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Abstract

This paper discusses a common criterion on three different dynamics. The cri-
terion is discounted quadratic. The dynamics are deterministic, stochastic and
non-deterministic. We consider two problems from a viewpoint of Golden optimal-
ity. The first problem is to find an optimal solution — value function and optimal
policy — . The second problem is to discuss whether the optimal solution is Golden
or not. Is the value function Golden? Is the optimal policy Golden? We give a com-
plete solution to the first problem through two approaches — evaluation-optimization
method and dynamic programming method —. The solution of the second depends
on the discount rate 8 (0 < @ < oco). We show that both — deterministic and non-
deterministic — dynamics allow the Golden optimal solution for 4 = 1. Further all

the three dynamics allow the Golden optimal policy for g = i

V5
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1 Introduction

The Golden ratio is the symbol of beauty and practical use. It has been utilized in
architecture, art, design, biolology, sicence, engineering, and others [13]. Recently it
has been incorporated into optimization problems. There a new — Golden (and) optimal
— solution is obtained. Both static problems [5-7] and dynamic problems [8,10,11] are
studied from the Golden optimality. The static optimization is two-variable. The dynamic



one is infinite variable — discrete-horizon [10,11] and continuous-time [8] —. All of them
are on deterministic system.

This paper minimizes a discounted quadratic criterion on three — (1) deterministic,
(2) stochastic and (3) non-deterministic ~ dynamics. We consider two problems from a
viewpoint of Golden optimality. The first problem is to find an optimal solution — (i)
value function, (ii) optimal policy, (ili) minimum value — . The second problem is to
discuss whether the optimal solution is Golden or not. Our approaches are evaluation-
optimization method and dynamic programming method. We give an optimal solution to
the first. The solution of the second depends on the discount rate 8 (0 < 8 < oo). We
show that both — (1) deterministic and (3) non-deterministic — dynamics allow the Golden
optimal sollution for # = 1. Further all the three dynamics allow the Golden optimal policy
for B = 75 = 0.4772

2 Golden Paths

A real number

S

b= 1+2 ~ 1.618

is called Golden number. It is the larger of the two solutions to quadratic equation
?—z-1=0. (1)

Sometimes (1) is called Fibonacci quadratic equation. The Fibonacci quadratic equation
has two real solutions: ¢ and its conjugate ¢ := 1 — ¢. We note that

Further we have

¢! =¢—1= 0618 ¢2=2—¢ = 0382
p 1+ =1

A point ¢~2z splits an interval [0, z] into two intervals [0, ¢—2z] and [¢~2z, z]. A point
¢~z splits the interval into [0, ¢'z] and [¢~'z, z]. In either case, the length constitutes
the Golden ratio ¢~2 : ¢~! = 1 : ¢. Thus both divisions are the Golden section.

Definition 2.1 A sequence {z,}5° is called Golden if and only if either
Tpp1 = ¢ 2, n>0 or ZTp = ¢ %x, n>0.
Lemma 2.1 A Golden sequence {x,}§° is either
Tp=co™ n>0 (Fig. 2) or z, =cp 2" (Fig. 1),

where ¢ is a real constant.



Definition 2.2 A sequence of Markov random variables {X,}§ with Xo = o is called
Golden if and only if either

E[Xni1|2n) = ¢ 20, >0 or E[Xp1|zn]=¢ %z, n2>0.

S

Fig. 1 Golden paths of rate =2 =z, =c¢ 2" ¢=1,2,3

Fig. 2 Golden paths of rate ¢~ z,=c¢™ c=1,2,3



We remark that either Golden sequence is supermartingale. In either case, E[Xnyi | Zn)
generates a Golden section of interval [0, z,] for z, > 0 and does a Golden section of
interval [z,, 0] for z, < 0.

Let {€,}° be a sequence of independent and identical random variables with the
standard normal distributuion. Then

Eles) =0, E[&]=1.

For given z and yo we define two sequences of Markov random variables {X,} and {Y,}
by

Xn+1 = ¢-1Xn — €n+1, Xo= Zo
Yos1 = ¢7Yn — €1, Yo =0

Lemma 2.2 Then {X,} and {Y,.} are Golden.

3 Three Dynamics

We consider three dynamic optimization problems with a common discounted quadratic
criterion.

The first is a deterministic dynamics on which we minimizes a typical quadratic func-
tion. The problem is called linear-quadratic (LQ) {2,3] :

o0
minimize Z B (22 + ul)
n=0

subject to i) z = Iy — Uy
(D) ( ) n+l n 2 0
(ii) un, € R!

(iii) zo =rc,
where ¢ € R!. Here (i) denotes that next state £, turns out to be z, — u, with certainty

from state z,, under decision u,. This dynamics together with immediate cost is depicted

as
1 u, € R?

— 12 +u2

R'sz, » & unique Tni1 = Tp — Un € R,

where < denotes that state z, under decision uy, yields the stage-cost z2 + u2.

The second is a stochastic dynamics on which we minimizes the expected value of the



same quadratic function as in deterministic one:

oo
minimize FEg, [Z g (z2 + Ui)]
n=0

subject to (i) Zni1 = ZTn — Un — €nta
(S) '

n>0
(ii) un € R!

(i) zo=c,

where ¢ € R!. The problem (S) is called stochastic linear-quadratic (LQ). Here {€,}$°
is a sequence of independently and identically distributed random variables with the
standard normal distributuion. Thus (i) denotes that =, appears on R! with transition

1 -
probability ¢(Zp41 | Zn,Un) = e~ (@nv1—antun)?/2 from Zn under u,. This dynamics is
+ Var
depicted as
u, € R
R'>z, v "2 . > Tnt1 W.D. q(Tni1|Zn,un) for any zny1 € R
— i+ ul

The third is on non-deterministic dynamics. There we minimize a total discounted
weighted value of quadratic cost:

oo
minimize Z B"Wg, [x,zl + uﬁ]

n=0
subject to (i) 0 < Tp41 < Tn — Un With weight 2/zn4
(N) n>0
(i) u, € R!

(iii) zo =c,

where ¢ > 0. We call the problem (N) is nondeterministic quadratic (Q). Here the infinite
series is defined in Section 6. The successive constraint (i) denotes that z,.; appears
on the open interval (0, z, — u,) with transition weight 2/z,4; from z, under up. This
dynamics is depicted as

1 up € (—00,2y)

(0,00) 2 2, > Tpy1 W.W.
—) "5121 4+ uﬁ ZTnt1

for any 41 € (0, T — Un).

A characteristic feature of the dynamics is as follows. As next state degenerates small, its
weight grows unboudedly large. The total weight from any state x, under any decision
u,, diverges to oo as long as z, —u, > 0:

Ln—Un 2
0




4 Deterministic Dynamics

Let us consider the discounted quadratic criterion on deterministic dynamics:

minimize Z B (22 + ul)
n=0
subject to (i) ZTp4+1 =2Zn —u
(D) ( ) n+ n n n 2 0
(i) u, € R!
(i) zo =c,

where ¢ € R! is a given constant.

4.1 Evaluation-optimization

Let us solve (D) through evaluation-optimization method, which has two stages. The first
stage evaluates any policy in a class of policies and the second minimizes the evaluated
value over the class.

A stationary policy f™ is called proportional if the decision function is specified by
f(z) = pz, where p is a real constant. Then p is called a proportional rate. In this
subsection, we consider the set of all proportional policies whose rate p satisfies 3(1—p)? <
1.

Lemma 4.1 A proportional policy f*°, f(z) = pz, yields the objective value
S e ud) =yt
n=0

where r =1+ p?, ¢ =(1-p)>.

Now let us consider the ratio minimization problem

minimize ——— subject to (g < 1.

1-pq

This is expressed as a single-variable problem :

1+ p?

minimize
1-8(1-p)?

(Cs) 1 1
subject to 1— — <p<1+4+ —.

vB vB

Lemma 4.2 The problem (Cg) has the minimum value

28-1+/AFF+1 5 — VAR +1 -1
28 B 2B '




Thus we have the optimal policy f°° ;

VA +1 -1
20

in the proportional policy class and the value function

28 -1+ /4FZ +1
28 '

v(z) = mz®, m=

We remark that

4.2 Dynamic programming
In this subsection, we apply dynamic programming to optimize the infinite stage problem
(1,4,8,12].

Let v(c) be the minimum value for ¢ € R!. Then v : R! — R! is called a value function.
The value function v satisfies the Bellman equation :

v(z) = min [z +4® +PBv(z —u)], v(0)=0. (2)

—oo<<u<oo

Lemma 4.3 The control process (D) has the proportional optimal policy f, f(x) = pz,
and the quadratic value function v(z) = vz?, where

28—~1++/402+1 RRVZV S

’

The proportional optimal policy f* splits at any time an interval [0, z] into [0, (1 —

p)z] = [0, z ] and L—i%ﬁ—v—, x] . When, in particular, 8 = 1, the quadratic coeffi-

1+ B

cient v is reduced to the Golden number

1++/5
2

¢ = ~ 1.618

and the proportional rate p is reduced to its inverse number
-1
51 —p-1- L

Further the division of [0, z] into [0, ¢~2z] and [¢~2z, z] is Golden. That is, the ratio of
length of two intervals constitutes the Golden ratio:

6297 =1: ¢.

A quadratic function w(z) = az? is called Golden if a = ¢.

~ 0.618

Theorem 4.1 The control process (D) with unit discount rate 3 = 1 has a Golden optimal
policy £, f(z) = ¢z, and the Golden quadratic value function v(z) = ¢z2.



5 Stochastic Dynamics

Let us consider the stochastic dynamic process under the condition that the discount rate
8 shoud be 0 < B < 1. Soon it will be clarified that the expected value diverges for the
case 3 > 1. Our stochastic dynamic minimization problem is

o0
minimize Ej, [Z B (2 + uﬁ)}
n=0
subject to (1) ZTni1 = Tn — Un — €ny1
(S) n>0
(i) u, € R!

(iii) zo = ¢,

where an initial state ¢ € R! is given, and {¢,} is a sequence of random variables that is
independently and identically distributed through time and obeys the standard normal
distributuion. Thus
Ele)) =0, E[&]=1.
We note that €, has the probability density function
1 2 /2

p(z) = Ton e”*

The next state (random variable) z,; obeys the normal distribution with mean z, — u,
and unit variance, provided that a decision u, is taken at state z, on stage n. When a
decision maker adopts a decision u on state z, the system will go to state (scalar) y with
probability q(y | z,u) = p(y —z +u) :

-0 < z< o0

—(y—=z+u)?/2

e —o00 <y < oo.

a(vlz ) = —
V2rn
We depict this dynamics as
| u € (—o0,00)
— 32 +u?

(—o0, )3z >y w.p. q(y|z,u) for any y € (—o0, 00).

5.1 Evaluation-optimization

Let us evaluate any proportional policy f*, f(z) = pz for 0 < p < 2. The decision maker
adopts the decision u,, = f(z,) = pz, on state z,. Hence

(o o] o0
B [Zﬁ"@f» *“3)] = rY BB [52],
n=0 n=0
where 7 = 1 + p?. The controlled dynamics z,41 = Zp, — Un — €n41 is reduced to
Tny1 = (1 - p)xn — €n41 o =C. (3)

Here we note that |1 —p| < 1.



Lemma 5.1 It follows that under (3)

1 1 .
E[l’i]=1—_a+(mg"1uq)Q7 (4)

where ¢ = (1-p)%
Lemma 5.2 A proportional policy £, f(x) = pz, yields the expected value
Ez n (.2 2 = r 2 ,3
o[;ﬂ (xn+un)] T=7%a (x0+————1_ﬁ ,
wherer =1+ p?, q=(1-p)i
B

Note that the term z? + 17 is independent of p. We have reached the ratio min-

imization problem (Cg) in the deterministic dynamics. Lemma 4.2 gives the minimun
solution of (Cg).
' Thus we have the optimal policy f* ;

Vagr+1 -1
20
in the proportional policy class and the value function
28—1+4/402+1 28—-1++/46%+1
26 P 20-8)

f@) =pz, D=

v(z) = mz*+p, m=

5.2 Dynamic programming

Let v(c) be the minimum value. Then the value function v : R — R! satisfies the Bellman
equation:

—_ i 2 2 —_ —
v(z) = _min [ +u?+ BE, [v(z —u—¢)]]. (5)
This is also written as the controlled integral equation
_ : 2 2 B 1 (y—z+u)? :l
v(zr) = min +u® + e 2 v(y)dy| .
() = _min_ [‘” Y= [ - (v)dy

Lemma 5.3 The control process (S) has a proportional optimal policy >, f(z) = pz,
and a quadratic value function v(z) = vz? + p, where

28 -1++/4FF+1 28— 1+ /A +1 ©)
= 28  PE 2(1 - B)

V4R +1 -1
203 '

Thus we see that the stochastic dynamic system (S) has the same optimal policy as
deterministic dynamic system (D). This is what we call certainty equivalence principle.
The value function has a difference p which comes from the discounted total noise under
uncertainty.

p:
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6 Non-deterministic Dynamics

Now we consider the minimization problem on non-deterministic dynamics

minimize Z B W, [22 + ul]

n=0
subject to (i) 0 < zp41 < Tn — u, with weight 2/z,4
(N) n>0
(ii) un, € R!

(iii) zo=c,
where ¢ > 0 is a given constant. The constraints (i), (ii) yields the feasibily —oo < u, <

Z,. Here the n-th term is defined as follows.

W [$i+uﬁ] = /f'fvo'n---%—lrn dzidzy---dz,

- // / 2" (2 +u")dx1dx2---dxn,
1T

where the transition weight function and cost function are stationary:
2

xm+1

Ym = ’7($m,uma$m+1) =

Tn = (T, Up) = T2 + ul.

The integral domain R is determined through the sequence of decision functions
fO’fl) s ,fn—l

R = {(171,1?2,...
c (0,00)",

,zn)|0<zl<$0_u0’ cee 0<xn<xn—-1_un—1}

where um = frm(zm).
When n = 0, we have

Weolro] = 22+ ul.

In the following, the sequence of states

U v w b
z—)y——)z—-—)a—%--l)s—i)t—)---
reads
U u U u Un—2 Un-1
0 1, 2;:1;3 3;... n ;xn—-l——_n_’xn“_—)"'

e ody) > T > T2
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The first three weighted values are
2 2
ol v = [Ty,
c

Yy
27,2 2
/ ZE+Y) de
D Yz

3( 2
W, [az +b2] — /// Mdydzda,
E Yyza

W [22 + w?]

where

C={y|l0<y<z—u(z)} C (0,00)
D= {(y,2)|0<y<z—u(z), 0<z<y—v(y)} C (0,00)?
E={(y,2,0)|0<y<z—uz), 0<z<y—ov(y), 0<a<z-—w(z)} C (0,00)3

We call
Wao [22 +u2] and B Wi, [z2 + u?)

n-th weighted value and n-th discounted weighted value, respectively. The limit of series
is called a total discounted weighted value. Thus the objective function (of z,) represents

a total discounted weighted value by using policy 7 = {fo, f1,- .. , fa=1,... } from initial
state zg.
Then we consider the total discounted weighted value
J(zo;m) = Wplro] + BWaolri] + -+ + B " Wae[ra) + - -+

Thus our problem is to choose a policy which minimizes the discounted total weighted
value. This is expressed as

P(zy) minimize J(zo;m) subject to = €Il

6.1 Evaluation-optimization

First we evaluate any proportional policy m = f*, f(z) = pz. The decision maker adopts
a decision u = pz on state z and the system will go to state y on open interval (0, z—u) =

(0, (1 — p)z) with the weight % Then we have inductively

W22 +42] = rq"a’

Lemma 6.1 A proportional policy m = f, f(z) = pz, yields the objective value
oo
r

;ﬂnWwo [a:f, + uﬁ] = 1= Bq g,

wherer =1+ p?, ¢= (1 - p)>.




12

Thus we have reached the same ratio minimization problem (Cg) as in deterministic
dynamics. Therefore we have the optimal policy f* ;

Vagz+1 -1
28

f@) =pz, p=
and the value function

v(z) = mz?, m =

28 -1+ /487 + 1
20 '

6.2 Dynamic programming

Let v(zo) be the minimum value. Then the value function v : [0 00) — R! satisfies the
Bellman equation:

—  mi 2 4 2 v _
v(z) = _in [z +u +B/0 2 ” dy] v(0) = 0. (7
This is also written as follows:
—_ 3 2 2 u
v(z) = _hin [22 +u? + BW2[v]].

We may assume that Eq.(7) has a quadratic form v(z) = vz?, where v € R'. We solve
(7) as follows. Then we have

f 29@@/ = / 2uydy = v(z — u)?.
0 0

y

Eq.(7) is reduced to a minimum equation for saclar v:

2 _ o 2,2 )2
vr? = _oonéEl(m[m +u? + Bu(z — u)?].

Thus we have reached the same situation as in deterministic dynamics as was shown in

(5)-

Lemma 6.2 The control process (N) has the proportional optimal policy f*°, f(z) = pz,
and the quadratic value function v(z) = vz?, where

_ 28 -1+ /482 +1 _ Vasz +1 -1
26 - PE 28 '

Thus as in deterministic dynamics, we have the same result on Golden optimality:

Theorem 6.1 The control process (N) with unit discount rate 8 = 1 has a Golden optimal
policy f*°, f(z) = (¢ — 1)z, and the Golden quadratic value function v(z) = ¢z2.
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7 Golden Policies

Let us now discuss whether the desired optimal policy is Golden or not. Throughout three
presections, we have obtained a common optimal solution. The optimal policy both for
stochastic process and for non-deterministic process is identical with the optimal policy
for the deterministic process. This is called certainty equivalence principle. The three
control processes — (D), (S) and (N) — have a common proportional optimal policy

<5 f(z) =pz

and the quadratic value function

_ Jva? for (D), (N)
v(@) = {vx2+p for (S),

where

VAP +1I -1 28
p= 23 14448+ 1
WB-1+VAFFT  28-1+AFFT

28 P 20-8)

v =

The rate p is determined by the coefficient v:
p=v—1.

The proportional optimal policy f* splits any interval [0, z] into [0, (1—p)z] and [(1 — p)z, z].
We are interested in values of discount factor 8 which yields the two Golden sections. This
asks us when 1 — p becomes ¢ — 1 or 2 — ¢.

Let us now consider both p and 1 — p as functions of 3. We take

26
1++/482 +1

p(8) =

Then
2

Vi i1 (1+aET)

Thus p(f) is strictly increasing and

0.

p(B) =

1-p(0)=1, 1—p(1)=2—¢ =~ 0.382

This enables us to solve the equation

2 - -1
1—pw)={¢_f m.pm)={j_¢
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This is reduced to

28 _ e
1+/42 +1 |42

The equation has respective solutions

We note that

¢ 1 1 2-1 5 1
pt-1 (#2+1(p-1) 20-1 5 5 5

~ 0.4772

7.1 Deterministic dynamics

The deterministic control process (D) has a discount factor 0 < 8 < oo.

7.1.1 Case =1

When 8 = 1, the quadratic coefficient v is reduced to the Golden number

146
v=¢= ZJ_szs

and the proportional rate p is reduced to

VvV5—-1
2

Further the division of [0, z] into [0, #~2z] and [¢~2z, z] is Golden.

The Golden optimal policy f*, f(z) = pz, yields the optimal deterministic behavior as
follows. A current state z,, under the Golden optimal decision u,, = pz, = ¢ 1z, goesto a
unique state Tp4, = Tp — U, = ¢~ >z, into R!. The next state is z,41 = ¢~ 2z, =~ 0.382z,
(Fig. 1). The dynamics is depicted as

~L Up = ¢—1zn

p=¢—1= ~ 0.618

R! > z, > Tny1 = ¢ 2z, =~ 0.382z,, uniquely.

Thus the Golden optimal dynamics says that next state becomes z,,; = ¢ %z, =
0.382z,,.
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7.1.2 Case = —\}—5=

We consider case 8 = =~ 0.4772 Then we have

1
V5
v=3—¢=~1382, p=¢ 2 ~0.382
The division of [0, z] into [0, ¢~'z] and [¢p~'z, 7] is Golden.

The Golden optimal policy f*, f(z) = pz, yields the optimal deterministic behavior
as follows. A current state z, under the Golden optimal decision u, = ¢~2z, goes to

a unique state Zny1 = Tn — Up = ¢z, = 0.618z, (Fig. 2). The the Golden optimal
dynamics

R'> 1z, — >y Tny1 = ¢ 'z, =~ 0.618z, uniquely

says that z,41 = ¢~ 'z, ~ 0.618z,,.

7.2 Stochastic dynamics

The stochastic control process (S) has the discount factor restricted to 0 < 8 < 1. We

V5

consider the Case 8 = only.

72.1 Casef=1

26—12(-’1-_” ;’?2_’_1 for 0 < 8 < 1. Thus

As we have shown in (6), the total noise is p =

it diverges to oo for 8 = 1.

7.2.2 Case (= ——\71_5—

We have

v=3-¢ = 1382, p=¢ 2~ 0.382, p= % ~ 1.118

The state sequence {X,}$ defined by
Xpt1 = Xpn—0Xn— €141, Xo=2p
is stochastically Golden :
E[Xns1 | zn] = ¢~ 2.

That is, the Golden optimal policy f*°, f(z) = pz, yields the optimal stochastic behavior
as follows. A current state z, under the Golden optimal decision u, = pz, = ¢~2z, goes
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1 e (@Ent1-¢712n)?/2 The

27
next state (random variable) x,; follows the normal distribution N(¢ 'z, 1). The mean

is 71z, = 0.618z, (see Fig. 2). The Golden optimal dynamics

1 un = ¢~ %z,

to z,4; on R! with transition probability ¢(Zn41|Zn,Un) =

R!' 5z,

1
*> Tny1 W.D. Q(xn+1 I xmun) for any In41 € R

says that current state goes down to ¢z, =~ 0.618z, on average.

7.3 Non-deterministic dynamics

The non-deterministic control process (N) has a discount factor 0 < 8 < cc.

7.3.1 Case 8=1
When 3 = 1, it follows that

v=¢~ 1618 p=¢ !~ 0.618

Further the division of [0, z] into [0, $~2z] and [$~2z, z] is Golden optimal.

The Golden optimal policy f*, f(z) = pz, yields the optimal non-deterministic behav-
ior as follows. A current state z, under the Golden optimal decision u, = pz, = ¢~ z,
goes to T4 on inteval (0, z, —u,) = (0, $~2z,) with transition weight ¢(Zn41|Zn, us) =
2/Zpn41- The next state (non-deterministic variable) z,,; has the unbounded weight 2/,
on (0, ¢2z,) =~ (0, 0.382z,). The Golden optimal dynamics

(000) 3 z, b Un=¢"'an

> Tpp1 WW. 2/Tniy for any z,.q € (0, ¢~ 2z,)

says that current state goes down on a shrunken interval (0, ¢~2z,) = (0, 0.382z,) with
the Golden rate ¢—2 ~ 0.382 (see Fig. 1).

7.3.2 Case 8= 1

V5

The case yields
v=3—¢ =~ 1382, p=¢"?%=~ 0382

The division of [0, z] into [0, ¢~'z] and [¢~'z, ] is Golden optimal.

The Golden optimal policy f*°, f(z) = pz, yields the optimal non-deterministic be-
havior as follows. A current state z, under the Golden optimal decision u, = ¢~2z,
goes to Tn41 on inteval (0, z, —u,) = (0, ¢™'z,) with transition weight ¢(Zn+1 | Zn,un) =
2/Zn+1. The non-deterministic z,,1 has the unbounded weight 2/zn41 on (0, ¢71z,) =~
(0, 0.618z,). The Golden optimal dynamics

4 Up= ¢_2mn

(0o0) 3 z, > Tpy1 W.W. 2/Tpyy for any z,41 € (0, o7 'z,)
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says that next state goes down on a shrunken interval (0, ¢~'z,) = (0, 0.618z,) with the
Golden rate ¢~' = 0.618 (see Fig. 2).
Finally we have the following result.

1
Theorem 7.1 For the discount rate 8 = Wil three processes (D), (S) and (N) have a

common Golden optimal policy g=, g(z) = (2—¢)z. Then (D) and (N) have the quadratic
value function v(z) = (3 — ¢)z® and (S) has the quadratic value function v(z) = (3 —
V5
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