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Abstract

Pyramidal traveling fronts in the Allen-Cahn equations have
been studied in the three-dimensional whole space. For a given
admissible pyramid a pyramidal traveling front is uniquely deter-
mined and it is asymptotically stable under the condition that given
perturbations decay at infinity. A pyramidal traveling front is a
combination of planar fronts on the lateral surfaces. Also it is a
combination of two-dimensional V-form waves associated with the
edges of a pyramid.

AMS Mathematical Classifications: 35K57, 35B35
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1 Introduction

For one-dimensional traveling waves in the Allen-Cahn equation or the
Nagumo equation so many works have been studied. See [1, 4, 9, 10, 2]
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and so on. In the two-dimensional plane or higher dimensional spaces the
simplest traveling waves are planar ones. Recently non-planar traveling
waves in the whole space have been studied by [17, 18, 7, 8, 12, 3, 21, 22]
and so on. For non-planar traveling waves researchers are interested in
the shapes of the contour lines or surfaces. Constructing traveling waves
with new shapes is an attracting motivation of the mathematical research.
The mathematical study on these multi-dimensional traveling waves will
give information for chemists or biochemists to study multi-dimensional
chemical waves or nerve transmission phenomena in future.

The stability of planar traveling waves have been studied by [14, 13,
23, 15] and so on. The existence and stability of two-dimensional V-form
waves are studied by [17, 18, 7, 8, 12]. The existence and the uniqueness and
asymptotic stability of pyramidal traveling waves are studied in [21, 22].

In this paper we consider the following equation

Ou

== . TR3
5 Au+ f(u) in R% ¢ >0,

Ul = Uo in R3.

A given function ug belongs to BU(R3). Here BU(R®) is the space of
bounded uniformly continuous functions from R3 to R with the supremum
norm. The Laplacian A stands for §%2/0z2 + 82/0y? + 0%/82%. We study
nonlinear terms of bistable type including cubic ones. This equation is
called the Allen-Cahn equation or the Nagumo equation.

In the one-dimensional space, let ®(x — kt) be a traveling wave that
connects two stable equilibrium states +1 with speed k. By putting p =
z — kt, ® satisfies

—@7(p) — k(1) - f(@(1) =0 —oo < p< oo, (1)
®(~o0) =1, @(o00)=~-1.

To fix the phase we set ®(0) = 0. See Figure 1.
The following is the assumptions on f in this paper.

(A1) fisof class C'[—1,1] with f(%1) =0 and f'(£1) < 0.
(A2) f_ll f > 0 holds true. |
(A3) f(s) <0 holds true for s > 1. f(s) > 0 holds true for s < —1.
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D)

Figure 1: One-dimensional traveling wave ®

(A4) There exists ®(u) that satisfies (1) for some k£ € R.

We note that k > 0 follows from (A2) and (A4).

For f(u) = —(u + 1)(u + a)(u — 1) with a given constant a € (0, 1),
®(u) = —tanh(u/V/2) satisfies (A1)-(A4) for k = v/2a. Another simple
example is as follows. Let G(u) € C?(R) satisfy

G(£1) =0, G'(£1)=0, G"(£l1l)>0
G(s) >0 ifs?#1,

max < 0 sup——&— < inf G'(s)
" a<—1 /2G(s) s>1 1 /2G(s)’

and let f(u) be given by
fu) = —G'(u) + k/2G(u)

for any constant k£ with

max{O,sup G'(s) }<k<inf G'(s)
s<—1

/' 2G(s) s>1 ., /2G(s)’

Then ®(u) given by

pw=x—kt

u=—-/:—2d\/%(—;3,
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satisfies (A1)-(A4).
For more examples of one-dimensional traveling waves see [4, 1, 2, 3, 21].
We adopt the moving coordinate of speed ¢ toward the z-axis without
loss of generality. We put s = z — ¢t and u(z,y, 2,t) = w(z,y,s,t). We
denote w(z,y, s,t) by w(z,y, 2,t) for simplicity. Then we obtain

Wt — Wag — Wyy — Wy — W, — f(w) =0  inR% ¢>0, @)
W|t=o = Up in R3.

Here w; stands for dw /8t and so on. We write the solution as w(z, y, 2, t; up).
If v is a traveling wave with speed ¢, it satisfies

L] ¥ — vy — vy — Upy — cv; — f(W) =0 in R3. (3)

We assume
c>k

throughout this paper. Since the curvature often accelerates the speed,
one has many traveling waves if ¢ > k. As far as the author knows, it is an
‘open problem to prove the existence or non-existence of traveling waves if
c<k.
Let n > 3 be a given integer. We put
it VE— R

rd 2 >0 (4)

Assume (A4;, B;) € R? satisfies

A2+B?=1 forallj=1,...,n (5)
and _
Aij+1 — Aj+1Bj >0 1<j<n-1, (6)
A.By — A1 B, > 0.
Now 4
o 1 T
l/j d"‘f TBJ'

T Vixe |
is the unit normal vector of a surface {z = 7(4,z + B;y)}. We put

hi(z,y) ¥ 7(Ajz+ Byy),

h(z,y) ¥ maxhy(e,y) =7 max (43 + Byy). (7)
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Then z = h(z, y) gives a reverse pyramid in R3. We call it simply a pyramid
hereafter. We set

Y = {(z,y) | W(=,y) = hi(z,9)},

and obtain
2
R - U;":]_Qj.

We locate 21,8, ..., ), counterclockwise. To ensure this location we as-
sumed (6). Now the lateral surfaces of a pyramid are given by

S; ={(z,y, hji(z,y)) € R’ | (z,9) € U}
forj=1,...,n. We put
ng{%ﬁSﬁlﬁlgjﬁn—L
J S, NS if j = n.
Then I represents an edge of a pyramid. Also

r<uu,
represents the set of all edges. See Figure 2.
By using (4;, B;) with A? + B? = 1, Equation (3) has a solution
® ((k/c)(z — hj(z,y))) . It is called a planar traveling front associated with
the lateral surface S;. Now we put

w@2) ¥ @ (26— o)) = max @ (26— o))

We define

DY) ¥ {(z,y,2) e R®| dist((z,v,2), ) >~} (8

for v > 0.
The existence of pyramidal traveling fronts is proved in [21]. See Fig-
ure 3.

Theorem 1 ([21]) Let ¢ > k and let h(z,y) be given by (7). Under the
assumptions (A1), (A2), (A8) and (A4) there exists a solution V (z,y, 2)
to (3) with

lim sup
Y=+ (5,4,2)€D(y)

Viz,y,2)— @ (%(z _ h(:c,y))) ] ~0. (9)
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asetofedges [

Figure 2: The edge lines I’

Moreover one has

Vilz,y,2) <0, & (ZZ—(z — h,(:c,y))) <Viz,y,2) <1 for all (z,y, 2) € R3.

The following theorem is the main assertion on the uniqueness and the
stability of pyramidal traveling fronts.

Theorem 2 ([22]) In addition to the assumptions as in Theorem 1 sup-
pose

lim  sup |uo(z,y,2)— V(z,y,2)| =0. (10)
Y=+ (z4,2)€D(y)

Then

lim sup |u(z,y,z—ctt)—V(z,y,2)|=0
£+ (7,y,2)€R3

holds true. Especially V(z,y,z) as in Theorem 1 is uniquely determined
by (3) and (9).
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Figure 3: The pyramidal traveling wave V

If ug satisfies

Rhm Sup IUO(SD, Y, Z) - V(.’E, Y, Z)l = O)
—-+00 z2+y2+22> R2

it also satisfies (10). Thus the theorem also asserts that a pyramidal travel-
ing wave V' is asymptotically stable globally in space if a given fluctuation
decays at infinity. The asymptotic stability is valid for a weaker condition
(10). This means that V is robust for fluctuations added on edges. Now
V as in Theorem 1 can be called the pyramidal traveling wave associated
with a pyramid 2z = h(z,y), since it is uniquely determined.
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3 Preliminaries

Under the assumption (A1) and (A4), ®(u) as in (1) satisfies
®(u) <0 foral ueR, (11)
max {|®' ()], |2"(u)]} < Koexp (—kolul) . (12)

Here Ky and k¢ are some positive constants. See Fife and McLeod [4] for
the proof.

From the assumptions on f there exists a positive constant d. (0< 4, <
1/4) with :

—f(s)>8 if|ls+1] <25, or|s— 1| < 26,,

where
def 1

= §min{-f’(—1), —f (1)} >o0.
Then for all § € (0,d.) we have
—fi(s)>B if|s+1]<26or|s—1|<26.

We state the uniqueness and stability of a two-dimensional V-form front
in the two-dimensional plane. See Figure 4. Let @(¢, 7, ¢; Wp) be the solu-
tion of

at*ﬁff-@ﬂﬂ*swﬂ—f(&;):o for(g»n>ER21t>Oa
w(&,n,0) = w(€,n) for (§,7n) € R?
for a given bounded w, € C*(R?).

Theorem 3 (Two-dimensional traveling V-form fronts [17],[18]) For
any s € (k, +00), there ezists unigque v,(£,7; s) that satisfies

—(va)ee — (Va)my — $(vi)y — f(ve) =0 for (¢,m) € R?,

—00 £24 25 R2 S
One has
7 _ 2 :
o (5 (=L Ee)) <uen  premer,

inf (=()n(€,m) >0  forall§ €(0,6,). (15)

—14+0<v.(€,m)<1-6
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Figure 4: Contour lines of a two-dimensional V-form wave v.(z,y) ([17]).

The following convergence

t-]ﬁ}’l-noo “w(g) , t) - ’U*(g’ 77) “L°°(]R2) =0

holds true for any bounded function Wy € C'(R?) with

Aim sup  [@o(€,7) — v (€, M) = O.
——>OO€2+.,72>R2

See also Hamel, Monneau and Roquejoffre [7, 8]. This v, can be
called the two-dimensional traveling V-form front associated with (13)
since it is uniquely determined. We call the n-axis the traveling direc-
tion of v.(&,7; ). This theorem asserts the asymptotic stability of v, for
any fluctuation that decays at infinity.

Now we explain why we can take any ¢ € (k,+o00) and why we should
use tanf = —-—Vck‘k A planar traveling front travels with speed k to the
vertical direction. Then towards the z-axis it travels faster. The speed c
and the angle # should satisfy tanf = —-——-"ck"k as in Figure 5. If 6 goes
to /2, a two-dimensional V-form front travels with +oo. If 6 goes to
zero, a two-dimensional V-form front travels with k. Thus we can take any

c € (k,+00).
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Figure 5: For a two-dimensional V-form front one has tan = AE;E

A pyramidal traveling front V' converges to two-dimensional traveling

V-form fronts on the edges at infinity, that it inherits the stability property
of v, and that V is asymptotically stable.

Now 7 is called a supersolution if and only if
LU = —Tpy — Uyy — Uy — U, — f(U) >0 in R3,
Then one has
w(zx, t;7) < v(x) in R3, ¢t > 0.
A subsolution can be defined similarly, that is, v is called a subsolution if
and only if
‘C[?—J-] = T Vg — Vyy = Uy — CU, — f(y) <0 in R3.
Then one has
w(z, t;v) > v(x) in R3, ¢t > 0.
For p(z,y) € C>(R?) we put

Vo) (D0U) (96| = VDo v + Davler o

Here D1¢(z,y) = @z(z,y) and Dap(z,y) = py(z,y). For a > 0, >0
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Figure 6: A supersolution U

and ¢ € C*(R?) we put

U(:E?y, ) et
= gl ) + ( - k) (16)
€1 - .
V1+|Velaz, ay)l? V1+ Ve(az, ay)?

Lemma 1 ([21]) For some positive-valued function ¢(z,y) € C=(R?)
with |V| < 7 the following holds true. For sufficiently small €1, say
g1 € (0,€}), there exists ap(e1) so that U given by (16) satisfies

LU >0, v<U in R3
for any & € (0, ap(e1)).
See [21] for the construction of ¢ and the definitions of €] and ag(e1).

Now we explain intuitively why U becomes a supersolution if a > 0 is
small -enough.
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For 0 < o < 1 we shift up and expand the graph of z = ¢(z,y) and
obtain the graph of '

1
2 = —yp(az, ay).

If a > 0 goes to zero, it becomes very flat like a plane. If we take o > 0
smaller and smaller, the contour surface {x € R3|U(x) = 0} becomes
flatter and flatter like a plane. Then it should moves upwards with the
speed k, since k is the speed of a planar traveling wave. We are now using
the moving coordinate with speed c. The assumption ¢ > k implies that
the contour surface {x € R®|U(z) = 0} moves downwards with speed
¢ — k in the the moving coordinate. This gives an intuitive explanation
of w(zx,t;U) is decreasing in ¢t > 0, that is, U is a supersolution as in
Lemma 1.
In [21] V is defined by

V(z,y,2) € lim w(z,y, 2, t; v) (17)

for any (z,y,2) € R3. By Sattinger [20, Theorem 3.6], w(z,y, 2, t;v) is
monotone increasing in ¢ > 0 for each (z,y, z) € R3.

Let U be as in (16) under the assumption of Lemma 1. We fix £ and «
later. We write it by U though it depends on € and « for simplicity. We
have

v(z,y,2) < V(z,y,2) < U(z,y, 2) in R3.
Hereafter we set = (z,y, z) € R3. We have (0,0) > 0. We get
lim inf U(z) 21 (18)

a—0|x|<R
for any given R > 0. We have

, ——1(asca)
1 | 7 zelaz,ay

d
V1+|Ve(az,ay)l* | V1+|Ve(az,ay)P

Uz(xa Y, z) =

4 Uniqueness and stability

A pyramidal traveling front V converges to two-dimensional V-form fronts
on edges at infinity. We write the explicit form of the two-dimensional
V-form front on each edge.
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For each j (1 < j < n) we consider a plane perpendicular to an edge
I'; = §; N Sj41. Then the cross section of 2 = max{h;(z,y), hj+1(z,y)}
in this plane has a V-form front. Let E; be the two-dimensional V-
form front as in Theorem 3 associated with the cross section of z =
max{h;(z,y), hj11(x,y)}. We write the precise definition of E; later.

The direction of I'; is given by

1 Bji1 — B;
Aj—Ajn

V q; + T2p} 7(A;Bjy1 — Aj1By)

We note that the z-component is positive.
Now we define

Vi X Vjp1 =

p; & A;Bj - AjnB; >0, ¢ ¥ \/EAH-I = 4;)?+ (Bj+1— B;)? > 0.

for1 <j<n. Weput 4,1 % Ay, Bnya et B; and thus

Pn = AnBl - Aan > O, qn = \/(Al —_ An)2 + (Bl - Bn)2 > 0.

The traveling direction of a two-dimensional V-form wave E; is given by

a2 St BENE (YNNG
]Vj+1 _ le ( J J+1)
1[4~ Ain 1 Bjq1 — B,
=—| Bj = Bjy1 | % Aj—Ajn
4 0 V&G 705 \7(4;Bj11 — AjnBj)
1 7(Bj — Bj+1)p;

= T(Aj+1 — A;)p;

a1/ 205 + 4} q2

Let s; be the speed of E;. Let 26, (0 < 6; < w/2) be the angle between S;
and S;;+1. Then we have
s;jsinf; = k.

The angle between v; and v, — V|7 (v — v;) X (v; X vjy41) equals
7T/2 — 9_7'.
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/2 Gj

j+1 :

Figure 7: The angle between surfaces S; and S;+1

We get
VTR G
SiIl 03 =
Qj\/ 1 “+ T2
and thus
Cqj

55 = [ 2.2 . 2

The speed of E; toward the z-axis equals

/20?2 4 2
- Jsj-—zl-cx/.l—}—'rzzc,

45
which coincides with the speed of V. Since we are now using the moving

coordinate, this fact suggests that Ej satisfies L(E;) = 0. We will check
this later. We use the following change of variables

T £ & T
y|=R;|n), |n]=Rj|v
z ¢/ ¢ z
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where R} is the transposed matrix of R;. Here we set

(A —Ajn1 7(B; — Bjni)p;  Bj— Bjn \

Y uyrRtg TR+ g
R, def B; — EJ"H T(Ajp1 — A;)p; Ajp1 — A
R VAR R VA Rk
0 q; B TDj
\ T2p% + ¢ \/ 0% + ¢2 )
and
( Aj — Ajn Bj — Bjn 0 )

q; q;
7(B; — Bj41)p; T(Ajr1 — A;)p;

9
(R)T = | GY™P+4  G/TH+G TR+
Bj = Bjn Ajr1 — A, P
\ yTErE e g )

Now we define Ej; as

Ej(a:,y, Z) def v, ((AJ — A.’i+1)$;— (BJ - Bj+1)y
J

7(B;j — Bj41)p;x + T(Aj — Aj)py + QJQ-Z. Cq; )

]
51/ 7202 + 2 \/ T3P + 4}

Then after calculations we obtain

)

LIE;] =
= (V)ee(&, 75 85) — (a)om (€, 75 85) — 83 (vi)n (€, 15 85) — f(val(§,m585)) = 0
in R3. Thus for each j (1 < j < n) Ej;(x) satisfies (3). We call E; a planar

V-form front associated with an edge I.
We put

def {x e R?| dist(x, I') = dist(z, I})} for1 <j<mn.
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Then we have
| R® = U7_,Q;.
We define
E(z) ¥ max B;(z).

1<j<n

Since Ej; is strictly monotone decreasing in z for each j, E is also strictly
monotone decreasing in z. It satisfies

v(x) < E(z) <V(z) xecRd

and |
lim sup |E(x)—v(x)| =0. (19)

170 zeD(v)

A pyramidal traveling front is uniquely determined as a combination of
two-dimensional V-form fronts.

Corollary 4 ([22]) Let h be as in (7) and let V be the pyramidal traveling
wave associated with z = h(z,y), that is, V satisfies (3) and (9). If (3)
has a solution v with

lim sup |v(z) — E(x)| =0,

then one hasv =V.

Thus a three-dimensional traveling wave is uniquely determined as a
combination of two-dimensional V-form waves.
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