goooboooogn
0 16510 20090 179-195 179

Poisson equations derived from certain H-J-B
equations of ergodic type

Hideo NAGAI

Graduate School of Engineering Science
Osaka University, Machikaneyama 560-8531 Toyonaka, Osaka, Japan

nagai@sigmath.es.osaka-u.ac.jp

1 Introduction

In studying problems of large time asymptotics of the probability minimizing down-side
risk, which arise from mathematical finance, we discussed duality relation between the
minimizing probability on long term and risk-sensitive sensitive asset allocatiion on infinite
time horizon. As a result we get the limit value of the minimizing probability as the
Legendre transformation of the value of risk-sensitive stochastic control on infinite time
horizon along the line of the idea of large deviation principle. Seeking the probability
minimizing such down-side risk on long term is a non standard stochastic control problem
and it is not directly obtained. In proving the duality relation key analysis lies in the
studies of Poisson equations derived from H-J-B equations of ergodic type corresponding
to the risk-sensitive stochastic control as their derivatives. In this article we present
the results on the large time asymptotics of the probability and then state the results
concerning analysis of the Poisson equations. Full papers will be seen elsewhere. ‘

2 Results about problems of large time asymptotics arising
from mathematical finance

Consider a market model with m + 1 securities and n factors, where the bond price is
governed by ordinary differential equation

(2.1) dS%(t) = r(X;)S°(t)dt, S°(0) = s°.

The other secutity prices and factors are assumed to satisfy stochastic differential equations

dSi(t) = S'(t){a* (Xe)dt + STEIT o} (Xe)dWiY,

(22) . _
S*0)=s" i=1,...,m
and
dXt = ﬁ(Xt)dt + A(Xt)th,
(2.3)

X(0) ==z,
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where W, = (W§),— 1,.,(n+m) is an m+n— dimensional standard Brownian motion process
on a probability space (2, F,P). Let N} be the number of the shares of i -th security.
Then the total wealth the investor possesses is defined as

m
Vi=>_ N;S;

i=0
the portfolio proprtion invested to i-th security as
NiSt
L’t )
= (N2, N}, NZ,...,N™) (or, hy = (h},...,h1)) is called self-financing if

Vihi
dv; = ZNtdSt = Z —tdS;

=0 t=0 t

hi = i=0,1,2,...,m

and it means

D = hdr(Xy)dt + S hi{od(Xp)dt + Y007 o (X )dW }

= r(X;)dt + Yoy hi{(eF(Xe) — r(Xp))dt + 377 ok (X, YAW{}

Here we note that hy is defined as m-vector consisting of h},...,hJ" since h) = 1—-3"7" | h!
holds by definition.
As for filtration to be satisfied by admissible investment strategies

Gt =0o(S(u), X(u), u<t)
is relevant in the present problem and we introduce the following definition.
Definition 2.1 h(t)o<i<T %3 said an invetment strategy if h(t) is an R™ wvalued G,- pro-
gressively measurable stochastic process such that

T
P / Ih(s)[2ds < o0, VT)=1.
0

The set of all investment strategies will be denoted by H(T). For given h € H(T) the

process V; = V;(h) representing the total wealth of the investor at time t is determined by
the stochastic differential equation as was seen above:

d‘i% = r(Xg)dt + h(2)*(e(Xe) = r(Xe)1)dt + h(2)"0 (X:)dWr,
(2.5)
Vo = wp,

where 1 = (1,1,...,1)*.
We are interested in asymptotics of the probability minimizing a down-side risk against
holding whole portfolio for the riskless security as the bench mark for a given constant «:

. 1 . 1 Vr(h)
. = = f log P(=log ——= < k).
(2.6) J(K) lim T hel')l:lt(T) og (T og s < K)

T—o00
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If we take a strategy hY = 1, then Vp(h) = S%. Therefore, in considering (2.6) we are
seeing how we could improve the down-side risk probability comparing with such trivial
strategy on long term. We also study down-side risk minimization with the bench mark
S0 on infinite time horizon

. .1 1 Vr(h)
2. = —_ —
(2.7) Joolk) = jnf Lim 7 log P(7 log SO

< k).

The former will be shown related to the following risk-sensitive asset allocation problem
with bench mark S°. Namely, for a given constant v < 0 consider the following asymptotics

1
. v = 1i — inf - h:
(2.8) X() T{r_r;oThég(T)J(v,m, ;T),
where
log( YZ(R)
(2.9) J(v,z;h;T) = log E[(Vg(oh) )] = log E[e7 s )],
T

and h ranges over the set A(7T") of all addmissible investment strategies defined by
A(T) _ {h c H(T); E‘[e7foT h;a(X,)dWa—zzifoT h;aa‘(xa)h,dS] =1.

Then, we shall see that (2.6) could be considered as the dual problem to (2.8). While, the
latter (2.7) is considered to corresponds to risk-sensitive asset allocation on infinite time
horizon:

(2.10) Xoo(Y) = lim %J('v,w; h; T),

inf
heAT 5o
where
A = {h;h € A(T);VT}.

We shall consider these problems under the assumptions that
(2.11) A, B, o, a and r are globally Lipshitz, smooth

and

alé]? < €A (2)E < eo€)?, c1, c2 >0, £€ RY,
(2.12)

cil¢* < (*oo*(z)¢ < e2f¢f?, (€ R™
hold. In considering these problems we first introduce value function
(2.13) v(t,z) = inf logEle STt ']

Note that
evlogVr _ Ve ST (Xa)+h36(Xs)—1h300™ (Xa)haYds+ [ h3o(Xs)dW,
where &(z) = a(z) — r(z)1. Therefore

2
¢¥(log Vr—log 59) _ vie? JE n(Xs,hs)ds+y [T 3o (Xs)dW, -4 [T h3o0" (Xs)hads



h
where 1~

n(z,h) = h*a(z) — 5

h*oo*(z)h.
Thus, by introducing a probability measure
Ph(A) = Bl I h30(Xe)dWa=2 [T h3o0™ (Xo)hods A
the dynamics of the factor process can be written as
dX; = {B(X:) + YA (Xp)he }dt + A( X)W, Xo==

with new Brownian motion process W} defined by

t

Wl i=W, - 7/ 0" (Xs)hsds
0
and so the value function is written as
2.14 t.z) = vlogwv inf log EP[eYJo ‘n(Xaihe)ds
(2.14) v(t,z) = ylogwo + inf log (e ]
The H-J-B equation for the value function v(t, z) is

{ & + Ltr[AX*D2v] + 3 (Dv)*AX*Dv + infr{[8 + YAa*h]*Dv + vyn(z, h)} =0,

v(T,z) = vloguvgy

which is also written as

8v 4 1er[AA* D] + B3 Dv + L (Dv)*AN;IA* Dy — U, = 0,
(2.15)
v(t,z) = vlogvo
where .
By = B+iLHAoc*(oo*) e
N;l = T -+ 1_:%0:(00*)——10
Uy = _5_(1_‘1_7;&*(00*)—-1&
Remark 2.1

infpepm {[yAo*h]|*Dv — v(1 — v)2h*oco*h + yh* &}
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= infheRm{—ﬂIQ;’Z[h - 1—1—7(00*)‘1 (& 4+ oX*Dv)|*oo*|h — 2= (00*) "1 (& + o A* Dv))

T
+ory (6 + oA*Dv)*(00*) (& + o A*Dv)}
Therefore the function

h(t,z) :=

1 w\—1/~ *
1_7(00 Y~ (& + o A* Dv)

defines the generator of the optimal diffusion L:

Py = %tr[)\/\*Dzw] + 18+ T2 00"(00") &+ 0N DU Dy



Remark 2.2 The following notation is useful. Set ¥ := (c0*)"1o. Then,
T* = 0*(o0*)7, BT = (00*)7}, THEE)TIE = 0% (00*) 1o
Moreover, we see that

1

EN = oo N=T =9 (Z2) '8 =1 =107 (00) 0
Set ¥ = —v. Then,
2 + Ltr[AN* D) + B Dv — L(DO)*AN;*X* Do+ Uy = 0
(2.16)
%(T,z) = —vlogvg

Since I — 0*(00*)to > 0, which is easily seen by taking £ = 0*( + u, with u orthogonal
to the range of o* and seeing that £*(I — o*(co*)~*0)¢ = u*u, we have

: 1
2.17 ——JI<Nl<r
(2.17) ISNT' s
As for existence of the solution to (2.16) satisfying sufficient regularities we have the

following results (cf. [3],[14]).

Theorem 2.1 ([3],{14]) Assume (2.11) and (2.12). Then, H-J-B equation (2.16) has a
solution such that
(t,z) +vlogwvo >0

_ov 8 0% o p om
U Bt B 52403, € LP(0,T; LY (R")), 1<Vp < ©
0% 9% 837 8% o m
52’ Dondt’ Dzndz,0ni Daedz;ot © L (O T Lioc(RY)),
ov
o =°

and _
V|2 — o5 < CUVQ413, + 1Q413, + IV,

+|V:37|2p + l:@‘rlz + lU’Yl2P + IVU’1|2 + 1)

z € By, t€[0,T), where Q, = ANJIX*, cp = ﬁt"—f_)%:ﬂ, ¢ > 0, and C is a universal
constant

For A(t,z) we consider stochastic differential equation
dX; = {B(Xs) + vAo* (X)h(t, Xp) }dt + M(X)dWE, Xo=z

and define ﬁt = fz(t, X;) for the solution X; of the stochastic differential equation. The

following is a so called verification theorem the proof of which is seen in [14] Proposition
2.1.

183
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Proposition 2.1 ([14]) Assume (2.11) and (2.12). Then, I:L,(;”T) = hy := h(t,X) €
A(T) and it is optimal:

(2.18) v(0,z) = i’rllf log E[e(log VT(h)‘l"gS’(l)‘)] = log E[e"(°8 Vr(h)-log Sg“)]

Let us consider an H-J-B equation of ergodic type which is considered the limit equation
of (2.15). Namely,

(2.19) X = %tr[/\/\*D2w] + B:Dw + %(Dw)*AN;lA*Dw ~U,

Set
G(z) := B(z) — A\a*(oo*) ta(z)

and assume that

(2.20) G(x)'z < ~cglz|> + g, cg, g >0

(2.21) &Y¥*& — 00, as x| — o0
Under these assumptions we have a solution to the H-J-B equation of ergodic type.

Proposition 2.2 Assume (2.11),(2.12), (2.20) and (2.21). Then (2.19) has a solution
(x,w) such that w € C%(R™),

w(z) = —00 as |r| — o0,
and such solution is unique up to additive constants with respect to w.

We furthermore assume that
(2.22) &*(oo*) ta > co(1+12)%), co>0
Then we have the following theorem.

Theorem 2.2 Under assumptions (2.11),(2.12),(2.20) and (2.22) we have

(2.23) %) = Jim Z0(0,2;T) = x(7)
T—o0

The following results are important to prove our main results.

Proposition 2.3 Under the assumptions of Theorem 2.2 x(vy) is convex and differen-
tiable. Furthermore

im x'(y) =0
Y——00

Now we can state our main theorem.



185

Theorem 2.3 Under the assumptions of Theorem 2.2 for 0 < k < X'(0-)

(2.24) J(k) = — _inf ]iglg{vk — XM} = mf{x(v) —vx}

€(—o0,x

Moreover, for ~v(k) such that X'(v(k)) = k € (0,X'(0—)) take a strategy EEW(R)’T) defined
in Proposition 2.1. Then,

VT(E(V(E):T))

J(k) = S%

—1~logP(—11:10g < k)

Fm T

For k < 0,

J(k) = inf {X(y) — yx} = —o0
v<0

For the solution w = w(" to H-J-B equation ergodic type (2.19) let us set

h(zx) =

1 *y—1/ A *
1_7(00 ) Y& + o X* Dw)(z)

and consider stochastic differential equation
(2.25) dX, = {B(X:) + YAc* (X )R(X)}dt + A(X)dW]E, Xo=1z

and define FLEW(N)) := h(X,) for the solution X; of the stochastic differential equation. Then
we have the following Theorem.

Theorem 2.4 Assume the assumptions of Theorem 2.2. Let 0 < k < ¥’(0—) and v(x) be
the same as above. We moreover assume that

(2.26) (DwM)*Ac*(00*) Lo X Dw™ < a*(00*) 14, v =~(k)

Then,
Joo(K) = J(K) = - inf sup{yk — x(7)} = inf {xX(7) — vx}
¥<0 v<0

€(—o00,x]

and (v(x))
v(k
______W(ho ) < kT)
S
T

In the papers [7], [15] we have studied similar asymptotic behavior without bench mark
case for linear Gaussian models in relation to asymptotics of the risk-sensitive portfolio
optimization. Indeed, we have gotten duality relation between these problems and as a
result an explicit expression of the limit value of the probability minimizing down-side risk
for each case of full information and partial information. To get these results, key analysis
has been in the studies of Poisson equations derived as the derivatives with respect to =y of
the H-J-B equations of ergodic type corresponding to risk-sensitive control on infinite time
horizon. Since the solutions of the H-J-B equations can be explicitly expresssed as the
quadraric functions by using the solutions of Riccati equations for linear Gaussian models
the analysis on differentiabilities of the solutions of the Riccati equations with respect to
~ has been essential in these works.

In this article we treat general Markovian market models and discuss the duality rela-
tion between asymptotics of the probability minimizing down-side risk and risk-sensitive
stochastic control. Since the solutions of H-J-B equations of ergodic type have not always
explicit expressions we need to develop general discussions about differentiablities with
respect to v of H-J-B equation of ergodic type.

J(k) = T}Eréo % log P(log



186

3 H-J-B equations of ergodic type

We shall study H-J-B equation of ergodic type:

1
(3.1) “x = -;-tr[)\)\*Dzu‘J] + 8D — 5(D@)"AN; X" D + U

Proposition 3.1 Assume (2.11),(2.12), (2.20) and (2.21). Then (8.1) has a solution
(x, @) such that © € C?(R™),

w(x) = o0 as |z| — oo,
and such solution is unique up to additive constants with respect to w.

To prove this proposition we first consider H-J-B equation of discounted type
1 1

(3.2) €T = ~2-tr[)v\*D2z‘)e] + 83Dv, — §(D17€)*/\N;1X"Dz‘;e + U,

Note that (3.2) can be written as

(3.3) eve = %tr[AA"Dzﬂe] +G"Do, — —;—(/\Dﬁe — *&)* N1 (A" Do — T*&) + %azz*&.

Lemma 3.1 Under the assumptions of Proposition 8.1 (3.2) has a solution ve € C?(R™).
Now let us consider linear equation
1, cwxs
(3.4) €pe = Lpe + §a22 &,
where 1
Ly = §tr[/\X“D2tp] + G*Dyp

Set \

vs(z) =%, 5> 0.
Then, by taking § sufficiently small, we can see that there exists R; such that for R > R,

Lys(z) < —1, in B§.
Moreover, we see that L and 5 satisfy assumption (7.3) in the last section. Set K (z;v5) =
—L1s and

Fy := {u(z) veo”(R"), sup l%(( ))' oo}

and

Fg = {f(z) e Wl P(R™); sup —IIJ,:,(b %L) < oo}

Then, for f € Fx there exists a solution ¢ € Fy to

O=Lp+f
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if and only if
/ f(@)m(dz) = 0,

where m(dz) is a invariant measure for L (cf. Proposition 7.4 in section 7). Therefore,
setting

Xo = / %dEZ*&(z)m(d&:),

there exists a solution ¢g € Fy, to
1, .~
Xo = Lo + -2-0422 é(z)

and it is known that ep, converges to xo as € — 0 uniformly on each compact set.
In the following we shall assume

(3.5) GET'a > colz +1), (2| 2 R
Then we have the following proposition.

Proposition 3.2 Under the assumptions of Proposition 3.1 the solution W to (8.1) sat-
isfies

(3.6) V() < c(jz® + 1),

where ¢ is a positive constant. If we moreover assume (3.5) then, for each vy < O there
exists a positive constant c(vyy) such that the nonnegative solution w(zx;7y), v < 7o satisfies

(3.7) @(z) 2 c(yo)lzl?, |z > 3R

4 H-J-B equations and related stochastic control problems

Let us come back to H-J-B equation (2.16). According to assumption (2.12), we have a
positive constant cg such that

18y (@) < ep(lzf® +1).
We strengthen condition (2.21) to (2.22). Then we have the following lemma.

Lemma 4.1 Assume (2.11), (2.12) and (2.22) and vo > 1. Then, for each t < T there
exists a constant k = k(T —t) such that

(4.1) o(t,z;T) > klz|?
Let us rewrite (2.16) as
0= 22 + 3tr[A\\*D?3] + G*Dv — }(AD? — £*&)* Ny (A* Do —~ £*4)

(4.2) +1laT5*6.

N~

(T, z) = —vylog v
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Noting that
—%(/\*Dﬁ - Z*&)*N;l(A*DT) — X*&)
= inf,e gn+m{§2* Nyz — 2*E*& + (Az)* D7}
= inf,cgnem [3{z + N7} (A\*D¥ — £*a}*N,{z + N7 (A*Dv — £*a}
—3(A*D% — Z*&)*N;1(\*D? — £*&))]
we can rewrite it again as
| { 0 = 22 + 1tr[AN*D?3] + G* D% + inf ¢ grem {(A2)* DT + (x, 2)}
4.3

(T, z) = —vlogvp

where ) .
p(z,2) = 52" Nyz = "B + 568", Ny =T - 7E°(2E7) 7L,

This H-J-B equation corresponds to the following stochastic control problem whose value

is defined as

T
(4.4) inf E[] ¢(Ys,Zs)ds —yloguvg),

Z.EA(T) 0
where Y; is a controlled process governed by stochastic differential equation

(4.5) dY: = A(Y2)dW: + {G(Y)) + A(Y)) Zi}dt, Yo=2z

with controlled process Z;, which is an R™*™ valued progressively measurable process. To
study this problem we introduce a value function for 0 <t < T

T—t
ve(t,z) = inf E[/ w(Ys, Zs)ds — vy log vo)
Z eA(T-t) 0

By the verification theorem the solution 7 to (4.3) can be identitied with the value function
v«. Moreover, set

#(s,z) = —=N;Y(A\*Dv — £*&)(s, z),

which attains the infimum in (4.3), and consider stochastic differential equation
(4.6) d¥; = AY)dW; + {G(Y2) + A(Yo) 2 (¢, Yo)}dt, Yo=1=.

Owing to the estimates obtained in Theorem 2.1 we see that (4.6) has a unique solution
and it satisfies

T
3(0,) = v.(0,2) = E| / o(¥a, Z4)ds — ~ log vo]
0

where Z; = Z(s,f’s).
Let us consider the following stochastic control problem with the averaging cost crite-
rion

T
(47) p(v) = inf_limsup mE| / (Y, Z5)ds),
ZeAd T—oso LI Jo
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where Y; is a controlled process governed by controlled stochastic differential equation
(4.5) with control Z;. The solution Y; of (4.5) is sometimes written as Y;? to make clear
the dependence on the control Z;. The set A of all admissible controls is defined as follows.
Let w be the solution of H-J-B equation ergodic type (3.1). Then

A= {Z ;Z; is an R™™ valued progressively measurable process such that
. z
lim supy_o, % E[[Y2|2] = 0}

For this stochastic control problem there corresponds H-J-B equation of ergodic type (3.1)
which can be written as

(4.8) —x(y) = %tr[,\,\*p%] +G*Do+_inf {(3)'Do+9(z,2)
We then set
(4.9) 5(z) = —NTI(\D@ — £*8)(z),

and consider stochastic differential equation

4% = AT)dW; + {G(F:) + A(V)2(Fy) }t,

(4.10) = AY:)dW; + {8y — AN;IX*Dw}(Y;)dt

Yo = zx
We shall prove
Proposition 4.1 —x(y) = p(v) and

o1 T
(4.11) o) = Jim ([ (T, Z)ds],
— 00 Jo
where Zy = 2(Y,).

The following lemma plays important role in the proof of the above proposision and later
discussions.

Lemma 4.2 Under assumptions (2.11), (2.12),(2.20) and (8.5) the following estimates
hold. There exists a positive constant § > 0 and C > 0 independent of T and v with
1 < v < 79 such that

(4.12) B[] < ¢,
and also
(4.13) E[fTP < C.

Let us define
T
(4.14) x(y) = hmsup T i mf E[ ©(Ys, Zs)ds] = limsup %ﬁ(O,x;T)
T—o0

Then, we can see that
X < p(7) = —x(7).
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Proposition 4.2 Assume (2.11),(2.12),(2.20) and (2.22). Then,
x(7) = p(v) = —x(7)

Proof of Theorem 2.2 is direct from this proposition since x(y) = —x(v) because of
Proposition 2.1.

The following is a direct consequence of proposition 4.1. Indeed,

Corollary 4.1 Under the assumptions of Proposition 4.2 p(v) is a concave function on
(—00,0) and x(v) is a convex function.

Indeed,
1 * Y ow *y—1 VR A 1 A * A
p=g5dz— 520 (co0*) o — 2*Z a+§a22 &
is a concave function of v and so the infimum of a family of concave functions p(v) is

concave.
Proposition 4.3 Under the assumptions of proposition 8.1 L is ergodic.

Proof.

T
2 2(1-7)

as || — oo and Lw < —c, |z| >> 1, ¢ > 0. Moreover, @w(z) — oc, |z| — oo and

Hasiminskii conditions hold.

= 1

Lw = —=(Dw)*AN;'\*Dw + &*TLG& — x — —00

O

Remark 4.1 The generator of the optimal diffusion process governed by (2.25) for risk-
sensitive control problem (2.10) is defined by

Lot 1= %tr[/\/\*Dzw] + 180+ I%;(Dw)“,\a* (00*)"1oA*| Dy

On the other hand, in proving Theorem 2.2 we introduce another kind of stochastic control
problem.

T
p(v) = inf limsup lE[/ ©o(Ys, Z,)ds),
z T “Jo

€A T—oo
where Y; is a controlled process governed by stochastic differential equation

dY, = A(Y)dW:, + {G(Y1) + A(Ye)Zi}dt, Yo =<2

with controlled process Z;, which is an R™*™ valued progressively measurable process. The
generator of the optimal diffusion process for this problem is defined by

Ly = LitrAX"D2] + (G + A2)*Dy
= LtrAN*D%y] + By + (Dw)*AN,Y‘lX‘]Dd)
Here we note that L is related to Lo through the Gduge transformation:
[e7 Loce’]ep = [L — (vn — x(")]e
and we see that Yoo is an eigenfunction of Loo + Y1:

(Loo +vM¥oo = X(V)¥oo
for the principal eigenvalue x(v) (cf. [6]).



5 Derived Poisson equation

We are going to consider Poisson equation formally obtained by differentiating H-J-B
equation (3.1) of ergodic type with respect to v. Namely, we consider

~6(v) = 3trAN*D%u] + G*Du — (\* D — £*&)*N; ' \* Du
— s (W Dw — *6)* 2 (ZE%) TIE(X Do - £74)
Since ' '
~ 3y (A D@ — £*8)*£*(22*) T IE(ADw — £*4)
= — gy (0X* D@ — &)*(00*) (o X* D — &)

we may write

(5.1) —6(7) = Lu — ﬁ(ax*pw — &)*(00*)" (oA\" D@ — &)

‘Note that L is ergodic in view of Proposition 4.3 and the pair (u, (7)) of a function u
and a constant 6(vy) is considered the solution to (5.1). Let us set
D = Bg, = {z € R*|a| < Ro}
and Ry is taken so large that
1 - Y
. Kz w) := = o)* I Py — —— & * A c
(5.2) (z;) 2(Dw) AN A* Dw 2(1_7)a IX¥*a@+x>0, ze€D

for v < o < 0, which is possible because of assumption (2.22). Therefore, we see that L,
and w satisfy the assumption (7.3) in the last section. Thus according to Proposition 7.4
we can show existence of the solution (u,8(v)) to (5.1).

Corollary 5.1 (5.1) has a solution (u,6(v)) such that
[ul

sup — < oo, u€ W2P
zeDe w

and

o(y) = — / ﬁ(m\*Du‘z — &) (00*)" (0" DB — &)m. (y)dy

Moreover, such solution u is unigque up to additive constants.
Proof. It is obvious that
1
2(1 —v)?

and Proposition 7.4 applies.

(eX*Dw — &)*(00*) }(o\* DD — &) € Fx

191



6 Differentiability of H-J-B equation

Lemma 6.1 Under the assumptions of Proposition 4.2
(6.1) /e‘s'zlzm.,(d:r) <eg,

where ¢ and § are positive constants independent of v iny; <y <7 <0.
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Proof. (6.1) is a direct consequence of (4.13) in Lemma 4.2 since ¥; is an ergodic diffusion

process with the invariant measure m(dz).

In what follows we always asuume the assumptions of Theorem 2.2 (Propisition 4.2).

O

Lemma 6.2 Let (@™, x(v)), @"*+2),x(y + A)) be solutions to (3.1) with v, v + A
respectively such that ) (0) = 0, and ®("+8)(0) = 0. Then @'+2 converges to o7, HL.

strongly and unifromly for each compact set.

Theorem 6.1 Let (o, x(7)), (@A), x(y + A)) be solutions to (8.1) with v, v+ A

respectively. Set x(&) = &‘%2‘—512 and ¢B) = “—’(—%%)"”;m. Then,

(6.2) dim X&) = 6(v)

and

B)(g) =
|il|moc (z) = u(z)

where (u,0(7)) is the solution to (5.1).
7 Appendix

Let Ly be an elliptic operator defined by
(7.1) Lou := -;— Z a” (z)Dyiju + Z b*(x)D;u
ij i

where a*7(z) and b*(z) are Lipshitz continuous function such that

(7.2) kolyl> < y*a(z)y < klyl®, vy € RY, ko, k1 > 0.

We assume that there exists a positive function v € C2(R") such that
Y(z) = o0, |z] 00

(7.3) ~Lot — £(Dy)*aDy 20, z € B, 3R>0,c>0
Loy < -1, z€ B

Set K (z;v) = —Lov,

F‘/"’{“EVVIOC’S P l ((a%l <o}, Fx={f e W2F; sup Il{)z(xzpl)

<

oo}



and
D = Br={z € R" |z| < R}.

Then, we consider the following exterior Dirichlet problem for a given bounded Borel
function h on I = 8D:

—Lo =0, zeD°
7.4
(.4) { s
Proposition 7.1 Ezterior Dirichlet problem (7.4) has a unique bounded solution £ €
W2P L™,

loc

Let us take a bounded domain D; such that D C D; and a bounded Borel function ¢ on
I'y = 0D;. We consider a Dirichlet problem

—Lo¢ =0 Dy
(75) { CIPI = ¢a

which admits a solution ¢ € W2P(D;) N L®, ¢ — ¢ € W33(D;). For this solution we
consider an exterior Dirichlet problem (7.4) with h = ¢. Then, we define an operator
P :B(I'}) — B(I';) defined by

Po(z) =&(z), z €Ty,

where £(z) is the solution to (7.4) with h = ¢. Then, in a similar way to Lemma 5.1 in
Chapter II in {1] we have

(7.6) sup Azy(B) <1
BeB(T'1), z,yel

where
Az,y(B) = Pxp(z) —~ Pxs(y), B € B(I1)

Moreover, we have the following proposition (cf. Theorem 4.1, Chapter II in [1]).

Proposition 7.2 The above defined P satisfies the following properties.

(7.7) | Po o) Sl @ lloeery),  Pl(z) =1

and for some § > 0
(7.8)  Pxp(z)—Pxs(y) £1-46, z,yel, BeB(I)

Furthermore, there exists a probability measure n(dz) on (I't, B(T'1)) such that

9 1P"¢(a) - [9@)n(da) S K || 6z e, p=log s, K = 1o,
and
(7.10) / $(z)m(dz) = / Po(z)n(dz)

for all bounded Borel function ¢.
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Consider an exterior Dirichlet problem for a given function f € Fk:

—~Logu=f, ze€D°
(7.11) { ulp = 0
‘Then, we have the following Proposition.

Proposition 7.8 For a given function f € Fk there exists a unique solution u € Wlicp to
(7.11) such that

|u(z)|
S @)

Let f be a function on R™ such that f is bounded in D and f € Fg(D¢), and D; a bounded
domain such that D C D;. We consider

{ ~Le¥ =f D

\Plrl = O

0.

and

{ —Loé=f R*ND°

lp = ¥r
Then we set
Tf(z)=£&(z), zeT:

and

frl Tf (a)w(da)

(7.12) “U) = T Tie)n(do)

We further consider

—Loz=f
(7.13)
z2€ W22, supepe j% < o0

Then, in a similar way to the proof of Theorem 5.3, Chapter II in [1] we obtain the
following proposition.

Proposition 7.4 (7.13) has a solution unigque up to additive constants if and only if
v(f) = 0. Moreover

(7.14) u(f) = [ mw) @y
form e L*(R™), m > 0 and —L{m = 0 in distribution sense:
(7.15) / m(y)(—Loz)dy =0, =z W2

such that z € Fy(D°) and —Loz € Fg. Furthermore m(z) is the only function in L!
satisfying (7.15) and

/m(x)dx =1.
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