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Maximum principle for fully nonlinear equations
with linear and superlinear terms in Du
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Abstract. The maximum principle for LP-viscosity solutions of fully nonlinear
second order elliptic partial differential equations containing linear and superlinear
growth in the first derivatives with unbounded coeflicients is established.

1 Introduction

We are concerned with fully nonlinear second order elliptic partial differential equa-
tions (PDEs for short) in a bounded domain 2 C R™ :

F(z,u(z), Du(x), D*u(z)) = f(z) in Q, (1.1)

where F: QO x Rx R* x 8™ —» R and f: 2 — R are given measurable functions.
Here S™ denotes the set of n x n symmetric matrices with the standard ordering.
Since our PDEs have possibly discontinuous coefficients and inhomogeneous
terms, we adapt the notion of LP-viscosity solutions introduced in [3] (see also (1]
and [2]).
Throughout this paper, for the sake of simplicity, we assume

Qc B, (ie diam(Q)/2 <1).

It is easy to extend the results below to general bounded domains 2 by scaling and
translation.

To obtain the maximum principle for LP-viscosity solutions, as in [9] and [10]
(see also [7]), it is essential to consider the associated extremal PDEs: for instance,

P*(D?*u) + H(z, Du) = f(z) in Q. (1.2)
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Here, H : Q x R™ — R is given, and the Pucci operators P* : S® — R are defined
by

P*(X) = max{—trace(AX) | A€ S5} and P~ (X) = min{—trace(AX)|A € SF,},

where for fixed uniformly ellipticity constants 0 < A <A, STy ={X € S | A <
X <AL}

When H(z,&) = p(x)|é|™ with u € LI(Q) for m > 1, it is already known that
the maximum principle for LP-viscosity solutions holds in [10] under appropriate
hypotheses. More precisely, when m = 1, ¢ > n and ¢ > p > po, where py € [n/2,n)
is the so-called Escauriaza’s constant (see [6] and [5]), the maximum principle holds.
On the other hand, when m > 1, the maximum principle fails in general (see [10]).
However, according to [10], the maximum principle holds even when m > 1 if we
suppose that || f||»q) or ||kl paq) is small.

In this paper, we obtain the maximum principle for LP-viscosity solutions of
(1.2) when H(z,§) = pi(2)|€] + pm(z)|E)™ for pi, pm € L4(§2) with ¢ > n and
m > 1 in the elliptic case. Particularly, when p € (po,n), it is not clear how the
estimates depend on u; and u,,. We note that such estimates are important to study
further regularity because we will need scaling arguments to establish the Harnack
inequality for instance. Moreover, it is necessary to study PDEs with linear and
superlinear growth in the first derivatives when we try to show that if u € W2?(Q)

loc
is an LP-viscosity solutions of (1.1), then it is an LP-strong solutions of (1.1) as in

[11].

Here, we remark that if we directly follow the argument in [10] to extremal
PDEs (1.2), then we have to suppose that ||u1]|ze(n) or || fllze(@) is small in addition
to one of ||tm||ze(e) and || f||ze(n) is small. Moreover, the dependence on ||u;||ze(0),
|t Loy @nd || fl|ze(q) in the estimates would become more complicated than ours
in the proceeding sections.

In section 2, we recall the definitions of LP-viscosity and LP-strong solutions.
Sections 3 is devoted to the study of elliptic PDEs. In Appendix, we show an
existence result of LP-strong solutions for p € (po,n), which was only announced in
[10].

The author would like to thank Professors S. Koike and A. Swiech for their
interests of this work and for their suggestions.

2 Preliminaries

For measurable sets U C R™ and for 1 < p < 0o, we denote by L% (U) the set of all
nonnegative functions in LP(U). We will often write ||-||, (1 < p < o0) instead of
-l o 1y if there is no confusion. We will use the standard notations from [8].

First of all, we recall the definition of LP-viscosity solutions of (1.1).
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Definition 2.1. We call v € C(Q2) an LP-viscosity subsolution (resp., superso-
lution) of (1.1) if

ess ligirgf{F(x,u(a:), D¢(x), D*¢(z)) — f(z)} <0

(resp., ess lim sup{F(z, u(z), Do(z), D*¢(z)) — f(z)} > O)

T—20

whenever for ¢ € W2P(Q), zo € Q2 is a local maximum (resp., minimum) point of
U — ¢. _

A function u € C(Q) is called an LP-viscosity solution of (1.1) if it is both an
LP-viscosity subsolution and an LP-viscosity supersolution of (1.1).

We will say u an LP-subsolution (resp., -supersolution, solution) for an LP-
viscosity subsolution (resp., supersolution, solution) for simplicity. We will also
say u an LP-solution of

F(z,u, Du, D*u) < f(z),
(resp., F'(z,u, Du, D*u) > f(x)),

if it is an LP-subsolution (resp., -supersolution) of (1.1).
We will use this abbreviation also for LP-strong sub- and supersolutions below.

Definition 2.2. We call u € C(Q) N W2?(Q) an LP-strong subsolution (resp.,
supersolution) of (1.1) if u satisfies

F(z,u(z), Du(z), D*u(z)) < f(z) a.e. inQ,
(resp., F(z,u(z), Du(z), D*u(z)) > f(z) ae. in Q).
Remark 2.3. If u is an LP-subsolution (resp., LP-supersolution) of (1.1), then it
is also an L9-subsolution (resp., L9-supersolution) of (1.1) provided g > p. However,

on the contrary, if u is an LP-strong subsolution (resp., supersolution) of (1.1), then
it is also an L9-strong subsolution (resp., supersolution) of (1.1) provided p > g.

3 Elliptic Equation

We always suppose that n
P=>3

3.1 Known results for elliptic PDEs

When ) satisfies the uniform exterior cone condition, it is known (e.g. [2]) that
there exists po = po(n, A, A) satisfying 3 < po < n such that for p > po, there
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is a constant C' = C(n,p, A\, A) such that if for f/ € LP(Q), there is an LP-strong

subsolution v € C(Q) N W2P(Q) of

loc
P~ (D?*u) < f(z) inQ (3.1)
such that u = 0 on 91, and
~Cllf Iy <u<ClIftly R
Moreover, for each £ € §, there is C' = C'(n,p, A, A, dist(Q,8Q)) > 0 such that

lullwze@y < Cl fllp-

The key tool for it is the following strong solvability of extremal equations while
the existence of LP-strong subsolution of (3.1) was used in [10]. In fact, if we use
the strong solvability of (3.1) instead of the following proposition, then we have to
suppose that ||u, || is small provided || f||, is not small as mentioned in Introduction.

Since it is easy to obtain the corresponding result for LP-supersolutions, we only
state the result for L?-subsolutions.

Proposition 3.1 (Proposition 2.6 in [10]). Let Q satisfy the uniform exterior
cone condition. For

g=Zp>n or q>p=mn,

let f € LE(Q) and 1 € LL(Q) satisfy suppus € Q. Then, there exists an LP-strong
subsolution u € C(Q) N WZP(Q) of

loc
P~ (D) — pa(2)| Dyl 2 f(z) inQ
such that w =0 on 012,
~Cexp(C |l f lln < u < Cexp(C DI ln in ©
where C = C(n,p, A\, A) and C = é(n, A, A) are positive constants, and
”uuwz.p(nl) < exp(é’ ”Ml”?) ”f”LP(Q) )
where for each Q' € Q, C' = C'(n,p, \, A, el » dist(S2, 082)) > 0.
We shall use the following notation since it appears often.

D = exp(Cllml7)-

In order to consider the case of p € (pg,n), we will use the following maximum
principle via the iterated comparison function method in [9] and [10)].
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Lemma 3.2 (Theorem 2.9 in [10])). Let po < p < n < q. There exist an integer
N = N(n,p,q) and C = C(n,p,q,\, A) > 0 such that if f € LE(Q), u1 € LL(Q)
and u € C(Q) is an LP-solution of

P~ (D*u) — ui(z)|Du| < f(z) in Q,
then
X N-1
supu < supu + C {D I+ Hudl'j} £l -
Q ) paar
The strong solvability result in case when py < p < n < g is as follows.

Proposition 3.3. Let ) satisfy the uniform exterior cone condition. For
Po<p<n<g,

let f € LE(Q2) and p € L‘%(Q) satisfy supppu, € Q. Then, there exist an LP-strong
subsolution u € C(Q) N WP(Q) of

P~ (D*u) — p1(z)|Du| = f(z) inQ

such that u = 0 on 02, and

N-1 N-1
-C {D el + > nmu’;} Ifllp<us<C {D lally + > nmn’;} £+ 1lps
k=0

k=0

for some integer N = N(n,p,q) and C = C(n,p,A\,A) > 0. Moreover, for each
U €Q, there is C' = C'(n,p, \, A, ||pall, , dist(§Y, 02)) > 0 such that

N-1
lullwas@y < C {f? lpally” + Z‘Ilullls} 11l ooy

k=0

For the reader’s convenience, we will give a proof in Appendix.

3.2 Main results for elliptic PDEs
In this subsection, for a fixed m > 1, we consider the following PDE:
P~ (D*) — my(x)|Du| — pm(x)|Du|™ = f(z) in Q. (3.2)

In what follows, we shall utilize the same notation of a function g : U C R™ — R
for its zero-extension outside its domain.
We start with an easy case; p =q¢.> n.
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Theorem 3.4. Let p > n and m > 1. There exist § = §(n,m,p, \,A) > 0, and
C = C(n,m,p, \, A, [|i1ll,) > 0 such that if f € LA (Q), u1 € LE(Q), pm € LA (),

D™ £ el < 0, (3.3)

and u € C(Q) is an LP-subsolution of (3.2), then
supw < sup+ CD (||fll, + D™ £ liomll,)
Q a9

'PrOOF. In view of Proposition 3.1, we can find an LP-strong subsolution v €
C(Bs) N Wigk(Bs) of

P (D%*) + puy(z)|Dv| < —f(z) in Bs
with boundary condition v = 0 on B3, and
0<—v<CD|fll, in Bs. (3.4)
The Sobolev imbedding theorem yields
1DV]| ooy < W0llspangayy < CoD IS, -
By setting w = u + v in (), it is easy to see that w is an LP-solution of
P~ (D*w) — py(z)| Dw| — 2™ o ()| Dw|™ < 2™2 ||Dv||’£‘,,°(BR1) pm(z) in Q.

Notice that since we used Proposition 3.3, we do not get p; in the right hand side
of the above.

In the rest of proof, we follow the argument in [10] though the calculations below
are more complicated than those in [10].

For any € > 0, we find the LP-strong solution ¢, € C(Bs) N W2P(B,) of

loc
PH(D*) + m(@)| D] < =™ CF + 1)D™ || £l m(2) —€ <0 in By
under {, = 0 on 8B, such that
0< ¢ < CoD (D™ I ltmll, +¢)  in Ba. (3.5)

Moreover,

1DCl @y < CaD (D™ SN lltml, + ) - (3.6)
Thus, setting W, := w + (,, by (3.4) we verify that W, is an LP-solution of

P~ (DZWE) — pi(z)| DW| — 22(m"1)um(:c)|DW5]m
< (@) (2D DG ™ — D™ ||F) — € i Q.
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Using (3.6), we can find Cs > 0 such that the right hand side of the above is
estimated from above by

(@) D™ { Cs (D™ 17 Nimlly + €)™ = 1FU7 ) ~ €.

Hence, taking 6 = 1/C; cim 5 0, we see that if (3.3) holds, then for small € > 0, W,
is an LP-solution of

P~(D*W,) — p1(2)| DW,| — 22m=1 ), (2)|DW,|™ +e <0 in Q.

Therefore, by the definition of LP-viscosity solutions, we have W, < supgq W, in Q.
Hence, by (3.4) and (3.5), we obtain that

supu < Sup We + SUP(“U) + SUP(—CE)
Q

< supu+Co (Ifll + D™ IS lmll,) + oD

Thus, the conclusion follows by letting € | 0. O
Finally, we extend Theorem 3.4 to the case when p € (pg, n].

Theorem 3.5. Let po < p < n < q and m > 1. There exist an integer N =
N(n,m,p,q) > 1,6 = &(n,m,p,q, \,A) >0 andC’ C(n,m,p,q,\ A, uall,) >0
such that if f € LR (), pu € LE(Q) and pm, € LE(Q),

ng(m — 1)

P> g —n (3.7)

Am tm N(m- N
DER A " uml < 6

and u € C(Q) is an LP-subsolution of (3.2), then

mk—=1_

supu < supu+czEkuumuq =l
k.—

N _

A~ m& m_-1 A Am (m— N N (e
+CDERIFI7" lmlla™ {1+ DB il D7 14170,

where A; and Ey are given by

Nj] k
A . ~ k—
=Dl + > lmll, and B =[] 47"
=

Jj=1

and N[j] (j = 1,...,N) satisfying N[i] < N[j] < N (i < j) are constants from
Proposition 3.3.
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PROOF. In this case, the key of our proof is to use Proposition 3.3.
We define ¢o = p, and

ngkg-—-19

for £ > 1.
n(gr-1 +mMq) — Mgr_1q

qr =

Due to (3.7), following the argument in [10], we may choose an integer N > 1 such
that gnv—1 < n < gn. If gv_1 = n, then we may choose gy = ¢’ for any ¢’ € (n,g).

Fix diﬂnz-@l <1< Ry <---< R;. In view of Proposition 3.3, we first find an
LP-strong solution v; € C(Bgr,) N W2P(Bpg,) of

Pt (D?*v;) + pa(x)|Dv1| £ —f(z) in Bg,
with boundary condition v; = 0 on 0Bpg,, and
0< —v <CA|fll, in Bg,

and

”Dvlana'(BRz) < ”Ulnwz,p(sﬂz) < CA “f“p' (3.8)
Setting w; := w + v;, we obtain that w; is an LP-solution of |
P~ (D*w,) — w1 ()| Dwr| —‘2m‘1ym(x)llelm < 2™ (2)| Dui|™ =: fo(z) in Q.
Moreover, by Holder’s inequality, (3.8) implies

”f2“qu(BRQ) < H,U«mﬂq HDvlnﬁ'(BRz) < CAY H#m“q “f”;n-

Next, again in view of Proposition 3.3, we find an LP-strong solution v, € C (Bgr,) N
W29 (Bg,) of

loc

P+(D2’l)2) +M1($)]D’U2| __<__ ~—f2(x) in BR2
with v, = 0 on 8Bpg,. Again

0< —vy <CAs||fallfey in Bry,
and
1Dl 1a3 g,y S CAT Az lltimll, 115 - (3.9)
Hence, wy := w; + v, is an LP-solution of
P~ (D?ws) — pq(z)| Dws| — 22y (z)| Dwy|™ < 227D ()| Dvg|™ =: fa(z) in Q,

and (3.9) implies,

1 m m2 am m m?2
”fBHqu(BRS) < H#m“q “Dv2|quI(BR3) < CAT A3 “/‘m“;_‘_ “f“p :
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Inductively, setting f := 26-DMm=Dy_ (£)|Dyy_y|™ € L%-1(Bpg,), we find the
LP-strong solutions vy € C(Bg,) "W, 210k~ '(Bg,) of

loc
Pt (D?v) + p1(z)|Dvk] £ —fr(z) in Bg,
satisfying vy = 0 on 0Bp,. Similarly,
0L —v, < CAg “fk”L'Ik—l(BRk) in BRM

and

I fell ou-s 3,y < C HA"‘ Nl A

mk=1_

1DVl 531 g,y S C HA’" lle ™ AT

Therefore, we obtain that wy = u + ZkN=1 vk is an LP-solution of
P~ (D*wy) — pa(z)| Dwy| — 2V D pp (2)| Dwy|™ < 2V D (2)| Doy |™ =: f(z)

where f € LPN()). Hence, in view of Theorem 3.4, if D lemll, ||f|qu,\,1 is small
enough, then we get

supwy < supwy +CD (Ifllzaw + D™ Fllfow ltiml,) -
Q o0

md

. . mN oy
Since || fllon < CER lpmlle™ " ||f|[;nN, the results follows. a

Appendix

In this appendix, we give a proof of Proposition 3.3, for the reader’s convenience
because it was only mentioned in [10]. The proof below is a modification of that in

8.

PROOF. We shall simply write u for ;. Let pu; € C*(€2) be such that y; — pin

L2(Q) and pointwise a.e. Let u; € C(Q)NWZP(Q) be the unique LP-strong solution
of

P~ (D*u;) — pi(z)|Du;| = f(z) in (3.10)

with v = ¢ on 0Q2. By Lemma 3.2, (3.2) holds for u; with u replaced by u;. Since
p; — pin LI(2), we may assume that it holds with u.

Since we can cover ¥ by a finite number of balls having a fixed radius R, it is
enough to show (3.2) for the u; for By instead of {)'. We will denote the measure

in €2,
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of Br by |Bgr| = w,R", where w, is the measure of unit ball B;. Let p € (0,1) and
cut off function n € CZ(Bg) be such that 0 < n < 1,7 =11in By,g and n = 0 in
Br\Bjsr where p = (1+ p)/2, and

16
< = pm

Setting v = nu; € W2?P?(Bg), and therefore using the estimates of [5], we have

“U“WZ-F(BP-'R) <G “P_(D2v)“LP(B§R)’

|Dn| < | D?

4
ST-pR

which implies

1DVl Lo+ (8, < Co [0llwan(zsny < C1C2 |P™(D*)]| 1o(s, 0y -

Then we have
H'D2UJHLP(BPR) = HDzUHLP(B 5R) — < GG “P (Dzv)“Lp(BﬁR)
= CiC; ||P~(nD*y;) + 2D ® Du; +u; D[ 1, 5 (3.11)

| . 1 1
< Cy (HW D% ogomy + Ty 1Pl ooy + T 22 Huj”L”(Bm)) :

By (3.10), it follows that

Cs []n’P‘(D2uj)HL,,(Bm) < Cullfllzo(msmy + Callnes Dusll po(s, p

1l Lom )

<Gy “f”Lp(BﬁR) + Oy “NjD'U”Lp(BﬁR) + Cs ”,Uj”Lp(BﬂR) (1—p)R (3.12)
191l oo o) + A1 | Fll Lo
< Call i, + Ca I3 DV oy + Cs i lior) — G ym
where A; is a constant from Theorem 3.5. We now estimate, for n < ¢’ < g,
Cs “/"'jDUHLp(BﬁR) < Cy H/‘j”m’(s,,ﬂ | Dl _?%5(3
5R)
< 0406("‘)an) Hl-ba “Lq(BpR) ”P (Dzv)“LP(B,R)
Hence by choosing R small enough, we can show that
Cy HMJD’UHLP(BM) S HP (DZU)I‘LP(BﬁR) - (313)

Combining (3.11), (3.12) and (3.13), we have

C
S 1P~ (D" o(amy < Callf ey

Cr

+m ((1 - p)R (”"/’”Lm(an) + A HfHLp(sz) + ”Duj“Lp(Bﬁ-,R)> + Huj”Lp(BﬁR)) :
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According to (3.11) again, we have

(1= 2R | D% | 5, < Cs (Il 1oy + A1 [ ooy )

i (3.14)
+Cs (1 = DRIDU; 1o gy + 1l osmy ) -
If we introduce norms
Ui (v) := sup (1 — p)*R* || D*v , k=0,1,2,
k(V) 0<p51( p) | I]LP(BpR)
then (3.14) gives the inequality
Pa(u;) < Cs (IWHLw(an) + Ay “f“Lp(Q)) + Cs(¥1(uj) + Yo(uy))- (3.15)
The WP estimate follows from the interpolation inequality,
C :
U <e¥r+ -E-\I’o (3.16)

for any € > 0 where C = C(n), which may found in [8]. Indeed, using (3.16) in
(3.15), we get

T2 < Co (¥l mony + A1 1/ ls(@y + sl oy ) -
that is,

Co
1%l 1006, < =gz (Wllzmiomy + 1oy + sl o) -
The desired estimate (3.2) follows by taking p = 1/2.

Therefore, there exists u € W2?(Q) such that u; — w in W2P(Q) as j — oo.
Taking a subsequence if necessary, we see that Du; — Du a.e.. Thus this implies
that u;|Duj| — p|Du|. Since P~ is concave, we have for a.e. z,

P~ (D*u) < limsup P~ (D%y;)
j—oo
= limsup (P~ (D%u;) — p;(x)|Du;| + pj(z)| Dus|)

j—oo

= f(@)+ lim p;(z)| Du;l.
It remains to show that u € C(Q). By the superadditivity of P~, we have

P (D*(us — uy)) < pi(2)|Dus| — p3(2)| Duy| + fil@) - fi(z) in Q,

with u; — u; = 0 on 092 for ¢, j > 1. Since suppu € 2, we may assume suppu; C &/
and for all ¢ > 1. It is enough to show that

llps(2)| Dus| — 15(2)| Dujlll oy = 0 88 4,5 — o0,
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since the maximum principle will give us that sup(u; — u;) — 0. Indeed, we have

(| (z) | Dus| — /"'j(x)'DujHin(Q)
< Qs = p3) | Dwall| gy + 1151 Di — D[ 1oy
< lwi — Mj“:,n(nq || D e @)t “Nj”[,n(gz/) [ Dwi — Dugl| e "

< C (It = b5l ey + 1D = Dl ) =0

as %, J — o0o. This completes the proof. O
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