Golden optimal processes on three dynamics :deterministic, stochastic and non-deterministic

Seiichi IWAMOTO

Department of Economic Engineering Graduate School of Economics, Kyushu University Fukuoka 812-8581, Japan

tel&fax. +81(92)642-2488, email: iwamoto@en.kyushu-u.ac.jp

February 23, 2009

Abstract

This paper discusses a common criterion on three different dynamics. The criterion is discounted quadratic. The dynamics are deterministic, stochastic and non-deterministic. We consider two problems from a viewpoint of Golden optimality. The first problem is to find an optimal solution – value function and optimal policy – . The second problem is to discuss whether the optimal solution is Golden or not. Is the value function Golden? Is the optimal policy Golden? We give a complete solution to the first problem through two approaches – evaluation-optimization method and dynamic programming method –. The solution of the second depends on the discount rate β (0 < β < ∞). We show that both – deterministic and non-deterministic – dynamics allow the Golden optimal solution for $\beta = 1$. Further all the three dynamics allow the Golden optimal policy for $\beta = \frac{1}{\sqrt{5}}$.

Keywords: golden, optimal, policy, deterministic, stochastic, non-deterministic. JEL classification: C61

1 Introduction

The Golden ratio is the symbol of beauty and practical use. It has been utilized in architecture, art, design, biolology, sicence, engineering, and others [13]. Recently it has been incorporated into optimization problems. There a new – Golden (and) optimal – solution is obtained. Both static problems [5–7] and dynamic problems [8, 10, 11] are studied from the Golden optimality. The static optimization is two-variable. The dynamic

one is infinite variable — discrete-horizon [10,11] and continuous-time [8] —. All of them are on *deterministic* system.

This paper minimizes a discounted quadratic criterion on three – (1) deterministic, (2) stochastic and (3) non-deterministic – dynamics. We consider two problems from a viewpoint of Golden optimality. The first problem is to find an optimal solution – (i) value function, (ii) optimal policy, (iii) minimum value – . The second problem is to discuss whether the optimal solution is Golden or not. Our approaches are evaluation-optimization method and dynamic programming method. We give an optimal solution to the first. The solution of the second depends on the discount rate β (0 < β < ∞). We show that both – (1) deterministic and (3) non-deterministic – dynamics allow the Golden optimal solution for $\beta = 1$. Further all the three dynamics allow the Golden optimal policy for $\beta = \frac{1}{\sqrt{5}} \approx 0.4772$

2 Golden Paths

A real number

$$\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$$

is called Golden number. It is the larger of the two solutions to quadratic equation

$$x^2 - x - 1 = 0. (1)$$

Sometimes (1) is called *Fibonacci quadratic equation*. The Fibonacci quadratic equation has two real solutions: ϕ and its *conjugate* $\overline{\phi} := 1 - \phi$. We note that

$$\phi + \overline{\phi} = 1, \quad \phi \cdot \overline{\phi} = -1.$$

Further we have

$$\phi^{-1} = \phi - 1 \approx 0.618, \quad \phi^{-2} = 2 - \phi \approx 0.382$$
$$\phi^{-1} + \phi^{-2} = 1.$$

A point $\phi^{-2}x$ splits an interval [0, x] into two intervals $[0, \phi^{-2}x]$ and $[\phi^{-2}x, x]$. A point $\phi^{-1}x$ splits the interval into $[0, \phi^{-1}x]$ and $[\phi^{-1}x, x]$. In either case, the length constitutes the Golden ratio $\phi^{-2}: \phi^{-1} = 1: \phi$. Thus both divisions are the Golden section.

Definition 2.1 A sequence $\{x_n\}_0^{\infty}$ is called Golden if and only if either

$$x_{n+1} = \phi^{-1}x_n \quad n \ge 0 \quad or \quad x_{n+1} = \phi^{-2}x_n \quad n \ge 0.$$

Lemma 2.1 A Golden sequence $\{x_n\}_0^{\infty}$ is either

$$x_n = c\phi^{-n} \quad n \ge 0 \quad (Fig. \ 2) \quad or \quad x_n = c\phi^{-2n} \quad (Fig. \ 1),$$

where c is a real constant.

Definition 2.2 A sequence of Markov random variables $\{X_n\}_0^{\infty}$ with $X_0 = x_0$ is called Golden if and only if either

$$E[X_{n+1} | x_n] = \phi^{-1}x_n \quad n \ge 0 \quad or \quad E[X_{n+1} | x_n] = \phi^{-2}x_n \quad n \ge 0.$$

Fig. 1 Golden paths of rate ϕ^{-2} $x_n = c\phi^{-2n}$ c = 1, 2, 3

Fig. 2 Golden paths of rate ϕ^{-1} $x_n = c\phi^{-n}$ c = 1, 2, 3

We remark that either Golden sequence is supermartingale. In either case, $E[X_{n+1} | x_n]$ generates a Golden section of interval $[0, x_n]$ for $x_n \ge 0$ and does a Golden section of interval $[x_n, 0]$ for $x_n \le 0$.

Let $\{\epsilon_n\}_1^{\infty}$ be a sequence of independent and identical random variables with the standard normal distributuion. Then

$$E[\epsilon_n] = 0, \quad E[\epsilon_n^2] = 1.$$

For given x_0 and y_0 we define two sequences of Markov random variables $\{X_n\}$ and $\{Y_n\}$ by

$$X_{n+1} = \phi^{-1}X_n - \epsilon_{n+1}, \quad X_0 = x_0$$

$$Y_{n+1} = \phi^{-2}Y_n - \epsilon_{n+1}, \quad Y_0 = y_0.$$

Lemma 2.2 Then $\{X_n\}$ and $\{Y_n\}$ are Golden.

3 Three Dynamics

We consider three dynamic optimization problems with a common discounted quadratic criterion.

The first is a deterministic dynamics on which we minimizes a typical quadratic function. The problem is called linear-quadratic (LQ) [2,3]:

minimize
$$\sum_{n=0}^{\infty} \beta^{n} (x_{n}^{2} + u_{n}^{2})$$
subject to (i) $x_{n+1} = x_{n} - u_{n}$
(ii) $u_{n} \in R^{1}$
(iii) $x_{0} = c$,

where $c \in \mathbb{R}^1$. Here (i) denotes that next state x_{n+1} turns out to be $x_n - u_n$ with certainty from state x_n under decision u_n . This dynamics together with immediate cost is depicted as

$$R^1 \ni x_n \xrightarrow{\qquad \downarrow \qquad u_n \in R^1} \text{a unique } x_{n+1} := x_n - u_n \in R^1,$$

where \hookrightarrow denotes that state x_n under decision u_n yields the stage-cost $x_n^2 + u_n^2$.

The second is a stochastic dynamics on which we minimizes the expected value of the

same quadratic function as in deterministic one:

minimize
$$E_{x_0}\left[\sum_{n=0}^{\infty}\beta^n\left(x_n^2+u_n^2\right)\right]$$
 subject to (i) $x_{n+1}=x_n-u_n-\epsilon_{n+1}$ (S) (ii) $u_n\in R^1$ (iii) $x_0=c$,

where $c \in R^1$. The problem (S) is called stochastic linear-quadratic (LQ). Here $\{\epsilon_n\}_1^\infty$ is a sequence of independently and identically distributed random variables with the standard normal distributuion. Thus (i) denotes that x_{n+1} appears on R^1 with transition probability $q(x_{n+1} \mid x_n, u_n) = \frac{1}{\sqrt{2\pi}} e^{-(x_{n+1}-x_n+u_n)^2/2}$ from x_n under u_n . This dynamics is depicted as

$$R^1 \ni x_n \xrightarrow{\qquad \downarrow \qquad u_n \in R^1} x_{n+1} \text{ w.p. } q(x_{n+1} \mid x_n, u_n) \text{ for any } x_{n+1} \in R^1.$$

The third is on non-deterministic dynamics. There we minimize a total discounted weighted value of quadratic cost:

minimize
$$\sum_{n=0}^{\infty} \beta^n W_{x_0} \left[x_n^2 + u_n^2 \right]$$
 subject to (i) $0 < x_{n+1} < x_n - u_n$ with weight $2/x_{n+1}$ (N)
$$(ii) \quad u_n \in R^1$$
 (iii) $x_0 = c$,

where c > 0. We call the problem (N) is nondeterministic quadratic (Q). Here the infinite series is defined in Section 6. The successive constraint (i) denotes that x_{n+1} appears on the open interval $(0, x_n - u_n)$ with transition weight $2/x_{n+1}$ from x_n under u_n . This dynamics is depicted as

$$(0,\infty)\ni x_n\xrightarrow{\qquad \downarrow \quad u_n\in (-\infty,x_n)} x_{n+1} \quad \text{w.w.} \quad \frac{2}{x_{n+1}} \quad \text{for any } x_{n+1}\in (0,\,x_n-u_n).$$

A characteristic feature of the dynamics is as follows. As next state degenerates small, its weight grows unboundedly large. The total weight from any state x_n under any decision u_n diverges to ∞ as long as $x_n - u_n > 0$:

$$\int_0^{x_n-u_n} \frac{2}{x_{n+1}} dx_{n+1} = \infty.$$

4 Deterministic Dynamics

Let us consider the discounted quadratic criterion on deterministic dynamics:

where $c \in \mathbb{R}^1$ is a given constant.

4.1 Evaluation-optimization

Let us solve (D) through evaluation-optimization method, which has two stages. The first stage evaluates any policy in a class of policies and the second minimizes the evaluated value over the class.

A stationary policy f^{∞} is called *proportional* if the decision function is specified by f(x) = px, where p is a real constant. Then p is called a *proportional rate*. In this subsection, we consider the set of all proportional policies whose rate p satisfies $\beta(1-p)^2 < 1$.

Lemma 4.1 A proportional policy f^{∞} , f(x) = px, yields the objective value

$$\sum_{n=0}^{\infty} \beta^{n} (x_{n}^{2} + u_{n}^{2}) = \frac{r}{1 - \beta q} x_{0}^{2},$$

where $r = 1 + p^2$, $q = (1 - p)^2$.

Now let us consider the ratio minimization problem

minimize
$$\frac{r}{1-\beta q}$$
 subject to $\beta q < 1$.

This is expressed as a single-variable problem:

(C_{$$eta$$}) minimize $\frac{1+p^2}{1-eta(1-p)^2}$ subject to $1-\frac{1}{\sqrt{eta}} .$

Lemma 4.2 The problem (C_{β}) has the minimum value

$$m = rac{2eta - 1 + \sqrt{4eta^2 + 1}}{2eta} \quad at \quad \hat{p} = rac{\sqrt{4eta^2 + 1} - 1}{2eta}.$$

Thus we have the optimal policy \hat{f}^{∞} ;

$$\hat{f}(x) = \hat{p}x, \quad \hat{p} = \frac{\sqrt{4\beta^2 + 1} - 1}{2\beta}$$

in the proportional policy class and the value function

$$v(x) = mx^2, \qquad m = \frac{2\beta - 1 + \sqrt{4\beta^2 + 1}}{2\beta}.$$

We remark that

$$m = 1 + \hat{p}.$$

4.2 Dynamic programming

In this subsection, we apply dynamic programming to optimize the infinite stage problem [1,4,8,12].

Let v(c) be the minimum value for $c \in R^1$. Then $v : R^1 \to R^1$ is called a value function. The value function v satisfies the Bellman equation:

$$v(x) = \min_{-\infty, u \le \infty} \left[x^2 + u^2 + \beta v(x - u) \right], \quad v(0) = 0.$$
 (2)

Lemma 4.3 The control process (D) has the proportional optimal policy f^{∞} , f(x) = px, and the quadratic value function $v(x) = vx^2$, where

$$v = \frac{2\beta - 1 + \sqrt{4\beta^2 + 1}}{2\beta}, \qquad p = \frac{\sqrt{4\beta^2 + 1} - 1}{2\beta}.$$

The proportional optimal policy f^{∞} splits at any time an interval [0, x] into $[0, (1-p)x] = \left[0, \frac{x}{1+\beta v}\right]$ and $\left[\frac{x}{1+\beta v}, x\right]$. When, in particular, $\beta = 1$, the quadratic coefficient v is reduced to the Golden number

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

and the proportional rate p is reduced to its inverse number

$$\phi^{-1} = \phi - 1 = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

Further the division of [0, x] into $[0, \phi^{-2}x]$ and $[\phi^{-2}x, x]$ is Golden. That is, the ratio of length of two intervals constitutes the Golden ratio:

$$\phi^{-2}:\phi^{-1}=1:\phi.$$

A quadratic function $w(x) = ax^2$ is called Golden if $a = \phi$.

Theorem 4.1 The control process (D) with unit discount rate $\beta = 1$ has a Golden optimal policy f^{∞} , $f(x) = \phi^{-1}x$, and the Golden quadratic value function $v(x) = \phi x^2$.

5 Stochastic Dynamics

Let us consider the stochastic dynamic process under the condition that the discount rate β should be $0 < \beta < 1$. Soon it will be clarified that the expected value diverges for the case $\beta \geq 1$. Our stochastic dynamic minimization problem is

minimize
$$E_{x_0}\left[\sum_{n=0}^{\infty}\beta^n(x_n^2+u_n^2)\right]$$
 subject to (i) $x_{n+1}=x_n-u_n-\epsilon_{n+1}$ (S)
$$(ii) \quad u_n\in R^1$$

$$(iii) \quad x_0=c,$$

where an initial state $c \in R^1$ is given, and $\{\epsilon_n\}$ is a sequence of random variables that is independently and identically distributed through time and obeys the standard normal distribution. Thus

$$E[\epsilon_n] = 0, \quad E[\epsilon_n^2] = 1.$$

We note that ϵ_n has the probability density function

$$p(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2} - \infty < z < \infty.$$

The next state (random variable) x_{n+1} obeys the normal distribution with mean $x_n - u_n$ and unit variance, provided that a decision u_n is taken at state x_n on stage n. When a decision maker adopts a decision u on state x, the system will go to state (scalar) y with probability q(y | x, u) = p(y - x + u):

$$q(y \mid x, u) = \frac{1}{\sqrt{2\pi}} e^{-(y-x+u)^2/2} - \infty < y < \infty.$$

We depict this dynamics as

$$(-\infty, \infty) \ni x \xrightarrow{\downarrow u \in (-\infty, \infty)} y \text{ w.p. } q(y \mid x, u) \text{ for any } y \in (-\infty, \infty).$$

5.1 Evaluation-optimization

Let us evaluate any proportional policy f^{∞} , f(x) = px for $0 . The decision maker adopts the decision <math>u_n = f(x_n) = px_n$ on state x_n . Hence

$$E_{x_0}\left[\sum_{n=0}^{\infty}\beta^n(x_n^2+u_n^2)\right] = r\sum_{n=0}^{\infty}\beta^nE_{x_0}[x_n^2],$$

where $r=1+p^2$. The controlled dynamics $x_{n+1}=x_n-u_n-\epsilon_{n+1}$ is reduced to

$$x_{n+1} = (1-p)x_n - \epsilon_{n+1} \quad x_0 = c. \tag{3}$$

Here we note that |1-p| < 1.

Lemma 5.1 It follows that under (3)

$$E[x_n^2] = \frac{1}{1-q} + \left(x_0^2 - \frac{1}{1-q}\right)q^n, \tag{4}$$

where $q = (1 - p)^2$.

Lemma 5.2 A proportional policy f^{∞} , f(x) = px, yields the expected value

$$E_{x_0}\left[\sum_{n=0}^{\infty}\beta^n(x_n^2+u_n^2)\right] = \frac{r}{1-\beta q}\left(x_0^2+\frac{\beta}{1-\beta}\right),\,$$

where $r = 1 + p^2$, $q = (1 - p)^2$.

Note that the term $x_0^2 + \frac{\beta}{1-\beta}$ is independent of p. We have reached the ratio minimization problem (C_β) in the deterministic dynamics. Lemma 4.2 gives the minimum solution of (C_β) .

Thus we have the optimal policy \hat{f}^{∞} ;

$$\hat{f}(x) = \hat{p}x, \qquad \hat{p} = \frac{\sqrt{4\beta^2 + 1} - 1}{2\beta}$$

in the proportional policy class and the value function

$$v(x) = mx^2 +
ho, \quad m = rac{2eta - 1 + \sqrt{4eta^2 + 1}}{2eta}, \quad
ho = rac{2eta - 1 + \sqrt{4eta^2 + 1}}{2(1 - eta)}.$$

5.2 Dynamic programming

Let v(c) be the minimum value. Then the value function $v: \mathbb{R}^1 \to \mathbb{R}^1$ satisfies the Bellman equation:

$$v(x) = \min_{-\infty \le u \le \infty} \left[x^2 + u^2 + \beta E_x \left[v(x - u - \epsilon) \right] \right]. \tag{5}$$

This is also written as the controlled integral equation

$$v(x) = \min_{-\infty < u < \infty} \left[x^2 + u^2 + \frac{\beta}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y-x+u)^2} v(y) dy \right].$$

Lemma 5.3 The control process (S) has a proportional optimal policy f^{∞} , f(x) = px, and a quadratic value function $v(x) = vx^2 + \rho$, where

$$v = \frac{2\beta - 1 + \sqrt{4\beta^2 + 1}}{2\beta}, \qquad \rho = \frac{2\beta - 1 + \sqrt{4\beta^2 + 1}}{2(1 - \beta)}$$
 (6)

$$p = \frac{\sqrt{4\beta^2 + 1} - 1}{2\beta}.$$

Thus we see that the stochastic dynamic system (S) has the same optimal policy as deterministic dynamic system (D). This is what we call *certainty equivalence principle*. The value function has a difference ρ which comes from the discounted total noise under uncertainty.

6 Non-deterministic Dynamics

Now we consider the minimization problem on non-deterministic dynamics:

minimize
$$\sum_{n=0}^{\infty} \beta^n W_{x_0} \left[x_n^2 + u_n^2 \right]$$
 subject to (i) $0 < x_{n+1} < x_n - u_n$ with weight $2/x_{n+1}$ (N)
$$(ii) \quad u_n \in R^1$$
 (iii) $x_0 = c$,

where c > 0 is a given constant. The constraints (i), (ii) yields the feasibily $-\infty < u_n < x_n$. Here the *n*-th term is defined as follows.

$$W_{x_0}\left[x_n^2 + u_n^2\right] = \iint \cdots \int_R \gamma_0 \gamma_1 \cdots \gamma_{n-1} r_n \, dx_1 dx_2 \cdots dx_n$$
$$= \iint \cdots \int_R \frac{2^n \left(x_n^2 + u_n^2\right)}{x_1 x_2 \cdots x_n} \, dx_1 dx_2 \cdots dx_n,$$

where the transition weight function and cost function are stationary:

$$\gamma_m = \gamma(x_m, u_m, x_{m+1}) = \frac{2}{x_{m+1}}$$

$$r_n = r(x_n, u_n) = x_n^2 + u_n^2.$$

The integral domain R is determined through the sequence of decision functions $f_0, f_1, \ldots, f_{n-1}$:

$$R = \{ (x_1, x_2, \dots, x_n) \mid 0 < x_1 < x_0 - u_0, \dots, 0 < x_n < x_{n-1} - u_{n-1} \}$$

$$\subset (0, \infty)^n,$$

where $u_m = f_m(x_m)$.

When n = 0, we have

$$W_{x_0}[r_0] = x_0^2 + u_0^2.$$

In the following, the sequence of states

$$x \xrightarrow{u} y \xrightarrow{v} z \xrightarrow{w} a \xrightarrow{b} \cdots \xrightarrow{p} s \xrightarrow{q} t \longrightarrow \cdots$$

reads

$$x_0 \xrightarrow{u_0} x_1 \xrightarrow{u_1} x_2 \xrightarrow{u_2} x_3 \xrightarrow{u_3} \cdots \xrightarrow{u_{n-2}} x_{n-1} \xrightarrow{u_{n-1}} x_n \longrightarrow \cdots$$

The first three weighted values are

$$egin{array}{lll} W_x \left[y^2 + v^2
ight] &=& \int_C rac{2(y^2 + v^2)}{y} dy \ W_x \left[z^2 + w^2
ight] &=& \iint_D rac{2^2(z^2 + w^2)}{yz} dy dz \ W_x \left[a^2 + b^2
ight] &=& \iiint_E rac{2^3(a^2 + b^2)}{yza} dy dz da, \end{array}$$

where

$$C = \{ y \mid 0 < y < x - u(x) \} \subset (0, \infty)$$

$$D = \{ (y, z) \mid 0 < y < x - u(x), \ 0 < z < y - v(y) \} \subset (0, \infty)^{2}$$

$$E = \{ (y, z, a) \mid 0 < y < x - u(x), \ 0 < z < y - v(y), \ 0 < a < z - w(z) \} \subset (0, \infty)^{3}$$

We call

$$W_{x_0}\left[x_n^2+u_n^2\right]$$
 and $\beta^n W_{x_0}\left[x_n^2+u_n^2\right]$

n-th weighted value and n-th discounted weighted value, respectively. The limit of series is called a total discounted weighted value. Thus the objective function (of x_0) represents a total discounted weighted value by using policy $\pi = \{f_0, f_1, \ldots, f_{n-1}, \ldots\}$ from initial state x_0 .

Then we consider the total discounted weighted value

$$J(x_0; \pi) := W_{x_0}[r_0] + \beta W_{x_0}[r_1] + \cdots + \beta^n W_{x_0}[r_n] + \cdots$$

Thus our problem is to choose a policy which minimizes the discounted total weighted value. This is expressed as

$$P(x_0)$$
 minimize $J(x_0; \pi)$ subject to $\pi \in \Pi$.

6.1 Evaluation-optimization

First we evaluate any proportional policy $\pi = f^{\infty}$, f(x) = px. The decision maker adopts a decision u = px on state x and the system will go to state y on open interval (0, x-u) = (0, (1-p)x) with the weight $\frac{2}{y}$. Then we have inductively

$$W_x\big[x_n^2+u_n^2\big] = rq^nx^2.$$

Lemma 6.1 A proportional policy $\pi = f^{\infty}$, f(x) = px, yields the objective value

$$\sum_{n=0}^{\infty} \beta^n W_{x_0} \left[x_n^2 + u_n^2 \right] = \frac{r}{1 - \beta q} x_0^2,$$

where $r = 1 + p^2$, $q = (1 - p)^2$.

Thus we have reached the same ratio minimization problem (C_{β}) as in deterministic dynamics. Therefore we have the optimal policy \hat{f}^{∞} ;

$$\hat{f}(x) = \hat{p}x, \qquad \hat{p} = \frac{\sqrt{4\beta^2 + 1} - 1}{2\beta}$$

and the value function

$$v(x) = mx^2, \qquad m = \frac{2\beta - 1 + \sqrt{4\beta^2 + 1}}{2\beta}.$$

6.2 Dynamic programming

Let $v(x_0)$ be the minimum value. Then the value function $v:[0\infty)\to R^1$ satisfies the Bellman equation:

$$v(x) = \min_{-\infty < u < \infty} \left[x^2 + u^2 + \beta \int_0^{x-u} \frac{v(y)}{y} dy \right] \qquad v(0) = 0.$$
 (7)

This is also written as follows:

$$v(x) = \min_{-\infty < u < \infty} \left[x^2 + u^2 + \beta W_x^u[v] \right].$$

We may assume that Eq.(7) has a quadratic form $v(x) = vx^2$, where $v \in \mathbb{R}^1$. We solve (7) as follows. Then we have

$$\int_0^{x-u} \frac{v(y)}{y} dy = \int_0^{x-u} 2vy dy = v(x-u)^2.$$

Eq.(7) is reduced to a minimum equation for saclar v:

$$vx^2 = \min_{-\infty, v \in \infty} \left[x^2 + u^2 + \beta v(x - u)^2 \right].$$

Thus we have reached the same situation as in deterministic dynamics as was shown in (5).

Lemma 6.2 The control process (N) has the proportional optimal policy f^{∞} , f(x) = px, and the quadratic value function $v(x) = vx^2$, where

$$v = \frac{2\beta - 1 + \sqrt{4\beta^2 + 1}}{2\beta}, \qquad p = \frac{\sqrt{4\beta^2 + 1} - 1}{2\beta}.$$

Thus as in deterministic dynamics, we have the same result on Golden optimality:

Theorem 6.1 The control process (N) with unit discount rate $\beta = 1$ has a Golden optimal policy f^{∞} , $f(x) = (\phi - 1)x$, and the Golden quadratic value function $v(x) = \phi x^2$.

7 Golden Policies

Let us now discuss whether the desired optimal policy is Golden or not. Throughout three presections, we have obtained a common optimal solution. The optimal policy both for stochastic process and for non-deterministic process is identical with the optimal policy for the deterministic process. This is called *certainty equivalence principle*. The three control processes — (D), (S) and (N) — have a common proportional optimal policy

$$f^{\infty}$$
; $f(x) = px$

and the quadratic value function

$$v(x) = \begin{cases} vx^2 & \text{for (D), (N)} \\ vx^2 + \rho & \text{for (S),} \end{cases}$$

where

$$p = \frac{\sqrt{4\beta^2 + 1} - 1}{2\beta} = \frac{2\beta}{1 + \sqrt{4\beta^2 + 1}}$$

$$v = \frac{2\beta - 1 + \sqrt{4\beta^2 + 1}}{2\beta}, \quad \rho = \frac{2\beta - 1 + \sqrt{4\beta^2 + 1}}{2(1 - \beta)}.$$
(8)

The rate p is determined by the coefficient v:

$$p = v - 1$$
.

The proportional optimal policy f^{∞} splits any interval [0, x] into [0, (1-p)x] and [(1-p)x, x]. We are interested in values of discount factor β which yields the two Golden sections. This asks us when 1-p becomes $\phi-1$ or $2-\phi$.

Let us now consider both p and 1-p as functions of β . We take

$$p(\beta) := \frac{2\beta}{1 + \sqrt{4\beta^2 + 1}}.$$

Then

$$p'(\beta) = \frac{2}{\sqrt{4\beta^2 + 1} \left(1 + \sqrt{4\beta^2 + 1}\right)} > 0.$$

Thus $p(\beta)$ is strictly increasing and

$$1 - p(0) = 1$$
, $1 - p(1) = 2 - \phi \approx 0.382$

This enables us to solve the equation

$$1-p(eta) \ = \ egin{cases} 2-\phi \ \phi-1 \end{cases}$$
 i.e. $p(eta) \ = \ egin{cases} \phi-1 \ 2-\phi. \end{cases}$

This is reduced to

$$\frac{2\beta}{1 + \sqrt{4\beta^2 + 1}} = \begin{cases} \phi^{-1} \\ \phi^{-2} \end{cases}$$

The equation has respective solutions

$$\beta = \begin{cases} 1\\ \frac{\phi^2}{\phi^4 - 1} = \frac{1}{\sqrt{5}}. \end{cases}$$

We note that

$$\frac{\phi^2}{\phi^4 - 1} = \frac{1}{(\phi^2 + 1)(\phi - 1)} = \frac{1}{2\phi - 1} = \frac{2\phi - 1}{5} = \frac{\sqrt{5}}{5} = \frac{1}{\sqrt{5}} \approx 0.4772$$

7.1 Deterministic dynamics

The deterministic control process (D) has a discount factor $0 \le \beta < \infty$.

7.1.1 Case $\beta = 1$

When $\beta = 1$, the quadratic coefficient v is reduced to the Golden number

$$v = \phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

and the proportional rate p is reduced to

$$p = \phi - 1 = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

Further the division of [0, x] into $[0, \phi^{-2}x]$ and $[\phi^{-2}x, x]$ is Golden.

The Golden optimal policy f^{∞} , f(x) = px, yields the optimal deterministic behavior as follows. A current state x_n under the Golden optimal decision $u_n = px_n = \phi^{-1}x_n$ goes to a unique state $x_{n+1} = x_n - u_n = \phi^{-2}x_n$ into R^1 . The next state is $x_{n+1} = \phi^{-2}x_n \approx 0.382x_n$ (Fig. 1). The dynamics is depicted as

$$R^1 \ni x_n \xrightarrow{\qquad \downarrow \quad u_n = \phi^{-1}x_n \qquad} x_{n+1} = \phi^{-2}x_n \approx 0.382x_n \text{ uniquely.}$$

Thus the Golden optimal dynamics says that next state becomes $x_{n+1} = \phi^{-2}x_n \approx 0.382x_n$.

7.1.2 Case
$$\beta = \frac{1}{\sqrt{5}}$$

We consider case $\beta = \frac{1}{\sqrt{5}} \approx 0.4772$ Then we have

$$v = 3 - \phi \approx 1.382, \quad p = \phi^{-2} \approx 0.382$$

The division of [0, x] into $[0, \phi^{-1}x]$ and $[\phi^{-1}x, x]$ is Golden.

The Golden optimal policy f^{∞} , f(x) = px, yields the optimal deterministic behavior as follows. A current state x_n under the Golden optimal decision $u_n = \phi^{-2}x_n$ goes to a unique state $x_{n+1} = x_n - u_n = \phi^{-1}x_n \approx 0.618x_n$ (Fig. 2). The the Golden optimal dynamics

$$R^1 \ni x_n \xrightarrow{\qquad \downarrow \quad u_n = \phi^{-2}x_n \qquad} x_{n+1} = \phi^{-1}x_n \approx 0.618x_n \text{ uniquely}$$

says that $x_{n+1} = \phi^{-1}x_n \approx 0.618x_n$.

7.2 Stochastic dynamics

The stochastic control process (S) has the discount factor restricted to $0 \le \beta < 1$. We consider the Case $\beta = \frac{1}{\sqrt{5}}$ only.

7.2.1 Case $\beta = 1$

As we have shown in (6), the total noise is $\rho = \frac{2\beta - 1 + \sqrt{4\beta^2 + 1}}{2(1-\beta)}$ for $0 \le \beta < 1$. Thus it diverges to ∞ for $\beta = 1$.

7.2.2 Case
$$\beta = \frac{1}{\sqrt{5}}$$

We have

$$v = 3 - \phi \approx 1.382$$
, $p = \phi^{-2} \approx 0.382$, $\rho = \frac{\sqrt{5}}{2} \approx 1.118$

The state sequence $\{X_n\}_0^{\infty}$ defined by

$$X_{n+1} = X_n - pX_n - \epsilon_{n+1}, \quad X_0 = x_0$$

is stochastically Golden:

$$E[X_{n+1} \mid x_n] = \phi^{-1} x_n.$$

That is, the Golden optimal policy f^{∞} , f(x) = px, yields the optimal stochastic behavior as follows. A current state x_n under the Golden optimal decision $u_n = px_n = \phi^{-2}x_n$ goes

to x_{n+1} on R^1 with transition probability $q(x_{n+1} | x_n, u_n) = \frac{1}{\sqrt{2\pi}} e^{-(x_{n+1} - \phi^{-1} x_n)^2/2}$. The next state (random variable) x_{n+1} follows the normal distribution $N(\phi^{-1} x_n, 1)$. The mean is $\phi^{-1} x_n \approx 0.618 x_n$ (see Fig. 2). The Golden optimal dynamics

$$R^1 \ni x_n \xrightarrow{\qquad \downarrow \qquad u_n = \phi^{-2} x_n \qquad} x_{n+1} \text{ w.p. } q(x_{n+1} \mid x_n, u_n) \text{ for any } x_{n+1} \in R^1$$

says that current state goes down to $\phi^{-1}x_n \approx 0.618x_n$ on average.

7.3 Non-deterministic dynamics

The non-deterministic control process (N) has a discount factor $0 \le \beta < \infty$.

7.3.1 Case $\beta = 1$

When $\beta = 1$, it follows that

$$v = \phi \approx 1.618, \quad p = \phi^{-1} \approx 0.618$$

Further the division of [0, x] into $[0, \phi^{-2}x]$ and $[\phi^{-2}x, x]$ is Golden optimal.

The Golden optimal policy f^{∞} , f(x) = px, yields the optimal non-deterministic behavior as follows. A current state x_n under the Golden optimal decision $u_n = px_n = \phi^{-1}x_n$ goes to x_{n+1} on inteval $(0, x_n - u_n) = (0, \phi^{-2}x_n)$ with transition weight $q(x_{n+1} | x_n, u_n) = 2/x_{n+1}$. The next state (non-deterministic variable) x_{n+1} has the unbounded weight $2/x_{n+1}$ on $(0, \phi^{-2}x_n) \approx (0, 0.382x_n)$. The Golden optimal dynamics

$$(0 \infty) \ni x_n \xrightarrow{\qquad \downarrow \quad u_n = \phi^{-1} x_n \qquad } x_{n+1} \quad \text{w.w.} \quad 2/x_{n+1} \quad \text{for any } x_{n+1} \in (0, \, \phi^{-2} x_n)$$

says that current state goes down on a shrunken interval $(0, \phi^{-2}x_n) \approx (0, 0.382x_n)$ with the Golden rate $\phi^{-2} \approx 0.382$ (see Fig. 1).

7.3.2 Case
$$\beta = \frac{1}{\sqrt{5}}$$

The case yields

$$v = 3 - \phi \approx 1.382, \quad p = \phi^{-2} \approx 0.382$$

The division of [0, x] into $[0, \phi^{-1}x]$ and $[\phi^{-1}x, x]$ is Golden optimal.

The Golden optimal policy f^{∞} , f(x) = px, yields the optimal non-deterministic behavior as follows. A current state x_n under the Golden optimal decision $u_n = \phi^{-2}x_n$ goes to x_{n+1} on inteval $(0, x_n - u_n) = (0, \phi^{-1}x_n)$ with transition weight $q(x_{n+1} | x_n, u_n) = 2/x_{n+1}$. The non-deterministic x_{n+1} has the unbounded weight $2/x_{n+1}$ on $(0, \phi^{-1}x_n) \approx (0, 0.618x_n)$. The Golden optimal dynamics

$$(0 \infty) \ni x_n \xrightarrow{\qquad \downarrow \quad u_n = \phi^{-2} x_n \qquad} x_{n+1} \quad \text{w.w.} \quad 2/x_{n+1} \quad \text{for any } x_{n+1} \in (0, \ \phi^{-1} x_n)$$

says that next state goes down on a shrunken interval $(0, \phi^{-1}x_n) \approx (0, 0.618x_n)$ with the Golden rate $\phi^{-1} \approx 0.618$ (see Fig. 2).

Finally we have the following result.

Theorem 7.1 For the discount rate $\beta = \frac{1}{\sqrt{5}}$, three processes (D), (S) and (N) have a common Golden optimal policy g^{∞} , $g(x) = (2-\phi)x$. Then (D) and (N) have the quadratic value function $v(x) = (3-\phi)x^2$ and (S) has the quadratic value function $v(x) = (3-\phi)x^2 + \frac{\sqrt{5}}{2}$.

References

- [1] R.E. Bellman, Dynamic Programming, Princeton Univ. Press, NJ, 1957.
- [2] R.E. Bellman, Introduction of the Mathematical Theory of Control Processes, Vol.I, Linear Equations and Quadratic Criteria; Vol.II, Nonlinear Processes, Academic Press, NY, 1967; 1971.
- [3] R.E. Bellman, Methods of Nonlinear Analysis, Vol.I, Vol.II, Academic Press, New York, 1969, 1972.
- [4] S. Iwamoto, *Theory of Dynamic Program: Japanese*, Kyushu Univ. Press, Fukuoka, 1987.
- [5] S. Iwamoto, Cross dual on the Golden optimum solutions, Proceedings of the Workshop in Mathematical Economics, RIMS Kokyu Roku No.1443, pp. 27-43, Kyoto University, 2005.
- [6] S. Iwamoto, The Golden trinity optimility, inequality, identity —, Proceedings of the Workshop in Mathematical Economics, RIMS Kokyu Roku No.1488, pp. 1-14, Kyoto University, 2006.
- [7] S. Iwamoto, The Golden optimum solution in quadratic programming, Ed. W. Takahashi and T. Tanaka, Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis (Okinawa, 2005), Yokohama Publishers, 2007, pp.109–205.
- [8] S. Iwamoto, Golden optimal policy in calculus of variation and dynamic programming, Advances in Mathematical Economics 10 (2007), pp.65–89.
- [9] S. Iwamoto and M. Yasuda, Dynamic programming creates the Golden Ratio, too, Proc. of the Sixth Intl Conference on Optimization: Techniques and Applications (ICOTA 2004), Ballarat, Australia, December 9-11, 2004.
- [10] S. Iwamoto and M. Yasuda, Dynamic programming creates the Golden ratio, too, Proceedings of the Workshop "Decision Models and Mathematical Models under Uncertainty," RIMS Kokyu Roku No.1477, pp. 136-140, Kyoto University, 2006.

- [11] S. Iwamoto and M. Yasuda, Golden optimal path in discrete-time dynamic optimization processes, Ed. S. Elaydi, K. Nishimura and M. Shishikura, Advanced Studies in Pure Mathematics 53, 2009, ICDEA2006, pp.99–108; Proceedings of The International Conference on Differential Equations and Applications (ICDEA06), Kyoto University, Kyoto, JAPAN, July 24-28, 2006.
- [12] M. Sniedovich, Dynamic Programming, Marcel Dekker, Inc. NY, 1992.
- [13] H. Walser, Der Goldene Schnitt, B.G. Teubner, Leibzig, 1996.