(@) out(6(h)) = 6(in(h)) and in(8(h)) = 6(out(h)),
(b) If 6(out(h)) = in(h), then 6(h) = h,

(© 6(R) = 8(h),

(d) Thereis noi € I such that 6(i) =1

A @-orientation is an orientation of (I,H) such that ) is stable by 9. For a 6-orientation 2, we call
(1,Q) a 6-quiver.
From the assumption (d), any vertex i is a sink with respect to some §-orientation Q.

Example 4.2, We give two ¢-orientations for the case of Example 2.13. The vertex 1 is a sink in the
right example.

] ]

PN m

""" =P O e O P O —Im O P O B O B s cerris =3 0 —e O W O~ O W O e O P -,
-5 -8 -1 1 3 5 -5 -3 -1 1 3 5

Example 4.8. Our definition of a §-quiver contains the case of type A&l). The following three figures
are three f-orientations in this case.

[ 6 ]
0o¥F—"o, oo, oI—Zo

Definition 4.4. A -symmetric I-graded vector space V is an I-graded vector space endowed with
a non-degenerate symmetric bilinear form (e, +): V x V — C such that V; and V; are orthogonal if
j # 6(3). For an I-graded subspace W of V, we set

Wi ={veV|(v,w) =0forany we W}.
Hence (W+)g) & (Vi/ W)™
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Note that if W > W+, then W/W+ has a structure of §-symmetric /-graded vector space. Note
that two #-symmetric I-graded vector spaces with the same dimension are isomorphic.

Definition 4.5. Let (I, H) be a 6-quiver. For a 6-symmetric I-graded vector space V and a 0-stable
subset Q) of H, we define

*Eva: = {z € Eva| zen) = —tzn € Hom(Vi(in(ay), Voout(ny)) for any h € Q}.

The algebraic group °Gy: = {g€ Gy | tg; ' = ge(s) for any i} naturally acts on °Ey q.
Set (C*)¥0: = {(cn)nen | cn € CX and co(ny = cn}. The group (C*)*€ also acts on *Evy g by z —
crxy (h € Q). These two actions commaute with each other.

Definition 4.6. For a §-symmetric I-graded vector space V, a sequence i = (i1,...,i2m) € I*™ such
that 0(i¢) = iam—r+1 and a sequence a = (aj,...,azm) € ZZ, such that azm-—¢+1 = ag, we say that a flag
of I-graded subspace of V

F=(V=F'OF!'>...>0F" O>F™! >...5F = {0})

is of type (i,a) if

(i) dim(F¢-1/F%); = { g‘ E: ; ;3 ,

(i) F2m—¢ = (F&)L,
Then we have wtV = 3~ o5, arcr;,. We denote by °F; o the set of flags of type (i, a).

For z € °Ev q, a flag F of type (i,a) is z-stable if F! (£ = 1,...,2m) are z-stable. We define
" Fian: = {(z,F) € By q x °Fia | F is z-stable}.

The group °Gv naturally acts on °F, o and ° F; a.0.

Note that z: V — V = V* in °Ey o may be regarded as a skew-symmetric form on V, and the
condition that F is z-stable is equivalent to the one z(F¢, F?™~¢) = 0 for any ¢.
The following lemma is obvious.

Lemma 4.7. The variety ° F; o.q) is smooth and irreducible. The first projection ®m; o: ° Fi a0 — ’Ev.a
i8 °Gvy x (C*)%8-equivariant and projective.
4.2, Perverse sheaves on °Ey g

Let Q2 be a f-orientation. By Lemma 4.7 and the decomposition theorem [2],
Lian: = Cmal(log )
is a semisimple complex in 2(°Ev q).

Definition 4.8. We define Py q as the set of the isomorphism classes of simple perverse sheaves L in
P (°Ev q) satisfying the property: L appears in ®Li,a;0(d] as a direct summand for some integer d and
(i,a). We denote by 92v q the full subcategory of 2(°Ev ) consisting of objects which are isomorphic
to finite direct sums of L|d) with L € %Py q and d € Z.

Note that any object in %2y q is PGy x (C*)?®.equivariant.

4.3. Multiplications and Restrictions

Fix 0-symmetric and I-graded vector spaces V and W, and an I-graded vector space T such that
wt(V) = wt(W) + wt(T) + 6(wt(T)).
We consider the following diagram

4% P2 p3

‘A "
Eﬂ

Erq x°Ewgq > B} >%Evq -
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Here °EY, is the variety of (z, V) where « € °Ev g and V is an z-stable I-graded subspace of V such
that V 5 V4 and wt(V/V) = wt(T), and we denote by °Ef, the variety of (z, V, oW, »T) where (z, V) €
YEg, oW : W-5V/VL is an isomorphism of §-symmetric I-graded vector spaces and ¢T: T-"5V/V

is an isormorphism of I-graded vector spaces. We define p;, p, and ps by p; (2, V, oW, ©T) = (2T, zW),
pa2(z, V, oW, 0T) = (2,V) and p3(x, V) = z. Here the morphism zW, zT are defined by

—_1 -1
-T):V = SOivx:Eh) o (zlyyvi)no ‘PXXc(h), -’E'}f = wﬁ(h) ° (xIV/V)h o ‘:%Tut(h)-

Then p; is smooth with connected fibers, p, is a principal Gt x ?Gw-bundle and ps is projective.

For a Gr-equivariant semisimple object Kt € 21, and a ?Gw-equivariant semisimple object
Kw € %w q, there exists a unique semisimple object K” € 2(°E}) satisfying p} (Kt R Kw) = piK".
Definition 4.9. We define Kt * Kw: = (pa)(K") € 2(°Ev.q).

Next, we fix an I-graded vector space U such that
VoUDU+ {0}

We also fix an isomorphism W = U/U+ as §-symmetric I-graded vector spaces and an isomorphism
T = V/U as I-graded vector spaces. We consider the following diagram

Erq x Bw,g < E(W, V)o——>%Ey q

where
E(W,V)q = {z € °Ev q | U is z-stable}

and p(z) = (zT,zWV), t(z) = z.
Definition 4.10. For K € 2(°Ey q), we define Resy w(K): = pu*(K).

Proposition 4.11. Let V and W be 8-symmetric I-graded vector spaces such that wt'V = wt W +
a; + agiy. For a € Zyo, let S¢ be an I-graded vector space such that wt(S¢) = ac;.

(i) Suppose °Lyaq € 2(°Ew ). We have
1sg * °Lian = L(i1,6(9),(a.m0)-
for a € Zso.

(ii) Suppose °L; a0 € 2(°Ev o) and a, > O for all £ such that iy = i. For 1 < k < 2m such that iy =i,

we define a® = (a{®, ... o) by ol = as — S0k — 62.2m—k+1 and we set
Mt = T e X
ie=i,e<k k<t,heiout(h)=i,in(h)=i

Then we have
Ress, w(°Li,ai0) = @D °Ls a0l —2Mi k(i,a®)].

T =t

Lemma 4.12. Let T! and T? be I-graded vector spaces. Let W and V be 6-symmetric I-graded vector
spaces such that wt'V = wt T! + §(wt T?) + wt T? + 6(wt T2) 4+ wt W.

For Gri-equivariant semisimple objects L; € 2(Eys o) (j = 1,2) and a * Gw-equivariant semisim-
pleobejet L € D(°Ew q), we have (L1%La)xL = L1%(LyxL). Here, Lyx L, is the Lusztig’s multiplication
defined in Section 3.



12

4.4. Restriction functor F;, Induction functors F, and Fi(“)

We consider the following diagram

n P2 Pa
ET’Q x 6Ew,n eE’n oE;-,z 9Evyn .

Lemma 4.18. Suppose T = S;. Let dy, and d, be the dimension of the fibers of p, and ps, respectively.
The we have

dp, — dp, = dim°Ef} — dimBw g =dimW;+ 3 dim Wiy
he: out(h)=i
Definition 4.14.
(i) For T = S; anda® Gw-equivariant semisimple object K in 92w q, we define the operator F; by
Fi(K): = (1s, * K) [dr]

where
dp, =dp, —dp, =dim Wi+ D dim Wipg.
heq: out(h)=i

(ii) For T = Si, we define the functor E;: 9(°Ev,a) > 2(°Ew ) by
Ei(K): = Ress, w(K)|[dg]
where
dg, =dp, —2dimW; = —dmW; + 3 dimWiag,).
hefl: out(h)=i

By Prposition 4.11, E; and F; induce the restriction functor 92y o — %2w q, induction functor
2w a — %2y q, respectively.

Definition 4.16. For a € Z>, let W and V be 6-symmetric I-graded vector spaces such that wt(V) =
wt(W) + a(a; + ag(i)). For a °Gw-equivariant semisimple object L € %Py q, we define Fi(“) (L): =
1gz * L[d,] where

ala—-1)
2

de =a (dimWi + dimWin(h)) + #{h € Q| out(h) = i,in(k) = 6(3)}.

hef: out(h)=i
We call F(*) the a-th divided power of F;.

By Proposition 4.11(1), we have the following lemma.
Lemma 4.16. The object °Lia;q is isomorphic to F{*VFP ... F{*™) 1, up to shift.

Lemma 4.17. The operator Fi(“) gives a functor 2w a0 — %2y q and satisfy F,~F,-(°) =F%F, = [a+
1]'0F‘¢(a+1)-

4.5. Commutativity with Fourier transforms

For two §-orientations Q and ¥, we have Q\Q’ = Q'\Q. Then we can regard ’Ev g — ‘Ev gnq and
*Ev.a — °Ev anq as vector bundles and they are the dual vector bundle to each other by the form
Cheava tr(zazy) on °Ev o x °Ev ,q.. We say that L € 9(°Ey q) is (C*)™%-monodromic if H7(L) is
locally constant on every (C*)™%-orbit on *Ev q. Let 2(cx)0.0 _mono (*Ev,q) be the full subcategory of
2(°Ey q) consisting of (C*)®¢-monodromic objects. Hence we have the Fourier transform

ér\zln : @(C")n-"—mono(eEV,n) - @(C" )“"’—mono(aEV.n’)'

The following lemma is obvious.
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Lemma 4.18. For three §- orientations Q, Y and V', we have
(I)?/,Q" QQQ Sa*o q)V Q(Cx)nv"—mono(eEV,Q) - Q(CX)"'O—mono(eEV,Q”)

where a : °Ey qv — "By qr is defined by zj, — —z or x5, according that h € Q"N Y N Q or not. In
particular, Dcxy8.6_mono (*Ev ) does not depend on .

Since any object in %2y g is /Gy x (C*)??-equivariant, it is a monodromic object. By the com-
mutativity between E;, F; and (C*)™%-action, the functors E; and F; preserve the category (C*)™f-
monodromic objects.

Theorem 4.19. Let V and W be 0-symmetric I-graded vector spaces such that wt V = wt W + o; +
ag(i), and 2 and ' be two 0-symmetric orientations.

(1) Let F? and F®' be the induction functors with respect to Q2 and Y, respectively. For a °Gw-
equivariant semisimple obejct L € 2w q, we have Y o F(L) = FY o Q% (L).

(2) Let E® and E;%¥ be the restriction functors with respect to ) and ', respectively. For a /G-
equivariant semisimple obejct K € 2w q, we have &Y o E(K) = E* o % (K).

(3) The Fourier transform <I>‘m gives an isomorphism between Py o and Py o and an equivalence
between %2y q and 9v q.

Similarly, we can prove the commutativity of F(“)’s and the Fourier transforms.
Proposition 4.20. Let W and V be @-symmetric I-graded vector spaces such that wt(V) = wt(W) +

a(o; + oggiy). Let F(“) and F(") be the a-th divided powers with respect to 9-orientations Q and

o, respectwely For a °Gw-equivariant semisimple obejct L € 92w o, we have ®¢Y o F(") (L) =
F@7 0 099 ().

5. A quiver construction of symmetric crystals

5.1. Grothendieck group

For a f-orientation 2 and a ¢-symmetric and I-graded vector space V, we define ’Kv  as the
Grothendieck group of %2y, . Namely °Kv q is generated by (L) for L € 92y q with the relation
(L) = (L') + (L") when L = L' @ L”. This is a Z[v,v~!]-module by v(L) = (L[1]) and v=Y(L) = (L[-1)])
for L € 92y o. Hence, °Kv q is a free Z[v,v~!]-module with a basis {(L) | L € %y q}. For another
6-symmetr1c and I-graded vector space V' such that wt V = wtV’, we have °Ky o = %Ky q. We

define
BKQ: = @BKVIQ
\Y

where V runs over the isomorphism classes of §-symmetric I-graded vector spaces. For two 6-
orientations Q and €', the Fourier transform induces an equivalence %2v o — %v o and the iso-
morphism °Kv, %K+ o.. Therefore °Kq = K.

We set °K = %K, %Py = %Py q. By Lemma 4.18, they are well-defined.

5.2. Actions of E; and F,
The functors E; and F,.(") induce the action on °K.Since E; and F; commute with the Fourier trans-
forms, they also act on °K. The submodule °K": = 37 ; ) Z[v,v~"](°Li,a;a) C K is stable by E; and F;
by Proposition 4.11. We define

Tiloxy o = v~ "V idog,, .
Proposition 5.1. The operators E;, F; and T; (i € I) regarded as operators on °K’ satisfy

EiFj — v~ () F By = 85 + bos) 4T
and
TiEjT’i_l — U(a;-}-aa(g),aj)Ej’ II;FJTl—l = U(ﬁ.‘-{-ae("),—aj)Fj.
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5.3. Key estimates of coefficients

Let Q be a ¢-orientation and suppose that a vertex 7 is a sink. For a §-symmetric I-graded vector
space V and r € Z>o, we define

gEv'n_,-: = {I € OEV‘Q

heq;in(h)=i

dim Coker ( @ Vout(r) — Vi) = r} .

Then we have °Ey q = U;>0’Ev,q,r, and °Ev 0 >: = Upr>-°Ev q. is a closed subset of °Evy q.

Definition 5.2. For L € %Py and i € I, choose a §-orientation 2 such that i is a sink with respect to
Q, and regard L as an element of °Py q. We define £;(L) as the largest integer r satisfying Supp(L) C
®Ev,q,>r. This does not depend on the choice of Q.

Note that 0 < ¢;(L) < dim V;.
We shall prove the following key estimates with respect to F;(L) and E;(L).

Theorem 5.3. Assume that 6-symmetric and I-graded vector spaces V and W satisfy wt V = wt W +
a; + ag;). Fix a 8-orientation Q2 such that the vertex i is a sink.

(1) For L € %Pw q, there exists a unique simple perverse sheaf Lo € ®Py q such that e;(Lo) = £;(L) +1
and
Fi(L) = [e:i(L) + Yo (Lo) + > ar (L")
L€y q: e (L) >e:(L)+1

for ap € v2~5ENZ[y]. ;
We define the map F;: Pw = 8Py q — %Py q = %Py, by Fi(L) = Lo. It does not depend on the
choice of Q.

(2) Let K € Py q. If €i(K) > 0, there exists a unique simple perverse sheaf Ko € *®Pw o such that
€i(Ko) = €i(K) — 1and

Ei(K) = v'~55 (Kp) + > bi (K')

K'G@w,n: ei(K')>ei(K)-1

for by € v« (K)+1Z(y). Here we regard Ko = 0 if €(K) = 0. 3
Weadeﬁne the map E;: %Py = egv,n — qg’w,g U {0} = %Pw L {0} by E;(K) = Ky if ¢;(K) > 0
and Fi(K) =0ife;(K) = 0. It does not depend on the choise of Q.

Lemma 5.4. Suppose wtV # 0. For any L € %Py q, there exists i € I such that ;(L) > 0.

Proof. If V. # {0}, there exists an integer d, i = (i1,...,i2,) and a such that L[d] appears in a
direct summand of °L; ,.,o. We may assume a; > 0. Then, taking 2 such that i, is a sink, we have
Supp(L) C Supp(®Li,a;0) C °Ev q,>1. By the definition of ¢;, we have ¢;, (L) # 0. O

Lemma 5.5. For L € Py, we have E;F;(L) = (L), and if E;(L) # 0, we have F,Ey(L) = L.

5.4. Verdier duality functor

The Verdier duality functor D: 2(°Ev o) — 2(°Ev q) satisfies D(L[d]) = D(L)[—d] for L € 2(°Ev q),
d € Z. Then D induces the involution v*! — v¥!,

Proposition 5.6.

(i) D(°Lia) = °L; a[2dim ® F o.0).

(ii) For any L € %2y q, we have D(F;L) = F;D(L).
(iii) For any L € %Py, q, we have D(L) = L.



15

Proof. (i) and (ii) follow from the general property of the Verdier duality functor. To prove (iii),
we use the induction on wt V.

When wt V = 0, the claim is clear by 2y o = {1,:} and D(1,) = 1.

Suppose wt V # 0. By Lemma 5.4, there exists ¢ such that ¢;(L) > 0. We shall prove D(L) = L by
the descending induction on ¢;(L). By Theorem 5.3 and Lemma 5.5, we have

Fi(E;L) = [&:(L)]o(L) + > ap (L').
L'€%Pv a: ei(L')>ei(L)

By the induction hypothesis on wt V, D(E;L) = E;L. Hence the lefthand side is D-invariant by (ii).
We restrict F;(E;L) on the open subset °Ev g <., (). Then it is isomorphic to leiL]o(L)logy o <eccry 80d
D-invariant. Since L is the minimal extension of L|og,, , <e. 1y L 18 D-invariant.
Remark 6.7. By the result of (iii), we have a/(v) = ar/(v™!) in Theorem 5.3 (1).
Lemma 5.8. For L € Py , we have

Fi(a)(L) - [ Ei(Lg-i-a ] (E”’L)-}- Z e (L)

v L': e,(L')>es(L)+a

with cp € Zv,v71).

Proof. We shall prove the claim by the induction on a. If a = 1, the claim follows from Theorem 5.3.
If a > 1, by the induction hypothesis and Theorem 5.3, we have

EF® (L) = [ E"(Lg T ] Fy(FPL) + > cr Fy(L')
v L': ei(L")>ei(L)+a

- [a+1]v ([ Et(LZI?“l“l ] (Fia+1L)+ Z dL"(L”)) ,

L' : ei(L")y>ei(L)+a+1

where di» € Q(v). Hence

FetVL = [ Ef(Li i 1 +1 ] (Fe+1L) + > dp(L").
v L : g;(L'")>e¢(L)+a+1

On the other hand, since F,-(“'“) L = 1ga+1 * L[dg41] is semisimple, we conclude dr € Z[v,v~1). O
Proposition 5.9. We have °K = 3 Z[v, v‘l]Fi(l‘“) . -F}(:")l{p,}.

Proof. For L € %Py q such that wt V # 0, there exists i such that €;(L) > 0. We shall prove that (L)

is contained in ) Z[v, v“]Fi(l‘“) S Fi(:" ) 1{pt; by the induction on wt V and the descending induction
on ¢;(L). We have

Fi(ze(L))(EiGi(L)L) = (L) + Z cp (L)
L'e®Pv q: ei(L')>ei(L)
by Lemma 5.8 and Lemma 5.5. By the induction hypothesis, we have c;/(L’) and E’f‘(L)L are con-
tained in 3" Z{v,v=1F"Y ... F,-(:")l{pt}.
Thus (L) € 3> Zfv, v—l]F‘_(lax) e Fi(:k)l{pt}- 0

5.5. Main Theorem

Let us recall
°K': = Z: Zw, v YLy a0) = E Z[v,v-l]pi(lal) ... F,-(:")l{pt} c°K.
(i,8)

Theorem 5.10.
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(i) °K = °K".

(ii) For L € °Py, we define wt(L) = — wt'V. Then (wt, E;, F}, ;) gives a crystal structure on 5%: =
Uv®Py in the sence of section 2.3. Here V runs over all isomorphism classes of 6-symmetric
I-graded vector spaces.

(iii) Let L be the Aq-submodule 3~ 1\ cop Ao(L) of °K. Then {(L) mod vL|L € °P} gives a crystal

basis of °K. Especially, the actions of modified root operators FE;and F; on L/vL are compatible
with the actions of E; and F; on % introduced in Theorem 5.3.

Proof. (i) is nothing but Proposition 5.9. L

(ii) By the definition of ¢;(L), F; and E;, and Lemma 5.5, we conculde that (wt, E;, F}, ¢;) gives a
crystal structure on 2: = Uy %%y in the sence of section 2.3(i)-(iv). By the estimates in Theorem
5.3, the actions of E; and F; on (L) (L € °2) satisfy the conditions (2)-(7) in section 2.3. Thus we
obtain the claim.

(iii) follows from Theorem 2.14. O

Lemma 5.11. We have {v € °K | Ejv = 0 forany i € I} = Z[v, v 1.

Proof. Suppose that E; (3 ar(L)) = 0 for any L. Then af, € v°Z[v] for some c. Put a; = v~°ay € Z[v].
By the definition of the modified root operators and Theorem 5.10(ii), we have E; (3" dz(L)) = 0.
Specializing v to 0, we have a7 (0) = 0if E;L # 0. But for any L such that wt(L) # 0, there exists i € I
such that ¢;(L) > 0. Hence we obtain a; € vZ[v] and hence a; € v**!Z[v]. By the induction on ¢, we
have a; € v°Z[v] for any c. Thus we conclude ay, = 0 for wt(L) # 0. O

Theorem 5§.12.

() °K ®zjv,v-1) Q(v) = V4(0) as a Be(g)-module. The involution induced by the Verdier duality
functor coincides with the bar involution on Vg(0).

(ii) {(L)| L € °2} gives the lower global basis on V4(0).

Proof. (i) By Proposition 5.1, to check the defining relations of Bs(g), we only need to prove the
v-Serre relations. Put

b b
b~k k -
Se =Y (~D*EPEEP™, 5; =3 (-1 FPEFP
k=0 k=0

and note that F;S. = S.F; and ExSy = SyEj for any k € I.

Since °Kq, is generated by F,ﬁ")’s from ¢: = 1;,) and S.¢ = 0, we have S.v = 0 for any v € °Kq.
We show S¢(L) = 0 for any L € %Py q by the induction on wt V. If wt(S(L)) # 0, we have we
have EyS;(L) = SyEx(L) = 0 for any k € I by applying the induction hypothesis to Ex(L). Since
wt(S¢(L)) # 0, we have S¢(L) = 0 by Lemma 5.11. Hence °K is a Bg(g)-module. Note that T;1,,; =

1(pe) for any i € I. We conclude °K = V,(0) by Lemma 5.11 and the characterization of Ve(0) in
Proposition 2.10.

(i) We already know that £ = 3, .o Ao(L) is a crystal lattice and {(L) mod vL} is a basis of £/vL.

Note that Y, .sp Z[v,v~!](L) is stable under the actions of E;’s and F,.(“)’s by Lemma 5.8 and L is
D-invariant, namely bar-invariant. Moreover {(L) | L € %} is a basis of the Ag-module £ and also a
basis of the Z[v,v~!]-module °K. Hence we conclude that {(L) | L € ®4} gives the lower global basis
on V(0). O

Corollary 5.13. For any Kac-Moody algebra g with a symmetric Cartan matrix, the Bg(g)-module
Vo (0) has a crystal basis and a lower global basis, namely Conjecture 2.11 and Conjecture 2.12 is true
if A=0.

Example 5.14. Let us consider the case g = sl3, ] = {+1} and 6(i) = —i. Fix a -symmetric
orientation —1 - 1, For a 6-symmetric I-graded vector space V such that wt(V) = n(a_-; + 3),
®Ev q is the set of skew symmetric matrix z of size n. Its Gy -orbits are parametrized by the rank

2r (0 < r < |3]) of z. We denote O by the orbit consisting of n x n skew symmetric matrices z
of rank 2r. Note that any Gy -equivariant simple local system on each ®G+,-orbit is trivial. Let us
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denote ICT by the simple perverse sheaves corresponding to the orbit O?. Note that &1 (IC?) = n — 2r.
Let W be a -symmetric I-graded vector space such that wt(W) = (n — 1)(a_; + ;). We consider
the diagram:

O 6
*Bw.a < °Eq Eq Ev,q.

p2 ps3

Note that the fibers of p; on O7 is isomorphic to P*~!~2". Then

r—1

F(IC™) = [n - 2r,(1C}) + 3 ax(ICF)
k=0

where a), € v2~"+2kZ[y]. We obtain the crystal graph:

1
i ICS 3_1103 e
S

2 —1-> 3
102 =2 1C3
- Nt — 15

IC]. —__>ICI e
-7 -1

1
1 Pl
ICY o ICH )
- -

-

1

Bl (o} == (034
- 1

R (07 =% ICS ..

In this case, all indecomposable representations are described by

c-%LC and C*-Li?
0 1
-1 0
tively. Thus we can parametrized °Gy-orbit in °Ey g and associated simple perverse sheaves by
a(l) +b(~1,1) (a,b € Zxo), especially OF (and IC}) corresponds to (n — 2r)(1) +r(—1,1). Therefore we
recover the crystal graph parametrized by "9-restricted multi-segments” in [6, Example 4.7 (1)].

where J = ( ) We denote (1) and (—1,1) by above indecomposable representations, respec-
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