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1 Introduction

Many PDEs are characterized by deterministic games via the associated value functions. Kohn and
Serfaty [12, 14] considered the following 1D heat equation with respect to the backward time,

{v¢+vu=0 t<T, (1.1)

'u:’l‘[) t=T.

Here T is a constant and v is a given function. For this equation, they defined the following parametrized
value function v¢ which denotes the payoff from one player to the other in the game.

vé(z,t) = max mixil1 {ve(a: +V2ra, t + £%) - \/551'17*2}, ift<T,

ri€ERr2=

(1.2)
ve(z, T) = () ift="T.

Here r; and 73 are player’s choices and € > 0 is a small parameter. Commonly, T and % are called maturity
time and objective function, respectively. Now let us regard v¢ as the smooth function. Applying Taylor
expansion for v¢(z 4+ V2ery,t + €2), we have

0 ~ max min {\/irge"'l(vi —-r) +vp + 'v;z}.
ri€R ro==+1

If the player chooses r1 = vg, then the above heat equation arises. Thus the limit function limc_,¢ v* is
expected to be the solution of (1.1).
For more general equations, Kohn and Serfaty introduced the following value function,

ut(z,t) = ma).(xmin {ue(x+ew,t +€%) + R‘(w,p,X)} ift<T,
D, w

(1.3)
u*(z, T) = ¢(x) ift="T.

The term R® is called a running cost and is defined as
2
R (w,p,X) := —ep-w — %(Xw,'w) +e2f(p, X).

The limit function lim._,o u® is expected to converge to a solution of the following equation (see [14]),

us + f(Du, D?*u) = 0.
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Now we will generalize their results to a wider class of PDEs. by introducing the concept of “interest
rate” to the value function.

1y, 2
u®(z,t) = (m) ;)n)g sgp {u"’(:v + ew,t +€°) + Q%(w, p, X)}. (1.4)
Here ;2 > O is constant, Q° = R® 4+ £2H(p) and H is uniformly Lipschitz continuous or bounded and
uniformly continuous function in RY. If 2 = 0, then the game is replaced by “no rate” problem which
corresponds to the case in [14]. Our result shows that the viscosity solution u ([9]) of

u=1q in RN x {t =T} (1.5)

{a,u — pu+ F(Du,D?u) + H(Du) =0  in RN x (o0, T),
is represented by the limit of value function (1.4) as ¢ — 0 (i.e., v = lim.,ou®). In addition, the
convergence is uniform. Here ¢ : RNV — R is a function belonging to BUC(R") which denotes the set of
all bounded and uniform continuous functions in R¥. Note that we impose some appropriate conditions
on F. These conditions allow discontinuities for F' so that the level set equation of the mean curvature
flow is included as an application. In this regard we mention [10, 11] for the related works.

Acknowledgements. The author is grateful to Y. Tonegawa, Y. Maekawa for their many comments
and advices on author’s study and careful reading. The author thanks Y. Giga for giving remarks on
the comparison theorem, and H. Ishii for giving the crucial comment and idea on the regularity of the
initial value.

2 Strategies and Goals of Players

We first describe the setting of the game. There are two players, A and B. Let o be an initial position
of A in RN (N > 2) at the starting time Tp, and T' (Tp < T') be the final maturity time of the game. In
what follows, € € (0,1) is a small parameter denoted by

[T~ Tp
€ =
m

for some integer m € N and the function ¢ : RN — R is bounded and uniformly continuous (denoted by
BUC(RY)). The player’s choices are followings at the position zg.

(1) A chooses a pair (pg, Xo) € RY x SN with 0 < |po| < €71/ and | Xp| < £7'/2 where RY = RV \ {0}
and |Z| := max)y|=; [{Zv,v)| for Z € SV.

(2) For this choice of A, B chooses a direction wo € RY with |wo| < e~1/%.

(3) A moves from z¢ to T, 1= Tp + cwp.

(4) Above steps are repeated m times, until the elapsed time reaches T.

(5) At the maturity time T, for the A’s final position z°(T), A pays B the amount

m m-1 i
(5m) W@+ X (57m)  @omX) (205 consiant)

where p;, X; and w; are respectively choices of A and B at the position in i-th step.

A and B have the opposing goals of minimizing and maximizing the above amount of payoff, respectively.
A’s optimized payoff is represented by

u®(z, Tp) := inf sup { (ﬁ_lz?)mt‘b(ze(T)) + ':é (TII—ZLE-E)HIQG(thi, Xi)}v (2.1)



72

where the infimum and supremum are taken over all choices that can be executed until m-th step when
starting at = at the time Tp. Players have to take their choices w;,p;, X; at each step so that their
purposes are accomplished. We are interested in the limit of u¢(x,T;) as € — 0 (i.e., as the total steps
m — oo). Using the dynamic programming, we will begin by considering the characterization of u®.

Definition 2.1. Let 7. be the operator denoted by

Teb() = (1572 inf sup {@(- + ew) + Q%(w,p. X) } (2:2)

_1
1+ pe
for ¢ € L=2(R¥). Here the infimum- supremum are respectively taken over all A’s- B's strategies. Then
u® is defined by

{.L"'d)(x) =uf(z,T-ke?) if 1<k<m, 2.3)

JO=1 if k=0

for z € RY and ¢ € BUC(RV) where J¥ = J. --- J. and Z is the identity map (cf, [10]).

‘We mention on the boundedness of u® and some properties of 7. in Section 5. Such function u¢ is
called the value function of the game with the objective function . Although u® is only defined at the
discrete time t = T — ke? (k = 0,1,...m), one can consider a natural extension to the continuum time
as below.

(2.4)

(o.t) = u¢(z, T — ke?) if T-ke2 <t<T-— (k—1)e?,
R P if t=T.

The difference from {14] is that our case has the interest rate (1+u£2)~! in the game so that corresponding
PDEs contain 0-order term. Added to this, we consider the modified running cost Q¢ = Q*(w, p, X).

Q(w,p, X) = —ep-w — %(Xw,w) +e2F(p, X) + €2H(p). (2.5)

Here F, H are given functions satisfying suitable conditions (see next section). As a beginning, we will
take a formal consideration for the limit of u® as € — 0 by using (2.1), (2.3) and (2.4). If u%(z,t) =
u(z,t) + O(e3) for all sufficiently small ¢ and some smooth function u, then we get the approximate
expression

1 .
u(z,t) = (—IT;E—Z) ;n)f(' Slul)p {u(:c, t) + ew - (Du(zx,t) — p)

+ i:‘((Dzu(z: t) - X)w, IU> + Ezatu(:z:, t)+e2F(p, X) + EZH(p)} + 0(63)

by the Taylor expansion of u and therefore we obtain
1
0 = inf sup { e 'w - (Du(z,t) — p) + = {((D?u(z,t) — X)w, w)
P,X w 2

+ Byu(z, t) — pu(z, t) + F(p, X) + H(p)} +O(e)

where O(e) is of the order of . Here it is clear that an optimal strategy with respect to w (B’s choice) is
to teke w so that w- (Du(z,t) — p) = |w - (Du(z, t) — p)|. If |w- (Du(z,t) — p)| is positive independently
of ¢, then the right-hand side tends to +o0o as € — 0. So the optimal strategy with respect to p (A’s
choice) is to take p &~ Du(z,t). In addition, if A chooses a special strategy X = D?u(z, t), then

Beu(z, t) — pu(z,t) + F(Du(z,t), D®u(z, t)) + H(Du(z,t)) > 0

holds as € — 0 no matter what the choice of w is. Formally, this shows that u is a classical sub (or super)
solution of
U — uU + F(DU,D*U) + H(DU) = 0. (2.6)
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But we cannot generally expect any smoothness for solutions of (2.6) due to the nonlinearity of F, H.
Therefore we consider solutions in the viscosity sense. It is natural that the theory of viscosity solutions
is used, since it has the game theoretic backgrounds ([8]). We give a rigorous proof that the above u*
converges to the viscosity solution of (2.6).

3 Notations and Conditions
We first state a few notations for later use.

Definition 3.1. We say a function w : [0,00) — [0,00) is a modulus, if it is a non-decreasing function
with lim,_ow(r) = 0.

For example, let ¢ be a uniformly continuous function in RY. Then, the function
(d¢(8) = Sup{]¢(z) - ¢(y)l 5 I.’B - yl S 8, T,y € RN} (3’1)

is a modulus.

Definition 3.2. Let M be a metric space and f be a function defined on a subset M’ C M with values
in RU {+oc}. The upper semi-continuous envelop f* and lower semi-continuous envelop f, of f are
defined respectively by

() = limsup{£(C) 5 dm(z,Q) <7, ¢ € M'}, (3.2)
fulz) == Bmnf{£(C) ; daa(z, () <, ¢ € M'} (3.3)

for any z € M’. Here daq is the distance function on M, and M’ denotes the closure of M.

The functions f* and f. are respectively smallest upper semi-continuous and greatest lower semi-
continuous extensions of f on M’ and they satisfy f. = —(—f)* and f. < f < f* on M'.

We next state the conditions of F and H.

(F1) F:RY x 8¥ — R is continuous.

(F2) Ao :=sup, |F(p,0)| < oo and inf, F(p, X) = F.(0, X), where O € SV is the
zero matrix.

(F3) There exists the positive constant A; such that

F(p,X) - Flp.Y) < e+ (X - Y)

where £+ : S¥ — [0, 00) is defined by
Et(-) :=max {0, £(-)}.
(F4) For any r, R > 0, there exists a modulus w, g such that
|F(p, X) ~ F(q,X)| Swrr(lp—4ql),  iflphlgl2r|X|<R

(F5) —oo < F,(0,0) = F*(0,0) < o0.
(H) There exists the positive constant Ay such that

|H(p) — H(g)] < A2lp — gl

Remark 3.3. From (F2) and (F3), one can see that F' has at most linear growth (and at least linear
decay). In fact, there exists the constant C = C(Xg, M;) such that

|F(p,X)| <C(Q+1|X|) for (p,X) e RY x SN. (3.4)
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In addition, — F is (degenerate) elliptic, since —F(-,Y) < —F(-, X) if Y > X from (F3). In (H), we can
replace “Lipschitz’ by “Holder” and also treat the case H € BUC(RY).

Now, consider the following terminal value problem.

(TP)

8u — pu + F(Du, D*u) + H(Du) =0 in RN x (T,,T),
u(z,T) = ¢¥(z) in RV,

By replacing t with T — 7 and setting v(-,7) = u(-,T — 7), we may regard the terminal value problem
(TP) as the usual initial value problem

{Brv = —uv + F(Dv,D?v) + H(Dv) inR¥ x (0,T), (IP)

v(z,0) = ¥(x) in RV
where T := T — Tp > 0. Let us give some examples of (TP).
Example 3.4. (First order equation)

Su — pu+ H(Du) =0.
Example 3.5. (Level set equation)

Du

aﬂt‘f‘( <D2 ID l lD ]

=) + ViDul = 0.

Here V is a constant.

These examples satisfy conditions (F1)—(¥5), (H). In particular, Example 3.5 is the level set equation
of the motion of mean curvature plus the velocity V' which represents the uniform velocity.

4 Representation Theorem

Before giving the statement of main theorem, let us start with defining the relazed limits of u®. Let
(z,t) be a point in R x [Ty, T]. For & > 0, we define the set S% = S%(z,t) as follows.

So(z,t) := {(y,8) € RY x [To,T] ; |z —y| <6, |t —s| < 8}

Definition 4.1. For (z,t) € RY x [Ty, T, the upper relaxed limit % and lower relaxed limit u are defined
by

a(z,t) = hm sup u®(y,s), (4.1)
05<6 S8 (x,t)
u(z,t) == h inf  uf(y,s). (4.2)

0e<s, 56(x t)

These limits are called relaxed limits and the advantage is that their limits always exist with the values
in RU{z£o00}. In addition, % and u are respectively upper and lower semi-continuous. So if 7 = u (= u),
then u is continuous, and u¢ locally and uniformly converges to u as ¢ — 0. Our main result is the
following.

Theorem 4.2. Assume that v € BUC(RYN) and (F1)-(F5), (H) hold. Then, there eTists the unique
viscosity solution u € BUC(RY x [To,T)) of (TP). In addition,

u(z,t) = lim J¢*y(z) (4.3)

for x € RY. Here n = n(e,t) is the non-negative integer such that T —ne? <t < T — (n — 1)e? for
t e [T, T).
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This theorem implies that problem (TP) is globally solvable. Theorem 4.2 follows from the following
propositions.
Proposition 4.3. Let ¢ be a function of BUC(RY). Then @, u € BUC(RY x [To, T)) with u(-,T) =
Proposition 4.4. The function T is a viscosity subsolution of (TP).
Proposition 4.5. The function u is a viscosity supersolution of (TP).

From Proposition 4.3, 4.4 and 4.5, we obtain the existence of a viscosity sub- and supersolution
such that they belong to BUC(RM x [Tp,T]) and their initial value are identical. So we can apply
the comparison theorem for @ and u (see Section 7). Consequently we have the inequality @ < u in
R¥ x (Tp, T] which implies the locally uniform convergence of u* as € — 0 and the continuity of its limit.
To prove Proposition 4.3, we need some lemmas. Lemma 4.6 is the key in this paper to prove the other
lemmas and propositions. We are going to prove it in Appendix.

Lemma 4.6. Let (q,Y) be a pair in RN x SN and let Ry be a fized constant such that |q|,|Y| < Ro.
Assume that (F1)—(F4), (H) hold. If|q] > K~ (K € N), then there exists €1 = €1(K, Ro, N, Ao, A1, A2)
such that for any (p, X) € RY x SN with |p| < e~1/4,|X| < e~1/2 there ezists W = W(e,p,q, X,Y) with
[w| < €1/* such that

Q(@.p, X) 2 Q(W,,Y) — ha('/)e? (44)

holds whenever ¢ < ey. If gl € K1, then there exists e2 = £2(Ro, N, Ao, A1, A2) such that for any
(p, X) € RY x 8N with |p| < e~1/4,|X| < £~1/2 there exists W = W(e,p,q, X, Y) with |@| < e~1/* such
that

Q*(w,p, X) > Q5(W,0,Y) — ha(e'/*)e? (4.5)

holds whenever € < e9. Here hy, hy are given by
hi(r) = wijak,ro(T) + A2r,  ha(r) :=Aor (4.6)
for r > 0 where w is the modulus as in (F4) and )\ is the constant as in (H).
Since hy1(r) > ha(r), we set h§ := hy(e'/4) to simplify.

Lemma 4.7. Let ¢ be a C?*-function whose derivatives are bounded up to second order. We set
Ef(z,y,k) == TFy(z) — TEp(y) for z,y € RN and k =0,1,...m. Then,

. 1\
1B, u W) < L(75m) lo vl (4.7)

holds if ¢ < &’. Here L is the Lipschitz constant of ¥ and &’ = &’(¥, N, Ag, A1, Az).
Lemma 4.7 yields the Lipschitz continuity of Jekzb whenever 7 is C2.

Lemma 4.8. Let v be a function as in Lemma 4.7. We set E€(z, k) := J*¥ " 14(z) — TFy(z) for x € RN
and k =1,...m. Then, there erists a positive constant C such that

1 k
€ 2
|Ef(z, k)| < C(_l T ”82) € (4.8)
holds in e < &’. Here C = C(¥, Mo, A1, A2) and &’ is the small number as same as Lemma 4.7.

We remark that Lemma 4.8 shows u®(x,-) is Lipschitz continuous with respect to the discrete time
t =T —ke? (k=0,1,...m). In the next section, we will prove Lemma 4.7 and 4.8. The proof of Lemma
4.6 is relegated to Appendix.
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5 Proofs of Lemmas

Before giving the proof of Lemma 4.7, we prove the boundedness of u° in the case 3 is C? and its
derivatives are bounded. Let ¢ be a C2-function whose derivatives are bounded up to second order. We
prove that there exists a positive number C such that

T Y= < [l +C (5.1)

for each k£ = 0,1,...m. We specify the dependence of C later. At first, we show the upper bound of
Je(-) = u*(-, T — €2). Applying (2.2) and the mean value theorem, we obtain

(1 + pe*) Jetb(z) = inf sup {¥(2) + ew - (DY(2) - )
+ %((Dzzl;(z') - X)w,w) +?F(p, X) + 52H(p)},

where 2’ = z + 6w for some 6 € (0,1), and the infimum and supremum are taken over 0 < |p| < e~ /4,
|X| < e~1/2 and |w| < e~'/4. Since Dy and D%y are bounded, we consider the amount Cp[v] depending
only on 9 as follows.

Colw) := max [ ||9]|Le, || DY||L=, || D?*¥||Le ]. (5.2)

Since the inequality
sup [(D*¥(y)v,v)| < Coly)(v,v)
yERN

holds for any v € R¥, we have
(1 + ue?) Te(@) < inf sup { () + ew - (Do() - p)
H w
2
+ %((co[w]z - X)w, w) + 2F*(p, X) + 52H(p)}.
Here I € SV denotes the identity. Since |w| < e~1/4, we have
(1 + ue”)Jetb(2) < inf sup { () + ¥4 Dy(<) ~ p|
1 w
£3/2 \
+ 5-EH(Colvll - X) +¢* sup F*(q,X) + €2H(p)}. (5.3)
gqERN

Let & be small enough so that Co[yy] < e~ !/4, then player A can choose the choice (p,X) =
(Dy(x), Col[¥}I) in (5.3). Thus we obtain
(1 + ue?) Tey(x) < Y(z) +€? sup F*(q,Coly}I) + €*| H(Dy(x))|
qERY
< (2) + €201+ Coly]) + 2(|H(0)| + X2Col¥])-

Here C is the constant in Remark 3.3. Consequently the following inequality holds for the constant
C’ = C"(, Do, A1, Aa), if Colth] < e~1/4.

THE) @) OO+ Gl () (54
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Next, we show the lower bound of J.v¢(-) = u®(-,T — €2). Similar to the above arguments, for any w
with jw| < e~/ we have

(1 + ue?) Tep(z) 2 inf {¢(2) + ew - (DY(=) ~ p)
P,
+ E—;«—co[wu ~ X)w,w) +€*F(p, X) + EQH(p)}. (5.5)

Applymg (4.4) and (4.5) in Lemma 4.6 with ¢ = Dt/;(:c) Y = —Co[¢]I and choosing an appropriate
= w(e, p,q,X,Y), we have

(1+ pe)Tew(@) 2 {$(2) + 2 Fu(D(a), ~Colyl]) + *H(D(x)) - hie? }
if |Dy(z)| > 1 and we have
(1+ ue?)Tet(z) 2 {9(@) +€2Fu(0, ~Col¥lD) + €*H(0) — hie*}

if |Dy(z)] < 1 for all sufficiently small ¢ < min[e1, ;] with Ro := Cp[y)] and K = 1. Here we recall that
€1, €2 are small numbers as in Lemma 4.6 and h = wy/2 g, (€) + A26. As same as (5.4), we have

1
Teb(@) — 9(z) 2 ~C'(1+ Coly] + hD) (73 )¢ (5.6)
Combining (5.4) and (5.6), consequently we obtain
’ 1 2
|Tet(@) = 9(@)| < O'(1+ ol + b)) (57 ) €™ (5.7)
The formula (5.7) also shows that (4.8) in Lemma 4.8 holds for k = 1, when ¢ € C*(RY) and Cp[¢] < oo.
Let us set
Cely, K] == C'(1 + Co[y] + k) (5-8)

to simplify. Here C’ = C’(u, Ao, A1, A2). We will show the boundedness of J*vy(z) = u®(z, T — ke2) for
each k= 0,1,...m. To prove it, we set

k )
€ .__ (€ 1 ¢
St = %[, 1] ; (3 uE'*’) e? (5.9)
and suppose that
|TE () — Y(x)| < S§ (5.10)

holds for any € R if 1 < k < n (note that it is clear in the case n = 1 from (5.7)). Then, we obtain

T () = ( 2) inf sup {JE’WJ(-T +ew) + Q% (w, p, X)}

1+ pe
< (5 +1u€2) inf sup {9(z + ew) + Q(w,p, X) } + (%ﬂsz)s;

= J@ + (73 S5
< 9@ + O (15 5m) e + (7 5
=¢(z) + Sy ‘
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and similarly

T y(x) > ¥(z) - Shya-

In addition, we see S§ < S¢, and verify that the sum of geometric series S;, < Cf, by the elementary
calculations. Here C} denoted by

C [, 1|(T - Tv) if u =0,
£ _
Cs = L — oo(TTo) (5.11)
coly, J———— if > 0.

Note that C? is bounded independent of ¢ < min [e1,€2] with Rg := Co[¢] and K = 1. So we conclude
the formula (5.1) with C = Cj,.
Now we will prove Lemma 4.7 and mention the continuity of value function.

Proof of Lemma 4.7. Let us set Ax(r) := J¥¢(z + ew) + Q*(w,p, X) for p # 0. Then the formula
Ai(z) — Ar(y) = TEy(z + ew) — TEy(y + ew) = ES(z + ew, y + ew, k) (5.12)
holds for any choices p, X and w of players. When k = 0, we have
[Ao(z) — Ao(¥)| = |E*(z + ew,y + ew, 0)| < Liz — |

for any =,y € R" where L is the Lipschitz constant of ¥ (L < Cy[y]). Suppose that |E¢(z+ew, y+ew, k)|
is bounded with respect to w with jw] < e % for k=0,...n (0 <n <m —1). Then we have

An(z) — An(y) < sup Ef(x + ew,y + ew,n) < 00 (5.13)
w

and
An(z) — An(y) = irux)f Ef(z +ew,y + ew,n) > —o0 (5.14)

for each z,y € RN by inductive assumptions. Therefore we obtain
sup An(z) — sup Ap(y) < sup E*(z + ew, y + ew,n) (5.15)
w w w

and
sup An(z) — sup An(y) = inf E* (z + ew, y + ew, n), (5.16)
w w w

since the right-hand side of (5.13) and (5.14) are independent of w. Similarly, since the right-hand side
of (5.15) and (5.16) are independent of p, X, we conclude that

inf sup A, (x) — inf sup A, (y) < sup E*(x + ew, y + ew, n) (5.17)
X w X w w

and
inf sup An(z) — inf sup A, (y) > inf Ef(z + ew,y + ew, n) (5.18)
p,X w 2,X w w

hold. From the formula (2.2), one can see inf, x sup,, An(z) = (1 + pe2)J +1y(z) for z € RV (it is
well-defined from the previous section). So we have

|Ef(z,y,n+1)| < ( )suplE‘(z+ew,y+ew,n)|. (5.19)
w

1
1+ pe?

By the induction, we have the conclusion of Lemma 4.7. (]
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Arguing as same as above, we can prove Lemma 4.8.

Proof of Lemma 4.8. From the formula (5.7), the conclusion of the lemma holds for £ = 1. If we set
Ai(x) := Tky(z + ew) + Q°(w,p, X) for p # 0, then

Ag-1(z) — Ax(x) = TE9(x + ew) — TEP(z + ew) = E*(z + ew, k) (5.20)
holds for z € RY. Suppose that
1 k
e € 2
B, B)] < O, U (15m2) (5.21)
holds for any y € RN and k =1,...n (1 <n < m —1). From the above conditions, we have
Ap_i(z) — An(z) < sup E°(z + ew,n) < 0o

and
An-1(z) — An(z) > inf Ef(z + ew,n) > —©

for any choices p, X and w of players. Arguing as same as the previous lemma, we have

in)f; sup Ap—1(x) — in}g sup A, (x) < sup E°(x + ew, n) (5.22)
P, w b, w w
and
inf sup Ap—1(x) — inf sup A,(z) > inf B¢ (z + ew, n). (5.23)
p,X w X w w

Since infp x sup,, Ax(z) = (1 + pe?)J*+1y(z) for z € RN, we conclude

|Ef(z,n+1)| < ( sup |E*(z + ew, n)| (5.24)

)
14 pe?
for z € RY. Consequently we have the conclusion of Lemma 4.8 by the induction. O

Now the proofs of Lemma 4.7 and 4.8 are completed.

6 Proofs of Propositions

Our purpose in this section is to state the properties of J; and to give proofs of Proposition 4.3, 4.4
and 4.5.

In the previous section, we only consider the case ¢ € C%(R") and its derivatives are bounded up to
second order. Actually, we can extend the conclusions of Lemma 4.7 and 4.8 to the case v € BUC (RN ).
Before stating it, we remark on the operator J;.

Lemma 6.1. Let ¢, ¢’ be a function in L°(RN). Then, following properties hold.
(a) Jo:L®RN) — LeRN),

() If ¢ < &' a.e, then J.¢ < J¢' a.e.
(c) ForceR, J(¢+c)=Tcd+ (1 +ue?) e

Proof of Lemma 6.1. If J.¢ is well-defined for ¢ € L°(R"), then (b) and (c) are clear from (2.2). So
we only prove (a). Assume that ¢ € L°(R"). Then we have the upper bound

(1 + pe*)Teo(z) < ||¢llL~ + inf sup Q°(w, p, X),
' < l|@llz= + (F*(0,0) + H(0))e?
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for all e. And the lower bound

(1+ pe*) Ted(z) 2 ||l + inf sup Q“(w, p, X)
2 ~[|¢llL= + Q(®,0,0) — hie?,
= ~ll¢llz> + (F.(0,0) + H(0) ~ hf)e?

holds for all € < g5 where the second inequality comes from Lemma 4.6 and €3 and W are as in Lemma
4.6 with ¢ =0, Y = O and Ry = 1. Since we can choose K = 1, we have

| TedllLe < |18llL= + Ce? (6.1)

for all sufficiently small ¢ and ¢ € L®(R"). Here the constant C depends only on Ao and H(0).
Consequently property (a) is proved. By the induction, in addition,

17 bl < lIdllzee + C(T — To) (6.2)
holds (due to ke? < me? = T — Tp). |

Now we prove that relaxed limits % and u are uniformly continuous with spacial variables in the case
¥ € BUC(RY) too. From property (a) and (6.2), we can see JX is well-defined. To get the analogous
inequality of Lemma 4.7 in the case vy is not differentiable, for a parameter § > 0 we introduce the
regularization ¥F € C2(RY) of ¢ such that they satisfy

Y-0<y; <P<yYFf<y+6 inRM (6.3)

and their derivatives are bounded up to second order. From Lemma 4.7, we have the estimate

et (@) = TwF W) < Lo (557 ) lo = 0 (6.4)

for z,y € R" and sufficiently small €. Here L; is the maximum of the Lipschitz constants of ¥} and
95 . The estimate (6.4) shows that Je¢g: € UC(RY). In addition, we see that Jsd)f are bounded by
previous arguments. From (2.2), (6.3) and the properties of 7., we obtain

e <Tetf < I+ (1573
T ~ (1—;1—1;3)6 <TV5 < Tt

Hence we obtain

Tt — 8 < Ty S Jetb < Tetb} < Tetb +3, (6.5)
since (1 + ue?)~! < 1. Combining (6.4) and (6.5), we conclude that

|Te(a) — Teb @) < Lo (157mg ) lo — vl + 6 (6.6)

for z,y € RY whenever € < ¢'. Here ¢/ = 6'(’![)2:, Ao, A1, A2) is sufficiently small number. Inductively, we
have the generalized inequality of (4.7)

k
2) |z —y| + 6. (6.7)

IJ:"/’(‘C) - \Z:k¢(y)l < LS(W

Next, we will construct the modified estimate of (4.8) in Lemma 4.8 as before. Assume that ¥ €
BUC(RY). For the regularizations ¢§ of 9 as before, the estimate

\TEvE @) - TEE@)] < o (5 :ueg)ke2 (6:8)
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holds for each k and all sufficiently small & from Lemma 4.8 where C¢[y5] := max [C*[y7, 1], C*[y;, 1]].
If 0 <7 < j < m, then we have _ A
Tid — Ty < S5(8) — S5 (6) (6.9)

and

Tets — Jevs = —(85(8) — 57(8)). (6.10)
Here S§(4) is denoted by

k 1 !
£(8) = Co[p] E (7= =

In addition, one can verify that

1
1+ pe?

$5(0) - 55(0) < O W) (7og ) (G = D)7 (6.11)

holds for 0 < 7 < 7 < m. On the other hand, from (6.5) we obtain

Ti — Tip < JIvE — T +6, (6.12)
T — T 2 Ty — Ty — . (6.13)
Consequently the estimate
. . i+1
T20(@) ~ T < Wl (Tm) | U= D48 (6.14)

holds for 0 < i < j £ m and all sufficiently small £ from (6.9)~(6.13). Notice that (6.14) is the modified
estimate of (4.8). Now we give the proof of Proposition 4.3 by using (6.7) and (6.14).

Proof of Proposition 4.3. For any t, s € [Ty, T] with ¢ < s, there exist ¢, j such that 0 < ¢ < 7 < m and
T-je?<t<T-(G-1e? T-ie?<s<T-(i-1)?

hold. From (2.4), one can see u®(z,t) = Ji¢(x) and ué(y, s) = Ji¢(y) for =,y € RY. From (6.6), (6.14)
and the triangle inequality, we can estimate as follows.

lu®(z, t) — u(y, 8)| < C°[¥5)(j — i)e* + Ls|z - y| + 26. (6.15)

Set ColtF] := max [Co[yf], Col¥o5]]- Notice that Ls < ColtF] by the definition of Col] in (5.2). Since
€2 < T —t+¢? and —je? < 3 — T hold, we have

luf(z, t) — u(y, 8)| < C‘[zbf](h: —yl+ls—t|+e2)+25 (6.16)

for all sufficiently small € so that £ < £’ where £’ = £’(Rp, N, Ag, A1, A2) with Ry := Co[‘/’fst ]. Now we fix
4 > 0 in the formula (6.16). And then considering the relaxed limit % of u¢, we have

[@(=,t) - 6y, 5)| < Cly5 e —yl + s —t) + 25 (6.17)
where C’[d)fst, 1] is denoted by
Cl¢5] = lim C°[¥5] = C'(1 + Coly5’]). (6.18)
Note that lim,_,p h§ = 0 holds. Then we have

[a(z,t) — u(y, 9)| < CWz Iz — yl + |s — tl) + 26. (6.19)
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Finally, we define wq : [0, 00) — {0, 00) by
wo(r) := inf (ClE)r + 26) (6.20)
for 7 > 0, then wyp is the modulus of continuity of %, i.e., we get the estimate
[i(z, ) — %y, 8)| < wo(lz — yl + [t — s|). (6.21)

In addition, taking s = T in (6.16) and arguing as above, we conclude that & = ¢ at t = T. The
same holds for the case u. Therefore %, u € UC(RN x [T,,T]). Consequently we get the conclusion of
Proposition 4.3. a

Finally, we will prove Proposition 4.4 and Proposition 4.5. At first, we give the definition of (viscosity)
sub- supersolutions of (TP). Note that the following definitions are different from the usual, since our
problem (TP) is the time backward case.

Definition 6.2. We call a function u : RY x (Tp, T] — R subsolution of (TP), if u satisfies the followings.
Let ¢ be a smooth function on RY x (T, T).

(i) u* < o0 in RY x (Tp, T).
(ii) If u* — ¢ has a local maximum at (zo,to) € RY x (Tp,T), then
8¢ — pu* + F*(D¢, D*¢) + H(D¢) 2 0 (6.22)
holds at (zo, t0).
(iii)
u*(z,T) < ¢¥(z) (6.23)
holds for z € R¥.
Supersolutions are also defined as above.

Definition 6.3. We call a function u : RV x (Tp,T] — R supersolution of (TP), if u satisfies (i) and
(ii). Let ¢ be a smooth function on RN x (7o, T).

(i) us > —o0 in RY x (Tp, T).
(ii) If u, — ¢ has a local minimum at (zo,t0) € RN x (Tp,T), then
8¢ — pu. + Fu(D¢, D*¢) + H(D¢) < 0 (6.24)
holds at (zo,to)-
(iii)
uu(z, T) 2> () (6.25)
holds for z € RV.

Without loss of generality, we can replace “local” by “strict local” and assume that the strict local
maximum (minimum) value is 0. In fact, if we replace the function ¢ by

a(:l:,t) = ¢(z’t) + l.’B - .’130‘4 + |t - t0‘2 + (u. - ¢)($o,to),

then, ¢ satisfies (6.22) and u* —  realizes the strict local maximum 0 at (o, o). The same holds for the
case of supersolution.

Proof of Proposition 4.4. Since %(-,t), u(-,t) € BUC(RN) for any t € [Ty, T} and they are continuous
(ie.,u=u*and u=u,) T =u =1 at t = T, the condition (i) and (iii) in Definition 6.2, 6.3 are already
satisfied. Therefore we only check whether they satisfy the condition (ii).
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We assume that the condition (ii) does not hold. Then there exist a positive constant 6p and a smooth
function ¢, such that the following holds at the strict local maximal point (zg,%9) € RN x (Ty,T) of
[

0:¢ — pu + F*(D¢,D*¢) + H(D¢) < —6y <0  in By. (6.26)

Here By C RN x (Tp, T) is a sufficiently small closed ball centered at (2o, %p), and maxg, (T—¢)=0.
Let (z,t) be & point in By. From (2.3) and the Taylor expansion of ¢, we have
€ 1 s £ __ 2
uf(z,t) < TT gx)t;szp{(u é)(z +ew,t +£%)
+ ¢(z,t) + ew - (Dg(x, t) — p) + €°B9(x, 1)

2
+ %((D%(m,t) - X)w,w) + 2 F*(p, X) + szH(p)} + CeY4,
Here C is a positive constant depending only on the C® norm of ¢ in a sufficiently small neighborhood

of By (note that |w| < e~1/4).
Taking the special choices p = D¢(x,t) and X = D?¢(z,t) of player A, the inequality

(u® — @) (z,t) < 1_1_1;755 sup {(us — @)z + ew, t + €2)
+e2{B8id(2, 1) - po(x,t)
+ F*(Dg(z, 1), D*¢(z, 1)) + H(Dg(z, 1))} } + Ce%/*.

holds whenever || D¢||zw(p,) < €714, ||D?¢|| LB,y < €™1/2. From (6.26) and holding % — ¢ < 0 in Bo,

we have 1
() -0 < 737

{()" = )z + ewo, t +€%) + (Ce/* - 80)e?}

for all (z,t) € By, where wy = w§(z,t) is a vector with jwg| < e~1/4 which gives the supremum of
((u®)* - ¢)(x + ew,t + €?). Since (u°)* — ¢ is upper semi-continuous on compact set, such wg exists.
Hence we have the estimate

(w)* — é)(z,t) < ((u)* — @) (= + ewo, t +€?) (6.27)

1+ pe?

for all sufficiently small € such that Cel/* < 6y. Let X§ = (z§,t§) be a point such that lim,_,o u*(X§) =
T(xzo,to) (if the need arises, we take an appropriate subsequence). Then X§ € By for all sufficiently small
£. Now we define for each ¢ X§ = (x§,tf) as follows.

XE=Xi_, + (ew§(X5_,),e?) 1<k<m.
From (6.27), we obtain .
() = B)(XE-) < o (W)" = B)(XD) (6.28)

if X§,...Xf € Bo. So we have

1

) (@) - 9. (6.29)

(u - 8)(X5) < (
Let P be the projection from By onto [Ty, T]. Then, there exists 8 > O such that PBy = [tp —
do,to + do] C (To,T). Choosing the sufficiently small dp, in advance, we can suppose that to + 56 < T
and 48y < (T — Tp). Furthermore we choose £ 80 that |t§ — to| < dp. If we take n = n® such that
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38y < ne? < 44, for sufficiently small ¢, then one can verify that t5 ¢ PBy (i.e., X5 ¢ Bo). Indeed, we
obtain
to+25o$to—60+‘n€2Stisto+6o+’flo€2§to+560. (6.30)

In addition, n < m, since ne? < 48p < me? = T —Ty. There exists the minimal number K < 7 such that
X5 € Bo and X%, ¢ Bo, since X§ € By and X, ¢ By. Applying these properties to (6.29), we obtain

1 K
(W = (X9 < (1375m) (W) - )(XE). (6:31)

We can let X converges to some point X’ € By \{Xo} as ¢ — 0 (i.e., m — o) by taking an appropriate
subsequence. Note that the limit of (1 + ue?)~¥ as m — oo (with taking a subsequence) is positive and
less than 1, since K < n < m. In fact, we have the estimate

T-To\™ - -K
0<e#T-To) ¢ (1 +u p— 0) < (1 + uT mTo) <1 (6.32)
(note that €2 = (T — Tp)/m). Consequently there exists a constant o € (0, 1] such that

0 = (T - ¢)(Zo,t0) < a(T — ¢)(X') (6.33)

for every cases, this is because limsup,_,o(u®)*(X%) < T(X') by the definition of T. Therefore we get a
contradiction, since our assumption is that %— ¢ has the strict local maximum in By ((2o,%9) # X' € Bp).
Now the proof of Proposition 4.4 is completed. O

Proof of Proposition 4.5. Next we will show that u is a supersolution of (TP). As same as before, assume
that u is not a supersolution. Then there exist a positive constant 6y and a smooth function ¢, such that
the following property holds at the strict local minimal point (zo,tp) € R x (Tp,T) of u — ¢.

8¢ — pu + F.(D¢,D*¢) + H(D¢) 2 60 >0  in By. (6.34)

Here By C RY x (Tp,T) is a sufficiently small closed ball centered at (zo,to), and ming, (u—9) =0.
From (2.3) and the Taylor expansion of ¢, we have

w() 2 7oy infsup { (@ - 8)(z + Ge(w) + 4(2)

2
+ew- (Dé(2) - p) + 5((D*$(2) - X)w,w)

+£28,8(z) + £2F(p, X) + e2H(p) — Ce9/4}. (6.35)

Here we set z := (z,t) € By and (. (w) := (ew,?), and the positive constant C depends only on the C3
norm of ¢ in Bo. We take a sufficiently large constant Ro > 0 so that ||D@|| L (s,), ||D?¢||L(8,) < Ro-

At first, we consider the case D¢(zp) = Dé(zo, to) # 0. In advance, if we choose a sufficiently small By,
then there exists a positive number 79 such that |D¢| > ny > 0 in By. Hence there exists a sufficiently
large jo € N such that |D¢| > ng > j; ! holds in By. Applying Lemma 4.6 to (6.35), there exists @ such
that

W) 2 Ty {0 — @)+ (@) + 6(2)
+€28,4(2) + > F. (D (2), D*¢(2))

+ 2 H(D¢(2)) - h,e? — Ce%/*}  (6.36)
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holds. So we obtain

(u® — ¢)(2) >

— inf {(u* — 9)( + (@) - ()
+20,9(2) + *Fu(D(2), D*(2))
+e2H(Dg(2)) — he,e? — 059/4} (6.37)

from (6.34) and holding —¢ > —u in By. Thereby the estimate

1
€ 3 € _ 77 €fs Vo2
(" =) 2 gy inf {0 = 9=+ 6(@) + C (o)) (6.38)
holds for sufficiently small £ where
C*(jo) = 6 — h5, — Ce'/4. (6.39)

Note that ((u®). — @)(z + {-(w)) is lower semi-continuous on compact set with respect to w. And
((u®)+ — @)(2 + ¢.(W)) is bounded with respect to p, X (0 < |p| < e~%/4, |X| < €~%/2). In addition, since
[@w| < e~1/4, taking an appropriate subsequence of (p,,X,) which approximates the infimum, we can
find at least one w§(2) := lim;_,oc W(E, 2, Pn,, Xn,;) such that

((u%)e — 9)(2 + (e (wf(2))) = ;fl)g((us)v; - ¢)(z + ¢ (w))
and |w§(2)| < e~ /4. For this wp = w§(z), we have the bound

(). — 8)(z + Celwo)) + & (ing (6.40)

(W) — ¢)(2) 2

1+ 62
Next, we consider the case D¢(2zo) = 0. Let F : Bg — R be the function denoted by
F() = (") — pu() + F.(0, D*¢()) + H(D¢(-). (6.41)

Then we can assume that F(z) > 6, for any z € Bp. From (6.35), we have

(w = 9)(2) = 1 inf sup { (0" — $)(z + G () - ?hu(2)
+ew - (Dé(z) — p) + %((Dzdb(z) - X)w,w)
+ €28,0(2) + €2F(p, X) + €2H(p) — 059/4}. (6.42)
Applying Lemma 4.6, there exists @ such that (1) if |D¢(z)| > 571,
(W =9 = T { (0 — B)e+6(@)
+£20,6(2) ~ e2pu(2) + €2 F(De(2), D2 (2))
+e2H(D@(z)) — hse? — 059/4} (6.43)

vields and (2) if |D¢(2)| < 51,

(W = )) 2 7= {0 — Oz + (@) + EF(z) — hie — O/} (6.44)
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yields where j € N. From (F2),
F(D¢(z), D*¢(2)) > F.(0, D*¢(z))

holds in the case (1). Hence (6.44) holds for every j € N and every cases. Hence there exists a vector
wo = w§(z) such that |up| < e/ and

Cce(j)e?

(W) = B)(2) 2 T ne?

((u)x — )z + Ce(wo)) + === (6.45)

1+2

holds for any z € By. For fixed j, we can take ¢ is small enough so that C¢(j) > 0, and set v°(z) :=
((u®)« — ¢)(2) for z € By. Then we obtain

v5(2) 2 T——v"(2 + G (wo). (6.46)

Let X§ = (x§,t5) be a point such that X§ — Xo := (zo,t0) as € — 0 and lim._o(u® — @)(X§) =
(u — ¢)(Xo) and X = (zf, ti) be the sequence defined by

Xi = Xi—y + Ce(wg(Xk-1))-
In advance, we take ¢ be small enough so that X§ € Bo. From (6.46), if X§{,--- X{ € By, we have
(X5 2 (1) XD (6.47)
14 pe?
By the exactly same way as the previous proposition, we verify that there exists the minimal number

K € N such that K < m and X§ € Bo, X%, ¢ Bo. Since (6.47) also holds for this number K, we
obtain

W (X5) > (1+p,€ ) o (XS). (6.48)

Since (1 + pue?)~K — o € (0,1] as m — oo, taking an appropriate subsequence, we get the following
estimate as same as the previous proposition.

0 = (x— ¢)(Xo) 2 o(u — ¢)(Xp). (6.49)

Here X! € Bp \ {Xo}. This inequality implies that u — ¢ has at least two minimal point in Bo.
Consequently we get a contradiction. Now the proof of Proposition 4.5 is completed. O

7 Construction of Viscosity Solution

Let Q be a domain in RV and §,Q be the parabolic boundary of @ = Q x (0,T) (ie., 3,Q =
AN x [0, T)UN x {t = 0}). If @ = RV, the parabolic boundary of Q is defined by R¥ x {t = 0}. Assume
that the function G satisfies following conditions.

(1) G:[0,T] x R x RY x S¥ — R is continuous.

(2)
G(t,r,p,X) < G(t,r,pY) forX>Y, X, Ye&V¥

and t € [0,7], r € R, pe RY.
(3) —o0 < G.(t,1,0,0) = G*(t,r,0,0) < co.
(4) For some constant cg,
rw— G(t,7,p,X) + cor

is a non-decreasing function.
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Theorem 7.1 ({16, Theorem 3.1.4]). Let u and v be respectively a sub- and supersolution of
8u + G(t,u, Du, D*u) =0 n Q.

Assume that u and —v are bounded from above on Q. Assume that

lim sup{u®(z,8) —va(y,9) ; |z —y[ <6, |t — 5| <6,
dist((x,t), 3,Q) < 6, dist((y, 5), FpQ) <6,
(z, ), (¥,s) €A% [0,T']} <0 (7.1)

for each T' € (0,T) and that u* > —00, v. < 00 on 8,Q. Then

lim sup{u(z,8) — v (y,9) ; [e—y| <4, |t —s| <4,
(z,t),(y,8) €A% [0,T']} <0 (7.2)

for each T" € (0, T).

Setting G(t,r,p, X) = —F(p, X) — H(p) + pr (independent of t) and changing of variables with respect
to the time, one can see that our conditions (F1)-(F4) and (H) satisfy the above conditions (1)—(4).
By the contribution of this theorem, we obtain the uniquely existence of the viscosity solution and its
uniform continuity. Indeed, let T} € (Tp,T) be an arbitrary-fixed constant and é be a positive number.
Then the following estimates yield for any (z,t), (y,s) € RN x [T}, T] such that |T —t| < 6, |T — s| <6,
|t -8 <6 and |z —y| <4.

a(z,t) - u(y, 8) = (@(z,t) —w(z, T)) + (u(z,T) — u(y,T)) + (u(y, T) — u(y, s))
< wo(T = t) + (¥(z) — ¥(¥)) +wo(T — 5)
< 3wo(9) '

where wp is the modulus of continuity of @ and u. In addition, since T and u are respectively a viscosity
sub- and supersolution, the assumption (7.1) is satisfied. Hence (7.2) holds. Consequently we have the
comparison inequality

a<u in RV x [T3,T] (7.3)

for any T§ € (Tp,T). Generally, u < @ in RY x [T}, T] holds from their definitions. Therefore T = u
yields. If we set u = U = wu, then u is the viscosity solution of (TP) which belongs to the class
BUC(R¥ x (Ty,T)). This shows that the value function u¢ uniformly converges to u as € — 0 on any
compact set in RN x (Tp, T]. So the conclusion of Theorem 4.2 holds.

Remark 7.2. Actually, u can be extended as the viscosity solution in R¥ x [Tp, T}, since it is well-
defined at ¢t = Tp (see [16, Theorem 3.2.10]). Furthermore Theorem 7.1 implies the uniqueness of
viscosity solution which has the uniform continuity. Consequently our viscosity solution u = lim_,q u®
of (TP) is unique.

8 Proof of Key Lemma

In this section, we give a sketch of the proof. To obtain (4.4) and (4.5), we prove that the following
properties hold for each cases. Assume that (¢,Y) € RY x SV with |q|, |Y| < Rp. For any (p,X) €
RY x SN such that |p| < €714, |X| < e Y2 and p # ¢, X # Y, there exists @ = W(e, p,q,X,Y) such
that |@| < e~1/4 and

e 'w-(g-p) + %((Y ~ X)W, Wo) + F(p, X) + H(p) > F(q,Y) + H(q) - h1(e'/*) (8.1)
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holds for any € < €1, if |g| > 1/K and

e'W-(g-p)+ %((Y ~ X)W, W) + F(p, X) + H(p) > F.(0,Y) + H(q) — ha(¢'/*) (8-2)

holds for any € < €3, if |¢| < 1/K. Here K € N is an arbitrary-fixed number, £1 = £1(K, Ry, Ao, A1, A2),
€2 = €2(Ro, N, Mg, A1, A2) and then h, is the modulus depending on K, Az and Ry, on the other hand,
hq is the modulus depending on A, and Rjy.

Proof of Lemma 4.6. In what follows, we set the maximum eigenvalue of Z € SN as £(Z) to simplify.

Assume that p # g and X # Y. Using unit eigenvectors £&3,£1,...€n_1 € RN of Y — X, we can represent
w with |w| < e~1/4 by
N-1

w= Z 8:&:

=0

where s; ER (i =0,1,... N —1) with 82 +---+8%_, < £~1/2. In particular, let & be the unit eigenvector
which gives the maximum eigenvalue of Y — X. Thus e 2Q*(w, p, X) is rewritten by
N-1 1
e s0bo - (g-pP)+e7' Y sk (a-p) + 336 - X)

=1

N-1
+2 3 (Y - X0, &) + Flo, X) + Hp). (83)

=1

Case 1. The case |g| > 1/K for K € N.

(1-I) If |p — ¢| < €!/4, then we have |p| > 1/2K for all sufficiently small € so that ¢ < C; K~4(C; =
16-1).

In the case E(Y - X) > 0 (e, EF (Y - X) =E(Y - X)), we take [so| = A\; and s; =0 fori=1,... N—1
in the formula (8.3) where A; < ¢~/4. Then it is rewritten by

e Mo~ (a - )l + ALEF(Y - X) + F(p, X) + H(p). (5.4)

Note that choosing an appropriate sign of sp, we let the term 3p&p - (¢ — p) be non-negative. From (F3),
one can verify that for any p € RY,

’\;81‘(1/ -X)+F(p,X)> F(p,Y) (8.5)

holds. From (¥4) and (H), in addition, we have the following estimates for the terms of F and H, since
lpl > 1/2K.

F(p,Y) 2 F(g,Y) — wo(e"/%), (8.6)
H(p) > H(g) — Aae*/* (8.7)

where wp = wy /2K, R, is the modulus depending only on K and Ry, on the other hand, X; is the Lipschitz
constant of H. Substituting (8.5), (8.6) and (8.7) for (8.4), the formula (8.4) is estimated by

F(q,Y) + H(q) — hi(e'/%) (8.8)

from below where k;(38) = wo(8) + A28.
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In the case E(Y — X) <0 (i.e, EN(Y - X)=0o0r Y < X), we take s; =0 for i = 0,1,... N — 1 in the
formula (8.3). One can verify that F(p, X) > F(p,Y) for any p € RY holds, since —F is (degenerate)
elliptic (see Remark 3.3). From (8.6) and (8.7), we see that it is also estimated by (8.8) from below in
this case too. Consequently we have the formula (4.5) whenever ¢ < C; K ~* in the case (1-I). Here the
positive constant C, also depends only on ;.

(1-II) If |p — g} > /4, then we can represent (¢ — p)/|q — p| by

a—p N-1
la ~ p| ;rﬁ (89)

where 7; € R with 1§ + 72 + ... + 7% _, = 1. Let us divide this case into two parts.
(i) The case [&o - (g — p)} 2 (3A2/A1)e!/2.

If E(Y — X) > 0, then we choose s; so that |sp| = A1, 8; =0 (i = 1,... N — 1) and obtain the same
formula as in (8.4). From the assumption in this case, we can estimate (8.4) by

2
3re" V2 4 1\218+(Y - X)+ F(p,X)+ H(p) (8.10)

from below, since e~1/2 > ¢~1/4 by (F3).

(8-.10) > 3X2e~ Y% + F(p,Y) + H(p),
> 3X26"2 —~ C(1+ Ro) + H(q) ~ A2lp - dl,
> 3Xe™ Y2 — C(1 + Ro) + H(g) — 22~ V4. (8.11)

Note that [F(p,Y)] < C(1 + Ry) holds for any p € RY from Remark 3.3, and if Ry < £~1/4, then we
obtain |p — g| < |p| + |g| < 2671/, Here C = C(Xg, \1). The formula (8.11) is estimated by

Aee™V4 —C(1+ Ro) + H(q) (8.12)

from below. In addition, if ¢ is small enough so that A;e~1/4 > 2C(1 + Rp), then we have the bound as
follows.
(8.12) > C(1+ Ro) + H(q) = F(q,Y) + H(q) (8.13)

for all € < C3(1 + Rp)~* where the positive constant C, depends only on A9, A; and Ag.

If E(Y — X) < 0, we choose s; so that sy = e1/4\;, s; =0 (i = 1,... N — 1), and substitute these for
(8.3). Then, the formula (8.3) is estimated by

2
She~ V4 4 %el/zs(y — X))+ F(p, X) + H(p) (8.14)

from below. We verify that £(Y — X) > ~(Ro + £~ /2) and F(p,X) > F(p,Y) hold, so the following
estimates yield
2
(8.14) > 3xe~ V4 — i\zl(sl/?Ro +1)+ F(p,Y) + H(p),
> 3Me™V% — C(1+ Ro) + F(p,Y) + H(q) — 2hae™ M/,

= dae" V4~ C(1+ Ro) + F(p,Y) + H(g),
> F(q,Y)+ H(g)



90

for any € < Cy(1 + Rp)™* as same as the case (i-a). Therefore we obtain the formula (4.5) in the case

).
(ii) The case |& - (g — p)| < (8X2/A1)e/2.
From (8.9) and the assumptions, we have the bound for r¢ as follows.

o-(a-p)| 3gel/4

= =: cngl/d
T 1epe’?). 8.15
Irol lg — pl A1 ( ) ( )
Since 72 + - -+ + 7% _; = 1, we have the inequality
1—-0(2)81/23|7‘1|+[7‘2l+”'+l7‘1v_1| (8.16)

where we take £ so that cZel/?

number jg such that

< 1/2, in advance. This inequality implies that there exists at least one
1—cel/? S L
N-1 2N’

Now we take s; so that s; = 0 (i # 0, jo) in the formula (8.3). Then we can rewrite it as follows.

70| = (8.17)

88

SE(Y - X)

6“13060 : ((] - p) + 6_18.1'05.7'0 ' (q - ]J) +
2
+ A = Xegor &) + F(0,X) + HEp). (818)

We choose sp so that

hd:{h if (Y — X) >0, (5.19)

0 if E(Y — X) <0

and 8ofo - (¢ —p) > 0, in addition, take |s;,| = A\1£/4 so that 84o€,, - (@—p) = 0. Then the formula (8.18)
is estimated by

_ pYi
€734 Irs0llg — Pl + —,}EI/Z«Y — X)&0,&50) + F(p,Y) + H(p) (8.20)
from below. Note that |r;,| has the bound (8.17) and |g — p| > €!/4, then the following inequalities hold.
Me”l/? 1/2 1
(8.20) > =o— ~ C(e'?Ro + 1) + F(p,Y) + H(q) — 20ae™V/%,

> X674~ C(1+ Ro) + F(p,Y) + H(q),
> F(q,Y)+ H(q)-

Here ¢ is small enough such that (A1 /2N)e~1/2 > 3Xe~1/4 (i.e., € < C3 where C3 depends only on Ag, A1
and Az) and € < Cy(1 + Rp)~* hold. In particular, since |g| > 1/K > 0, we see F(q,Y) = F.(q,Y).
Consequently if we set €; = min{C; K~4,C>(1 + Rp) " 4,C3}, then the formula (4.4) holds with hy(s) =
wo(8) + A28 in the Case 1.

Case 2. The case |g| < 1/K for K € N.

Arguing the same as Case 1, we can have the estimate (8.2). Finally, we consider the case of p = q or
X =Y for ¢ € RY. We can choose the sequences {px} C RY and {X,} C S¥ suchthat py = ¢, X, = Y
as k,n — oo, respectively. Now let us set wi = wo(e, px,q, Xn,Y). Then {w}} has a subsequence which
converges to some point as k — 0o or as n — oo. In the formula (4.5), since right-hand side is independent
of p, X, we verify that in the case of p = g or X =Y, the conclusion of the lemma holds by taking W as
the limit of a subsequence {w}} as k — oo or n — oo. |
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