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Abstract

Some recent constructions [22], [23] of optimal quantum codes based on finite prcs
jective geometry configurations of points, known as caps, and combinatorial structures
such as Bhaskar-Rao designs, generalized balanced weighing matrices and generalized
Hadamard matrices are discussed.
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1 Introduction
We assume familiarity with the basics of classical error-correcting codes [19] and quantum
codes [5]. A linear q-ary $[n, k]$ code $C$ is a k-dimensional subspace of the n-dimensional vector
space over the field $GF(q)$ of order $q$ . The dual code $C^{\perp}$ of an $[n, k]$ code $C$ is the $[n, n-k]$
code being the orthogonal space of $C$ with respect to a specified inner product. The ordinary
inner product in $GF(q)^{n}$ is defincd $ag$

$x \cdot y=\sum_{i=1}^{n}x_{i}y_{i}$ . (1)

The hermitian inner product in $GF(4)^{n}$ is defined as

$(x, y)_{H}= \sum_{i=1}^{n}x_{i}y_{i}^{2}$ . (2)
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The trace inner product in GF(4) is defined as

$(x, y)_{T}= \sum_{i=1}^{n}(x_{i}y_{i}^{2}+x_{i}^{2}y_{i})$ . (3)

A code $C$ is self-orthogonal if $C\subseteq C^{\perp}$ , and self-dual if $C=C^{\perp}$ . A linear code $C\subseteq GF(4)^{n}$

is self-orthogonal with respect to the trace product (3) if and only if it is self-orthogonal
with respect to the hermitian product (2) [5].

An additive $(n, 2^{k})$ code $C$ over $GF(4)$ is a subset of $GF(4)^{n}$ consisting of $2^{k}$ vectors
which is closed under addition. An additive code is even if the weight of every codeword
is even, and otherwise odd. Note that an even additive code is trace self-orthogonal, and a
linear self-orthogonal code is even [5]. If $C$ is an $(n, 2^{k})$ additive code with weight enumerator

$W(x, y)= \sum_{j=0}^{n}A_{j}x^{n-j}y’$ , (4)

the Weight enumerator of the trace-dual code $C^{\perp}$ is given by

$W^{\perp}=2^{-k}W(x+3y, x-y)$ (5)

In [5], Calderbank, Rains, Shor and Sloane described a method for the construction of
quantum error-correcting codes from additive codes that are self-orthogonal with respect to
the trace product (3). Spccifically, the following statement was proved in [5].

Theorem 1.1 $[5J$ An additive trace self-orthogonal $(n, 2^{n-k})$ code $C$ such that there are no
vectors of weight $<d$ in $C^{\perp}\backslash C$ yields a quantum code with parameters $[[n, k, d]]$ .
A quantum code associated with an additive code $C$ is pure if there are no vectors of weight
$<d$ in $C^{\perp}$ ; otherwise, the code is called impure. A quantum code is called linear if the
associated additive code $C$ is linear. We will need also the following result from [5].

Theorem 1.2 $[5J$ The existence of a linear $[[n, k, d]]$ quantum code with associated $(n, 2^{n-k})$

additive code $C$ implies the existence of a linear $[[n-m, k’, d^{l}]]$ quantum code with $k’\geq k-m$

and $d‘\geq d$ , for any $m$ such that there exists a codeword of weight $m$ in the dual code of the
binary code generated by the supports of the codewords of $C$ .
A table with lower and upper bounds on the minimum distance $d$ for quantum $[[n, k, d]]$
codes of length $n\leq 30$ is given in the paper by Calderbank, Rains, Shor and Sloane [5]. An
extended version of this table was compiled by Grassl [12]. An electronic server for bounds
on the minimum distance of various codes is available on Andries Brouwer’s web page [4].

2 Caps
An n-cap in $PG(s, q),$ $s\geq 3$ , is a set of $n$ points no three of which are collinear (Hirschfeld
and Thas [15] $)$ . An n-cap is complete if it is not contained in any $(n+1)$-cap. Tables with
bounds on the maximum size of complete caps in various spaces are given in Storme [20].
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Suppose that $M$ is an $(s+1)\cross n$ matrix having as columns a set of $n$ vectors in $GF(q)^{s+1}$

representing the points of an n-cap in $PG(s, q)$ . Then the dual code $C^{\perp}$ (with respect to
the product (11) $)$ of the linear $C$ code over $GF(q)$ spanned by the rows of $M$ has minimum
distance $d\geq 4$ , and if the cap is complete, we have $d=4$ . If $q=4$ and the rows of $M$ are
pairwise orthogonal with respect to the trace product (3), the code $C$ defines a quantum
code via Theorem 1.1. The exact minimum distance of the related quantum code can be
found by using the identities (4) and (5).

If $K$ is an n-cap in $PG(3, q)$ then $n\leq q^{2}+1$ ([21], p. 309). A $(q^{2}+1)$ -cap in $PG(3, q)$ ,
$q\neq 2$ , is called an ovoid. In [5], an ovoid in $PG(3,4)$ was used to obtain an optimal quantum
$[[17,9,4]]$ code, i.e., 4 is the largest possible value of $d$ for $n=17$ and $k=7$. Motivated by this
example, we investigate in this paper quantum codes obtained from other known complete
caps or caps of largest known size in projective spaces over $GF(4)$ of small dimension. One
of the complete 41-caps in $PG(4,4)$ , as well as the known 126-cap in $PG(5,4)$ lead to a
number of quantum codes of various lengths with $d=4$ that are either optimal or have the
largest known value of $d$ for the given $n$ and $k$ . Using a geometric approach similar to the
one employed for the construction of an 126-cap in $PG(5,4)$ , we find an incomplete 27-cap
in in $PG(6,4)$ that yields an optimal quantum $[[27,13,5]]$ code. The best previously known
quantum code with $n=27$ and $k=13$ had minimum distance $d=4[5]$ .

3 Codes from a complete 41-cap in $PG(4,4)$

The largest possible size of a complete cap in $PG(4,4)$ is 41, and up to projective equivalence,
there are exactly two 41-caps (Edel and Bierbrauer [7]). The 5 $\cross 41$ matrix (6) of one of
these caps, having as columns a set of vectors representing the points of the cap, has pairwise
orthogonal rows with respect to the hermitian product (2). Here, and later on throughout
this paper, we assume that $GF(4)=\{0,1, w, w^{2}\}$ , and $w$ and $w^{2}$ are labeled by 2 and 3
respectively.

The weight enumerator of the linear (41, 5) code $C$ over $GF(4)$ spanned by the rows of (6)
is given by

$W=1+9y^{24}+12y^{26}+105y^{28}+660y^{30}+90y^{32}+36y^{34}+51y^{36}+60y^{38}$ ,

while the weight enumerator of the trace-dual code $C^{\perp}$ is

$W^{\perp}=1+9930y^{4}+176520y^{5}+3178488y^{6}+\ldots+35618160526163496y^{41}$ .
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Thus, $C$ defines a quantum $[[41,31,4]]$ code via Theorem 1.1. The dual code $B^{\perp}$ of the
binary code $B$ of length 41 spanned by the supports of the vectors in $C$ is of dimension 17.
The weight distribution $\{B_{i}^{\perp}\}$ of $B^{\perp}$ is given in Table 3.1. Since the all-one vector belongs
to $B^{\perp}$ , we have $B_{i}^{\perp}=B_{41-i}^{\perp}$ for $0\leq i\leq 20$ .
Table 3.1 The weight distrebution of $B^{\perp}$

Table 3.2 Quantum codes obtained from a 41-cap in $PG(4,4)$

Note 3.3 All codes in Table 3.2 are optimal, that is, $d=4$ is the largest possible for the
given $n$ and $k$ (see [5] for lengths $n\leq 30$ and [12] for lengths 31, 33, 35 and 41). Note that
the lower bound on $d$ given in [5] for $n=29$ and $k=19$ is $d=3$ .

4 Codes from a 126-cap in $PG(5,4)$

The largest size of a known complete cap in $PG(5,4)$ is 126, and there are two known
constructions of such a cap (Baker, Bonisoli, Cossidente, and Ebert [1], and Glynn [llj).
Glynn [11] uses geometric arguments to determine the weight distribution $W$ of the related
linear (126,6) code $C$ over $GF(4)$ spanned by the $6\cross 126$ matrix associated with the cap:

$W=1+945y^{88}+3087y^{96}+63y^{120}$ .

Since all weights in $C$ are even, it follows that $C$ is self-orthogonal with respect to the
hermitian product (11), as well as with respect to the trace product (3). The minimum
distance of its trace-dual code $C^{\perp}$ is 4. Consequently, $C$ yields a quantum $[[126,114,4]]$ code
via Theorem 1. According to [12], a code with these parameters is optimal, that is, 4 is
the largest possible value of $d$ for any quantum $[[126,114, d]]$ code. The dual code of the
binary code spanned by the supports of the nonzero vectors in $C$ contains vectors of weight
$m$ , where the values of $m$ are listed in (7).

6, 8, 10, 12, 14, 16, 18, 20, 21, . . . , 106, 108, 110, 112, 114, 116, 118, 120, 126. (7)
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Consequently, there exist pure quantum $[[126-m, 114-m, 4]]$ codes for all values of $m\leq 114$

from the list (7) obtained via the shortening construction of Theorem 1.2. Most of these
codes are optimal according to [5] and [12]: the codes of length $28\leq n\leq 126$ obtained for
values of $m$ in the range $0\leq m\leq 98$ are all optimal; the codes with $20\leq n\leq 27$ may be
optimal: the theoretical upper bound on $d$ for such codes with $k=n-12$ is 5. Only the
codes of length $n=12,14,16$ and 18 are not optimal: the largest $d$ for an $[[n, k, d]]$ code
with $k=n-12$ is 5 if $n=14,16$ or 18, and 6 if $n=12[5]$ .

Several of the codes obtained by shortening of the $[[126,112,4]]$ code with respect to a
codeword of weight $m$ for various values of $m$ improve upon previously known quantum codes
with comparable parameters [8], for examle, $[[43,31,4]],$ $[[63,51,4]],$ $[[73,61,4]],$ $[[85,73,4]]$ ,
$[[105,93,4]],$ $[[112,100,4]]$ ,
$[[116,104,4]],$ $[[118,106,4]]$ .

5 A quantum $[[27,13,5]]$ code from an incomplete cap in
$PG(6,4)$

The minimum distance $d$ of a quantum code associated with a complete cap cannot exceed
4. In this section, we describe the construction of an incomplete 27-cap in $PG(6,4)$ that
leads to a quantum [[27,13,5]] code. We note that $d=5$ is the theoretical upper bound for
a quantum code with $n=27$ and $k=13$ , and the best previously known quantum code for
these parameters had minimum distance $d=4[5]$ .

The 126-cap in $PG(5,4)$ was constructed in [1] as a union of six 21-caps, where the
caps of size 21 were orbits under a certain projective transformation of order 21. Thus,
by construction, the resulting code of length 126 is invariant under a group of order 21. A
similar method that employs projective transformations was used by van Eupen and Tonchev
earlier in [9] for the construction of certain 3-weight codes over $GF(5)$ .

The $7\cross 7$ matrix $M_{7}(8)$ , considered as a matrix over $GF(4)$ , defines a projective trans-
formation that partitions the $(4^{7}-1)/3=5461$ points of $PG(6,4)$ into 421 orbits: one fixcd
point plus 420 orbits of length 13, where the orbits of length 13 are 13-caps.

$M_{7}=(0130032300001102222113303111003201102221110303211]$ . (8)

The column set of the matrix $G_{7}(9)$ consists of two orbits of length 13 plus the fixed point
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under the transformation defined by $M_{7}$ .

$G_{7}=\{\begin{array}{l}001001110110l0l11101111l1010l011l12113ll02200113301011032302123023100103001231330001223l103103ll12231230222302003l021ll00l02033220122130200l0l30l30222203101112032ll033l3113232l01230231330l0\end{array}\}$ . (9)

The linear code $C$ over $GF(4)$ spanned by the rows of $G_{7}$ is a hermitian self-orthogonal
[27, 7, 12] code with weight distribution listed in Table 5.1. The trace-dual code $C^{\perp}$ has
minimum distance 5, and weight enumerator (10). Thus, $C$ defines a quantum $[[27,13,5]]$
code via Theorem 1.1. To the best of our knowledge, a code with these parameters was not
known before.

Table 5.1 The weight distribution $\{c_{i}\}$ of the [27, 7] code $C$

$W_{C}\perp=1+1638y^{5}+13650y^{6}+115518y^{7}+885729y^{8}+5634954y^{9}+\ldots$ (10)

6 Generalized weighing matrices
A genemlized weighing $mat\dot{m}$ over a multiplicative group $G$ of order $g$ is a $v\cross b$ matrix $M=$
$(m_{ij})$ with entries from $G\cup\{0\}$ such that for every two rows $(m_{i1}, \ldots, m_{ib}),$ $(m_{j1}, \ldots, m_{jb})$ ,
$i\neq j$ , the multi-set

$\{m_{is}m_{js}^{-1}|1\leq s\leq b, m_{js}\neq 0\}$ (11)
contains every element of $G$ the same number of times.

A generalized weighing matrix with the additional properties that every row contains
precisely $r$ nonzero entries, each column contains exactly $k$ nonzero entries, and for every
two distinct rows the multi-set (11) contains every group element exactly $\lambda/g$ times is known
as a genemlized Bhaskar $Rao$ design GBRD$(v, b, r, k, \lambda;G)[18]$ .

Replacing the nonzero entries of a GBRD$(v.b, r, k, \lambda;G)$ by 1 produces the incidence
matrix of a $2-(v, k, \lambda)$ design with $b$ blocks of size $k$ and $r$ blocks containing any point. A
generalized Bhaskar Rao design with $r=k$ and $v=b$ is also known as a balanced generalized
weighing matrix $BGW(v, k, \lambda)[16],$ $[18]$ . In this case, the underlying design is a symmetric
$2-(v, k, \lambda)$ design. A generalized Hadamard matrix $GH(\lambda, g)$ over a group $G$ of order $g$ is a
balanced generalized weighing matrix with $v=b=k=\lambda$ ([3], [6] IV.II). The process of
replacing the l’s in the incidence matrix of a symmetric $2-(v, k, \lambda)$ design $D$ with elements
from a group $G$ of order $g$ (where $g$ is a divisor of $\lambda$ ) in order to obtain a balanced generalized
weighing matrix (called “signing” of $D$ over $G$ ) has been studied by Gibbons and Mathon

49



in [10], where a complete enumeration of signings of symmetric designs on $v\leq 19$ points is
given.

Lemma 6.1 Let $q=p^{8}\geq 4$ be a power of a prime number $p$ , and let $M$ be a $v\cross b$

genemlized weighing matm over the multiplicative group of $GF(q)$ such that the Hamming
weight of every row of $M$ is a multiple of $p$ . Then the rows of $M$ span a linear code $C$ of
length $b$ which is self-orthogonal with respect to the hermitian product (3).

Proof. Note that $a^{q-2}=a^{-1}$ for every nonzero $a\in GF(q)$ . The hermitian product $(x, x)$ of
a vector $x$ by itself is equal to the Hamming weight of $x$ reduced modulo $p$ . Thus, every row
of $M$ is self-orthogonal with respect to the hermitian product.

It follows by the definition of a generalized weighing matrix that the hermitian product
of two distinct rows $m_{i}=$ $(m_{i1}, \ldots , m_{ib}),$ $m_{j}=(m_{j1}, \ldots, m_{jb}),$ $i\neq j$ , of $M$ is a multiple of
the sum of all nonzero elements of $GF(q)$ , i.e.

$(m_{i}, m_{j})=s(1+\alpha+\alpha^{2}+\ldots+\alpha^{q-2})$ ,

where $s$ is the number of occurrences of each nonzero element of $GF(q)$ in the multi-set of
differenccs (11), and $\alpha$ is a primitive element of $GF(q)$ . Since $1+\alpha+\alpha^{2}+\ldots+\alpha^{q-2}=$

$(\alpha^{q-1}-1)/(q-1)=0$ , it follows that every two rows of $M$ are orthogonal to each other,
and consequently, the linear code spanned by the rows of $M$ is hermitian self-orthogonal. $\square$

Lemma 6.2 Let $q$ be a prime power and let $M$ be a GBRD $(v, b, r, k, \lambda;GF(q)\backslash \{0\})$ over
the multiplicative group of $GF(q)$ such that $v>k$ and $b<2v$ . The dual code $C^{\perp}of$ the code
$C$ spanned by the rows of $M$ has minimum distance $d^{\perp}\geq 3$ .

Proof. Since $v>k$ and $b<2v$ , it follows from the inequality of Mann (cf., e.g. [25],
Theorem 1.1.15) that all columns of the incidence matrix of the underlying $2-(v, k, \lambda)$ design
are distinct. Consequently, for every pair of columns of $M$ there is a row that contains a
zero entry in one of the columns and a nonzero entry in the other column. Thus, every two
columns of $M$ are linearly independent. $\square$

7 Codes from generalized weighing and Hadamard ma-
trices

Balanced generalized weighing matrices $BGW((q^{t}-1)/(q-1), q^{t-1}, q^{t-1}-q^{t-2})$ over the
multiplicative group of $GF(q)$ are known to exist for every prime power $q$ and every integer
$t\geq 2[2]$ , [18]. Some constructions using traces of elements in $GF(q)$ that give many
monomially inequivalent $BGW((q^{t}-1)/(q-1), q^{t-1}, q^{t-1}-q^{t-2})$ for various $q$ and $t$ are
given in [17]. The rank of a $BGW((q^{t}-1)/(q-1), q^{t-1}, q^{t-1}-q^{t-2})$ over $GF(q)$ is greater
than or equal to $t$ , and up to monomial equivalence, there exists a unique matrix $BGW((q^{t}-$

$1)/(q-1),$ $q^{t-1},$ $q^{t-1}-q^{t-2})$ of minimum q-rank $t[16]$ .
By Lemmas 6.1 and 6.2, we have the following.
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Theorem 7.1 Let $q\geq 4$ be a prime power and $t\geq 2$ be an integer. The code $C$ spanned by
the rows of a $BGW((q^{t}-1)/(q-1), q^{t-1}, q^{t-1}-q^{t-2})$ over $GF(q)$ is a hermitian self-orthogonal
code of length $n=(q^{t}-1)/(q-1)$ , dimension $k\geq t$ , and dual distance $d^{\perp}\geq 3$ .

Note 7.2 In the special case when $C$ has dimension $t$ , the dual code $C^{\perp}$ is equivalent to
the q-ary Hamming code [16].

Let $q$ be a prime power. A generalized Hadamard $q^{t}\cross q^{t}$ matrix $GH(q^{t-1}, q)$ over the
elementary abelian group $E_{q}$ of order $q$ is known to exist for every $t\geq 1$ (cf., e.g. [14], [24]).
The group $E_{q}$ is isomorphic to the additive group of $GF(q)$ , hence a $GH(q^{t-1}, q)$ over $E_{q}$

can be viewed as a matrix with entries from $GF(q)$ . We refer to the resulting matrix as an
additive Hadamard matrix. For an additive Hadamard matrix $GH(q^{t-1}, q)$ , over $GF(q)$ the
condition about the quotients (11) is replaced by the condition that for every pair of rows
$i,j(i\neq j)$ the multi-set of differences

$\{m_{is}-m_{js}|1\leq s\leq q^{t}\}$ (12)

contains every element of $GF(q)$ exactly $q^{t-1}$ times.
The rows of an additive generalized Hadamard matrix $GH(q^{t-1}, q)$ over $GF(q)$ may or

may not be pairwise orthogonal with respect to the hermitian product (3). For example,
only 150 of the 226 generalized Hadamard matrices $GH(4,4)$ found in [13] span hermitian
self-orthogonal codes.

The rank of a $q^{t}\cross q^{t}$ matrix $GH(q^{t-1}, q)$ over $GF(q)$ is at least $t$ . For any given prime
power $q$ and any $t\geq 1$ , there exists a unique (up to a permutation of rows and columns)
matrix $M=GH(q^{t-1}, q)$ of minimum q-rank equal to $t[24]$ . Algebraically, such a matrix
$M$ is the vector space spanned by the rows of a $t\cross q^{t}$ matrix $B(t, q)$ whose set of columns
consists of all distinct vectors with $t$ components over $GF(q)$ . Thus, $M$ contains one all-zero
row, and by the condition for the differences (12), every other row of $M$ contains every
nonzero element of $GF(q)$ exactly $q^{t-1}$ times. Thus, every row of $M$ except the zero row
has Hamming weight $q^{t-1}(q-1)\equiv 0$ $(mod q)$ . In addition, every two rows of $M$ are
orthogonal with respect to the hermitian product (3). This can be verified by induction
using the recursive structure of $B(t, q)$ , namely, up to a permutation of columns

$B(t, q)=(\begin{array}{llllllllll}0 \cdots 0 l \cdots l \cdots \alpha^{q-2} \cdots \alpha^{q-2}B(t-l,q) B(t-l,q) \cdots \cdots \cdots B(t-1,q) \end{array})$ ,

where $\alpha$ is a primitive element of $GF(q)$ . Note that the hermitian product of the two rows
of $B(2, q)$ is equal to $(1+\alpha+\ldots+\alpha^{q-2})^{2}=0$ . Thus, we have the following.

Theorem 7.3 The rows of an additive generalized Hadamard matrix $M=GH(q^{t-1}, q)$ over
$GF(q)$ of q-mnk equal to $t$ form a linear hermitian self-orthogonal code. Removing the all-
zero column of $M$ gives a hermitian self-orthogonal code with pammeters $n=q^{t}-1,$ $k=t_{f}$

and dual distance $d^{\perp}=2$ .
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8 An application to quantum codes
Applying this result of Theorem 1.1 to the codes of Theorem 7.1 and Theorem 7.3 in the
special case $q=4$ gives the following.

Theorem 8.1 Let $t\geq 2$ be an integer. The code $C$ over $GF(4)$ spanned by the rows of
a matriz $M=BGW((4^{t}-1)/3,4^{t-1},4^{t-1}-4^{t-2})$ yields a quantum code with pammeters
$[[(4^{t}-1)/3, (4^{t}-1)/3-2k, d\geq 3]]$ , where $k$ is the rank of $M$ over $GF(4)$ .

Theorem 8.2 The $mw$ space of an additive genemlized Hadamard $mat\dot{m}M=GH(4^{t-1},4)$

of 4-mnk $t$ yields a quantum code with pammeters $[[4^{t}-1,4^{t}-1-2t, 2]]$ .

Note 8.3 The codes of Theorem 8.1 in the case when the matrix is of minimum rank, that
is, $k=t$ , have $d=3$ and meet the sphere-packing bound for quantum $[[n, k, d=2e+1]]$
codes:

$\sum_{j=0}^{e}3^{j}(\begin{array}{l}nj\end{array})\leq 2^{n-k}$. (13)

According to this bound, a quantum code with parameters $n=4^{t}-1$ and $k=4^{t}-1-2t$
cannot have $d\geq 3$ . Thus $d=2$ is the best possible value for the given $n$ and $k$ , hence the
codes of Theorem 8.2 are also optimal. Note that the $[[15,11,2]]$ obtained from Theorem 8.2
when $t=2$ is one of the optimal quantum codes found in [13].
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