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1 Introduction
The contents of this talk is based on a joint work with Masanori Sawa [7].
Steiner systems originated from a problem posed by Steiner (1853), but it
had already been solved by Kirkman (1847). The concept itself was also
introduced by Woolhouse (1844). We refer the reader to van Lint-Wilson [5]
for early history of the subject.

A Steiner system (or a Steiner t-design), denoted $S(t, k, v)$ , where $t<$
$k<v$ are integers, is a pair $(\mathcal{P}, \mathcal{B})$ with

$\bullet$
$\mathcal{P}$ is a set of $v$ “points,”

$\bullet$
$\mathcal{B}$ is a family of k-subsets of $\mathcal{P}$ , called (blocks,” “lines,” “planes,” etc

such that
$\forall T\in(\begin{array}{l}\mathcal{P}t\end{array})$ ョ $!B\in \mathcal{B},$ $T\subset B$ .

When $t=2$ , the condition above can be expressed intuitively as follows:

any two distinct points are contained in exactly one line, and
every line consists of $k$ points.

Note that $S(t, k, v)$ denotes not necessarily a unique mathematical object.
There may be many non-isomorphic $S(t, k, v)$ ’s for a fixed $(t, k, v)$ .

The affine space over $F_{q}$ is an example of a Steiner 2-design. Let $\mathcal{P}=F_{q}^{n}$ ,
$\mathcal{B}=$ {lines in $F_{q}^{n}$ }. Then any two distinct points are contained in exactly
one line, and every line consists of $q$ points. The total number of points is
$v=|\mathcal{P}|=q^{n}$ . This means that we have an $S(2, q, q^{n})$ .

If we try to state the condition again in a geometrical language for $t=$

$3$ , then one may realize that it is not natural. This is because, generally
speaking, there are two kinds of sets of three points, namely, collinear sets of
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points and non-collinear sets of points. However, the former does not occur
if $q=2$ , hence every triple of points in an affine space over $F_{2}$ determines a
unique plane. This leads to an $S(3,4,2^{n})$ .

The situation is quite differenct for $t\geq 4$ . In fact, there are only finitely
many $S(t, k, v)$ known for $t\geq 4$ , and it is not known whether there are
infinitely many. The most famous $S(t, k, v))s$ with $t\geq 4$ are those associated
to the Mathieu groups: $S(4,5,11),$ $S(5,6,12),$ $S(4,7,23)$ and $S(5,8,24)$ . The
uniqueness of these designs was proved by Witt [12] in 1938.

Multiple transitivity of the Mathieu groups could be considered to be the
reason for the existence of these designs. However, as a consequence of the
classification of finite simple groups, there are no other nontrivia14-transitive
groups, so one cannot expect any more 4-designs arising in this way.

If we are to prove there are infinitely many (too ambitious), we need a
unified algebraic approach. For $t=2$ , the construction of the affine space over
$F_{q}$ can be regarded as a unified construction, but analogous construction is
not known for $t>3$ . So let us try to be modest. First understand completely
the known algebraic construction of $S(3, k, v)$ , and hope to see why $t>3$ is
so different from $t\leq 3$ . Among $S(3, k, v)’ s$ , the smallest possible value of $k$

is 4. so let us first understand completely the known algebraic construction
of $S(3,4, v)$ (called a Steiner quadruple system, denoted SQS $(v)$ ).

Theorem 1 (Hanani, 1963). There exists an SQS(v) if and only if $v\equiv 2$ or
4 $(mod 6)$ .

Though best possible and beautiful, the proof of this theorem [3] does
not seem to give a unified algebraic construction for all of the SQS $(v)’ s$ .

In the following, we try to set up a unified construction based on a ge-
ometric consideration which is then turned to an algebraic one. A major
disadvantage is that one cannot obtain SQS(v) for some $v’ s$ , but for in-
finitely many other $v’ s$ , an SQS(v) will be constructed. After all, there may
not exist a unified construction which works for all $v’ s$ . It is our strategy
that the nicest method is the one we should first investigate for a possible
generalization for higher values of $t$ in the future.

A Steiner quadruple system SQS(v) whose set of points is $\mathcal{P}=\{\xi\in \mathbb{C}|$

$\xi^{v}=1\}$ can be conveniently described by polygons on the unit circle. There
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are three kinds of triangles:

$(\begin{array}{l}\mathcal{P}3\end{array})=$ triangles $=\{\begin{array}{l}isosceles,right,ordinary.\end{array}$

Then, a Steiner quadruple system can be constructed if we supply with a
family of quadrangles $\mathcal{B}$ such that

$\forall T\in(\begin{array}{l}\mathcal{P}3\end{array}),$ $\exists!B\in \mathcal{B},$ $T\subset B$ .

Every isosceles triangle and every right triangle are contained in a unique
kite, and every ordinary triangle (other than isosceles and right triangles)
is contained in some trapezoids not containing a diameter. So it seems rea-
sonable to take $\mathcal{B}=$ {all kites} $\cup$ { $some$ trapezoids}, but how to choose an
appropriate set of trapezoids is not clear at the moment.

Example 2. For $v=10$ , taking all trapezoids not containing a diameter
gives an SQS(10).

When we take the set of points to be $\mathcal{P}=\{\xi\in \mathbb{C}|\xi^{v}=1\}$ then we
have implicitly assumed symmetry under the dihedral group $D_{v}$ of order $2v$ .
Does there exist an SQS(v) invariant under $D_{v}$ ? No such SQS(8) exists, but
certainly there exists an SQS (8) on $F_{2}^{3}$ which is the 3-dimensional affine space
over $F_{2}$ . So, it may not be a good idea to stick to cyclic groups or dihedral
groups for assumed symmetry. We note that quite a lot of work has been
done for the cyclic case, nevertheless.

Formally, the definition of a Steiner quadruple system can be expressed
in terms of $(0,1)$-solution of a system of linear equations whose coefficient
is the “inclusion matrix,” which is the matrix whose rows and columns are
indexed by $(\begin{array}{l}\mathcal{P}3\end{array}),$ $(\begin{array}{l}\mathcal{P}4\end{array})$ , respectively, and $(T, B)$-entry is 1 or $0$ according as
$T\subset B$ or not.

$B\in(\begin{array}{l}\mathcal{P}4\end{array})$

$T\in(\begin{array}{l}\mathcal{P}3\end{array})$ $[\{01$ $TT\subset\not\subset BB]\{\begin{array}{l}0or1\end{array}\}=\{\begin{array}{l}1\vdots 1\end{array}\}$
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A solution is the characteristic vector of a subset $\mathcal{B}$ , forming SQS(v).
A permutation group $G$ on $\mathcal{P}$ allows to collapse the matrix, and we are

to seek for a solution which is the characteristic vector of a union of some
orbits of $G$ on $(\begin{array}{l}\mathcal{P}4\end{array})$ .

$B\in(\begin{array}{l}\mathcal{P}4\end{array})/G$

$T\in(\begin{array}{l}\mathcal{P}3\end{array})/G[\{$ $0\geq 1$ $TT\subset\not\subset BB]\{\begin{array}{l}0or1\end{array}\}=\{\begin{array}{l}1\vdots 1\end{array}\}$

Let us consider the special case where $\mathcal{P}=\{\xi\in \mathbb{C}|\xi^{v}=1\}$ and $G$ is the
dihedral group of order $2v$ . If we group the rows (resp. columns) according
to the shape of a

$triangle_{\Lambda}($

resp. a
$quadruple),then\Leftrightarrow^{\not\supset diam}$

.

$(\begin{array}{l}\mathcal{P}3\end{array})\{ordirightisos_{7[}nary\triangle 0\cdot\cdot.\cdot 1.\cdot\cdot.\cdot 010^{\cdot}\cdot\cdot\cdot..\cdot 00^{\cdot}0\cdot.00\cdot\cdot.\cdot 0*\cdot$ $***]\{\begin{array}{l}\frac{1}{0}\frac{or1}{0}\end{array}\}=\{\begin{array}{l}1\vdots 1\vdots 1\end{array}\}$ .

Here the first set of columns correspond to kites, the second set to trapezoids
not containing a diameter, and the third to the remaining quadrangles. From
now on, by a trapezoid we always mean a trapezoid not containing a diameter.
We seek for solutions which has $1$ ’s in the first set of coordinates, $0$ ’s in the
third sets. This is to assume that the set of blocks contains all kites, and
contains no quadrangles other than kites or trapezoids. Then it is clear
that the only nontrivial part of the equations is how to choose trapezoids
which cover ordinary triangles evenly. Since these geometrical concepts are
invariant under the action of the dihedral group $D_{v}$ of order $2v$ , we may
collapse the coefficient matrix and seek for a solution which is invariant under
$D_{v}$ . We denote by $K$ the matrix obtained from the submatrix of the inclusion
matrix corresponding to rows of ordinary triangles and columns of trapezoids,
by collapsing under the action of $D_{v}$ .
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$(\begin{array}{l}\mathcal{P}4\end{array})/D_{v}$

$\Leftrightarrow$ diam.

$ordinary\{(\begin{array}{l}\mathcal{P}3\end{array})/D_{v}\{\begin{array}{llllllll}0 \cdots 1 \cdots 0 0 \cdots 0* .\cdot \vdots 10 \cdots 0 0 \cdots 0* .\cdot \vdots 0 *\end{array}\}\{\begin{array}{l}\frac{1}{0}\frac{or1}{0}\end{array}\}=\{\begin{array}{l}1\vdots 1\vdots1\end{array}\}$

The matrix $K$ has the following properties:

$\bullet$ $K$ has at most three $1$ ’s in each row. This is because every ordinary
triangle is contained in at most three trapezoids up to congruence,

$\bullet$ $K$ has exactly two $1$ ’s in each column. This is because every trapezoid
contains exactly two ordinary triangles up to congruence.

Therefore, $K$ can be regarded as an incidence matrix of a graph. The set
of vertices are the rows of $K$ which are the congruence classes of ordinary
triangles, and the set of edges are the columns of $K$ which are the congruence
classes of trapezoids. Then the above system of linear equations reduces to
the following.

$[K]\{\begin{array}{l}0or1\end{array}\}=\{\begin{array}{l}1\vdots 1\end{array}\}$

A solution to such a system of equations $(i.e.,$ $K$ is the vertex-edge incidence
matrix of a graph), is the characteristic vector of a l-factor of the graph.
More precisely, a l-factor of a graph is a subset of edges covering every
vertex exactly once.

To summarize, we have realized that the importance of the graph defined
by its incidence matrix $K$ which can be constructed as follows:

$\bullet$ $\mathcal{T}=$ {ordinary triangles $\subset \mathcal{P}$ } $/$ cong: vertices

$\bullet$ $\mathcal{E}=$ { trapezoids $\not\supset$diam} $/cong.$ : edges

$\bullet$ $K$ : its incidence matrix, where the incidence is defined by inclusion of
representatives.

We call the resulting graph $(\mathcal{T}, \mathcal{E})$ the Kohler graph, denoted $\mathcal{G}(\mathbb{Z}_{v})$ , since
K\"ohler [4] was the first to state the above observation formally.
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Theorem 3 (K\"ohler). If there exists a l-factor in $\mathcal{G}(\mathbb{Z}_{v})$ , then there exists
an SQS(v) invariant under $D_{v}$ .

A picture of a K\"ohler graph appeared much earlier. Already in 1915,
Fitting [2] seems to have noticed K\"ohler’s method. Piotrowski [9] proved the
following:

$\bullet$ there exists a l-factor in $\mathcal{G}(\mathbb{Z}_{v})$ for infinitely many $v$ ,

$\bullet$ existence of a l-factor in $\mathcal{G}(\mathbb{Z}_{v})$ reduces to the case $v=2p$ , where $p$ is
an odd prime.

Still an open problem is to determine $v$ such that there exists a l-factor in
$\mathcal{G}(\mathbb{Z}_{v})$ . This leads to a number theoretic problem. See Siemon [10, 11] for
details.

In this talk, we generalize K\"ohler’s method to arbitrary finite abelian
groups. In the next section, we let $A$ be an abelian group of order $v$ , and

$\bullet$ define “isosceles”, “right” triangles in $(\begin{array}{l}\mathcal{A}3\end{array})$ ,

$\bullet$ define “kite”, “trapezoid” in $(\begin{array}{l}A4\end{array})$ ,

$\bullet$ define the K\"ohler graph $\mathcal{G}(A)$ of $A$ .

Then we have the following result.

Theorem 4 (joint work with M. Sawa). If there exists a l-factor in $\mathcal{G}(A)$
,

then there exists an SQS(v) invariant under $A$ .

2 The K\"ohler graph of an abelian group
Throughout this section, we let $A$ be an abelian group of order $v$ . We regard
$A$ as a permutation group acting on $A$ regularly, and form the semidirect
product $A=Ax\langle\sigma\rangle$ , where $\sigma$ is the automorphism of $A$ defined by $a^{\sigma}=-a$ .

The group $\hat{A}$ is a permutation group on $A$ . For distinct nonzero elements
$a,$ $b$ of $A$ , we denote by $[a, b]$ the orbit of $\{0, a, b\}$ under the action of $A$ . We
define isosceles, right, and ordinary triangles formally as follows:

$\mathcal{T}_{1}=\{[a, -a]|a\in A, 2a\neq 0\}$ ,
$\mathcal{T}_{2}=\{[a, b]|a\in A\backslash \{0\}, b\in A\backslash \{0, a\}, 2b=0\}$ ,

$\mathcal{T}=\{[a, b]|\{0, a, b\}\in(\begin{array}{l}A3\end{array}), [a, b]\not\in \mathcal{T}_{1}\cup \mathcal{T}_{2}\}$
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$=\{[a, b]|a\neq\pm b, 2a\not\in\{0, b, 2b\}, 2b\not\in\{0, a, 2a\}\}$ .

If $A=\{\xi\in \mathbb{C}|\xi^{v}=1\}$ , then $\mathcal{T}_{1}$ is the congruence classes of isosceles
triangles, and $\mathcal{T}_{2}$ is the congruence classes of right triangles.

We aim to define a graph on $\mathcal{T}$ by adjacency induced by trapezoids.
One could define edges by properly defining trapezoids, but it is somewhat
complicated, so we define neighbors instead.

The K\"ohler graph $\mathcal{G}(A)$ has $\mathcal{T}$ as the set of its vertices, and a vertex $[a, b]$

is adjacent to
$[a, a+b],$ $[a, b-a],$ $[b, a-b]$ (1)

provided they belong to $T$ . It is important to note that even if $[a, b]$ belongs
to $\mathcal{T}$ , some or all of $[a, a+b],$ $[a, b-a],$ $[b, a-b]$ may not belong to $\mathcal{T}$ . So the
degree of a vertex $[a, b]$ is at most 3, and it can be less than 3 in general.

Example 5. If $A=\mathbb{Z}_{4}\cross \mathbb{Z}_{4}$ , then the graph $\mathcal{G}(A)$ is the cube. If $A=\mathbb{Z}_{20}$ ,
then the graph $\mathcal{G}(A)$ is isomorphic to the union of a 6-cycle and three isolated
edges.

In Example 5, the graph $\mathcal{G}(A)$ obviously has a l-factor. The following
lemma is immediate from the definition of the neighbors (1).

Lemma 6. Suppose that $[a, b]\in \mathcal{T}$ and $[c, d]\in \mathcal{T}$ belong to the same con-
nected component of $\mathcal{G}$ . Then $\langle a,$ $b\rangle=\langle c,$ $d\rangle$ .

Lemma 7. Let $A’$ be a subgroup of $A$ . Then the K\"ohler graph of $A’$ is
isomorphic to a union of connected components of $\mathcal{G}$ .

It follows from Lemmas 6 and 7 that every connected component of the
K\"ohler graph of $A$ is isomorphic to a connected component of the K\"ohler
graph of a subgroup of $A$ generated by two elements. In particular, by Ex-
ample 5, we see that there exists a l-factor in the K\"ohler graph of $A$ whenever
$A$ is an abelian 2-group of exponent 4. Note that if $A$ is an elementary abelian
2-group of order $v$ , then the K\"ohler graph is empty, and we always have an
SQS(v) as the affine space over $F_{2}$ .

In view of Theorem 4, our aim now is to show the existence of a l-factor
in the graph $\mathcal{G}(A)$ for as many classes of abelian groups $A$ as possible.

As one can guess from the definition of the neighbors (1), in majority
of cases, the elements (1) are distinct and all belong to $\mathcal{T}$ . In such a case,
the vertex $[a, b]$ has degree exactly 3. In fact, a careful analysis reveals the
following.
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Lemma 8. The degree of a vertex $[a, b]\in \mathcal{T}$ is 3 if and only if

$0\not\in\{2a+b, a+2b, 2a+2b, 3a-b, 3a-2b, 4a-2b, 3b-a, 3b-2a, 4b-2a\}$ .

A direct consequence of this lemma and Lemma 6 is the following.

Proposition 9. Suppose $[a, b]\in \mathcal{T}$ . If $\langle a,$ $b\rangle$ is not cyclic, $|\langle a,$ $b\rangle|\not\equiv 0$

$(mod 3)$ and the Sylow 2-subgroup is either cyclic or contains $\mathbb{Z}_{4}\cross \mathbb{Z}_{4}$ , then
the connected component of the K\"ohler graph containing the vertex $[a, b]$ is
3-regular.

Proof. Suppose that the degree of the vertex $[a, b]$ is less than 3. Since $\langle a,$ $b\rangle$

is not cyclic and $|\langle a,$ $b\rangle|\not\equiv 0(mod 3)$ , Lemma 8 implies

$0\in\{2a+2b, 4a-2b, 4b-2a\}$ .

In other words, one of $a+b,$ $2a-b,$ $2b-a$ is an involution. This implies that
$\langle a,$ $b\rangle$ is generated by an involution $c$ together with an element $d\in\{a, b\}$

and, as $\langle a,$ $b\rangle$ is not cyclic, $d$ has an even order. Thus the Sylow 2-subgroup
of $\langle a,$ $b\rangle$ is not cyclic, and $\langle a,$ $b\rangle\cong\langle c\rangle\oplus\langle d\rangle$ does not contain $\mathbb{Z}_{4}\cross \mathbb{Z}_{4}$ . $\square$

In some cases, the connected component of the K\"ohler graph containing
a vertex $[a, b]$ is not only 3-regular, but also bridgeless, that is, the removal
of an edge does not disconnect the graph. It is well known in graph theory
([8], see also [6, p.59]) that any bridgeless 3-regular graph has a l-factor.

We conclude our report by indicating a possible group theoretical ap-
proach. Let $D_{6}$ denote the following subgroup of GL$2(\mathbb{Z})$ :

$D_{6}=\langle(\begin{array}{ll}1 1-1 0\end{array}),$ $(\begin{array}{ll}0 11 0\end{array})\rangle$ .

The group $D_{6}$ is isomorphic to the dihedral group of order 12. Note that
$GL_{2}(\mathbb{Z})$ acts on $A\cross A$ (from the right), and so does $D_{6}$ .

If $\{0, a, b\}\in(\begin{array}{l}A3\end{array})$ , then

$(a, b)D_{6}=\{(c, d)\in A\cross A|\{0, c, d\}\in[a, b]\}$ .

This means that we can identify $(a, b)D_{6}$ with $[a, b]$ , so we have an embedding

$\mathcal{T}\subset(\begin{array}{l}A3\end{array})/\hat{A}^{c}arrow A\cross A/D_{6}$ .
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(2)

The definition of the neighbors (1) implies that the neighbors of $(a, b)D_{6}$ are

$(a, b)xD_{6}$ $(x\in\{(\begin{array}{ll}1 10 1\end{array}),$ $(\begin{array}{l}1-101\end{array}),$ $(\begin{array}{ll}0 l1 -1\end{array})\})$ .

Note that $GL_{2}(\mathbb{Z})$ is generated by $D_{6}$ together with the three matrices in (2),
which can be seen from a weil known set of generators for SL$2(\mathbb{Z})$ , see [1,
Exercise 1.1.1, p.7]. This might suggest that the connected component of the
K\"ohler graph containing a given vertex $(a, b)D_{6}$ can be identified with the
double coset $H\backslash GL_{2}(\mathbb{Z})/D_{6}$ , where $H$ is the stabilizer of $(a, b)$ in $GL_{2}(\mathbb{Z})$ .
However, this is not true in general, since some element $(a, b)x$ with $x\in$

GL2 $(\mathbb{Z})$ may not belong to $\mathcal{T}$ . One can think of those outside $\mathcal{T}$ as “singular
points,” because these points make the structure of the graph irregular.
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