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Matrix representation of the (time zero) field operators on
P(¢)4 Euclidean QFT by using Hida distributions
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Abstract

In the Nelson’s approach to the Euclidean QFT, sharp time free field operator (time
zero field operator) ¢o can be expresed by the random variables which plays both the part
of vectors and operators. Here, we give a clear distinction of these two parts of the random
variables. It is shown that the Hida distribution : ¢3_, : defined for d > 3, which is not a
random variable anymore, defines an unboundes operator on the Euclidean QFT. Moreover, an
expression of such operator by means of a matrix is given.

0 Preliminaries

Throughout this paper, we set d € N, where N is the set of natural
numbers, the space-time dimension, and take that d — 1 is the space
dimension and 1 is the dimension of time. Correspondingly, we use the
notations

x = (t,7) € R x R*L.

Let S(RY) (resp. S(R%1)) be the Schwartz space of rapidly decreasing
test functions on the d dimensional Euclidean space R? (resp. d — 1
dimensional Euclidean space R%1), equipped with the usual topology
by which it is a Fréchet nuclear space. Let S'(R?%) (resp. S’(R%1)) be
the topological dual space of S(R?) (resp. S(R41)).

Now, suppose that on a complete probability space (€2, F, P) we are
given an isonormal Gaussian process B4~! = {B4~1(h), h € L*(R%1; A1)},
‘where A9"! denotes the Lebesgue measure on R?! (cf., e.g., [HKPS],
[SiSi], [AY1,2] and references therein). Precisely, B%"! is a centered
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Gaussian family of random variables such that

BB (1) B ) = [ h@) g@N ), b, g € LR X)

(0.1)
We write

%ﬂmafh@%ﬂwm weq
]Rd—l

Namely, B !(.) is the Gaussian white noise on R4,
We are considering a massive scalar field. Suppose that we are given
amass m > 0. Let Ay and resp. A;_1 be the d, resp. d — 1, dimensional

Laplace operator, and define the pseudo differential operators L_: and
H_. as follows:

W

= (—Ag+m?)71, (0.2)

= (—=Ag4_1 + mz)_% (0.3)
By the same symbols as L___ and H_; _1, We also denote the integral kernels
of the corresponding pseudo differential operators, i.e., the Fourier in-
verse transforms of the corresponding symbols of the pseudo differential
operators.

By making use of stochastic integral expressions, we define two fun-
damental random fields ¢y, the Nelson’s Euclidean free field, and

¢o, the sharp time free field, as follows:
For d > 2,

o=

on() = /R Ly~ )Bix) (0.4)

do(-) = /Rd_l H_,(Z - )B*(2)dz. (0.5)

Here B%(x) is the Gaussian white noise on R?. These definitions of ¢y
and resp. ¢ seems formal, but they are rigorously defined as &'(R%) and
resp. S'(R%!) valued random variables through a limiting procedure
(cf. [AY1,2]).

Our main concern here is to consider the properties of ¢g as the mul-
tiplicative operator on L?(2, P) (more presisely, on L2?(ug) defined
below).
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Let po be the probability measure on &'(R*! — R) which is the

probability law of the sharp time free field ¢ on (2, F, P) (cf. (0.5)).
We denote

do(f) =< o, f >E/

Rd—1

(H_1f) (&) B*\(3) dz,
and

: ¢0(f1) Tt ¢O(fn) .
- /R) H_y f1(Z1) - - - H_1 f1(Z%) - B (#) - BN -
XdZy - - dTy € Ng>1L(po)

for f, f;€¢ SR - R), j=1,---,k, keN, (0.6)

where (0.6) is the k-th multiple stochastic integral with respect to the
Gaussian white noise B4~! on R41,

Technical Remark 1. - From the view point of the notational
rigorousness, ¢g is the distribution valued random variables on the prob-
ability space (€2, F, P), hence the notation (cf. (0.6)) such as

: go(1) - - do(em) € () L (10)

g>1

is incorrect. However in the above and in the sequel, since there is no
ambiguity, for the simplicity of the notations we use the notation bo
(with an obvious interpretation) to indicate the measurable function X
on the measure spaces (S'(R1), uo, B(S'(R?"1))) such that

P({w: dow) € A}) =mo({o : X(#) €4}), AeBES®™),
where B(S) denotes the Borel o-field of the topological space S.
O

Since, : ¢o(¢1) - do(pn) : is nothing more than an element of the
n-th Wiener chaos of L?(ug), it also adomits an expression by means of
the Hermite polynomial of ¢o(p;), j =1, -+, k (cf., e.g., [AY1,2] and
references therein).
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Conceptual Remark 2. We recall that the multiplication of
 do(w1) - - do(en) @ with ¢o(p;) defines a new random variable (a vec-
tor) such that : ¢o(w1) -+ - @oln) : o(yp;), and hence, the random vari-

able : ¢o(p1) - - do(epn) : is not only a vector itself on L2(ug) but also an
oprtator on L?(u).

a

From the above Remark, we have to carefully distinguish the two
roles of ”vectors” and ”operators” that are played by one random

variable : ¢g(p1) - - - do(n) :. In order to do so, we give the additional
notations in the next section.

1 Interpretation of the operator (: ¢*:); by Hida distribution

Let H be the Hilbert space such that
H= L2(,u0). (11)

We use the notation

T Go(F) - bo(f) - (1.2)

when the random variable : ¢o(f1) - - - do(fn) :€ H defined by (0.6) plays
the role of the vector in H. On the otherhand, we use the original
notation

 go(f1) -+ do(fa) : (1.3)

when the random variable takes the part of an operator on a subspace
of H. Let D be a linear subspace of H such that

-

D = linear hull{: ¢o(f1) -+ ¢o(fa) : | fi €S,i=1,...,n.n € NU{0}}
(1.4)
for f, g € S(R*! — R) we define an innerproduct < f, g > such that

H_if(%)- H_1g(%) dZ ~ (1.5)
Rd-1

Let
{fio}iENa sz € S(Rd-l — R) (16)
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be an O.N.B. of the Hilbert space with the inner product < -, - > defined
by (1.5), and define an O.N.B. Dy of H as follows:

AN
4

Do ={Ki,,..in: Go(f2) - do(f2):|in €N, k=1,...,n, n € NU{0}},
(1.7)
where K, . ;. is the normarizing constant.
We denote ,
Kilﬁ--',in: ¢0( 1(1) Se ¢O(fzon) - = ¢i1 ----- in® (18)

Finally, let I be the constant 1 in . By using these notations we have
the characterization of the operator

6(f) :D— D
as follows:
#() 1= 6(F), (1.9)
6(f) [0 = :o(F)dg) - + < frg>, (1.10)
o) [ 6(9) () 1] = : #(f) #(9) (k) + < f,9 > d(A)+ < f,h > qsl—("ﬁ
etc. 513

Next, we give an expression of the O.N.B. of H (cf. (1.7)) by means
of the vectors having infinitely many coordinates. These expressions
are rather heuristic but by which we can understand the structure of H
easily.

(0
(“0"\ ; 1 °
: . 0 —
I=|0|, az|5|, &= _0_ L b (1) :
T = : -
; 0



12

0 ) /_8—

5 (o
— 0 :
—s 0 — 0 — |0
¢1,2 = 1 ) ¢1,3 = 1 ’ ¢1,1,1 = . )
9 : T
- : 0
0 P
. 0 ;

Here, each coordinate of the right hand side of the above formulas should
be adequately understood as

( Oth Wiener chaos \
1st Wiener chaos
2nd Wiener chaos
3rd Wiener chaos

\ f /

Note that the Wiener chaos is a probabilistic representation of the
Fock space in QFT. Thus, by (1.11) and (1.12) we can identify the
operator ¢o(f) as the matrix that satisfies the following:

2 2

0
— o —
bo(f7)[¢1,1] = P, eo(Meraal= | i e (1.13)
V3 0
0
0

\ i/ \ i)

Up to the above discussion, all the vectors and the operators are in the
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framework of H, regardless of the dimension d. We now proceed to the
considerations of the operators that have the restricted domain D (cf.

(1.4) ) and need not map the element of D to an element of .
For r € N, let

Arg1=1{7: |Z| <r}.
For p € N define a Hida distribution : ¢f : (A, 4_1) as follows:

¢p (Ard-1)
= / {/ (Z — Zy) dT
(Ré-1)p Ard—1 k 1
x : B Y(#)--- B 1(:cp) dZy - - - dZp, (1.14)

here, all the way of using notations follow the rule given by Remark in
section 1.

Ford=2 (d—1=1) we know that
L 88 : (A1) € () L9(ko)-

g1

But our main interest is concentrated on the case whered =4 (d—1 =
3), and in this case : ¢§ : (A,3) is not a random variable any more for
p = 2, but a Hida distribution. However, even for the case d > 4, it is
possible to take : ¢f : (A,3) as an operator on D which need not map
the elements in D to H. |

In fact, through the analogous discussions by wich we derived the
formula (1.13), we can give an expression of : ¢f : (A,3) by means of a
matrix. |

Namely, the operator : ¢2 : (A,4_1) (d > 1) is the matrix that



satisfies the following:

: qﬁé : (Ar,d_l)f &=

(

a111.1

Qi 5.kl

)

_—._)
- 08 (Ara1)fm =

Bii111,1
Bijkim

0

14
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71,1

fyil 5i2

0

Y1,1,1,1
L g (Ard-1)Bjk 5 e (1.15)

Vi1 iaisia

R

0

Y1,1,1,1,1,1

Yii....ie
3
\ i)
where
cisnt = Kiins A (L)@ (LE) @) (L) (@) (Lf) (E) dF,
Buir = 4MKss | (L)@ LHE) LEH) @ L) d,

Bismin = WKijnin{ < fi> (| CH@EHREEH LI d2)
bt < fa> ([ ER@EH@ERELHE )],

with

[ Mo

L= (“Ad—-l + mz)“‘ .
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To derive these numbers, we used the fact that the multiplication
: ‘f’é : (Ara—1) © ¢o( ,(,),,‘) is given by

: @5t (Ara-1) © ¢o(£2)

. 3
=4 /(Rd_l)s { /\ @@ kHﬂH_%(a: — &) da:}

x : B E) B Y (E,) B4 H(Es) ¢ ATy dFp dFs. (1.16)

And «'s are also defined by the similar way.
Note that for d > 3,

the vectors defined by (1.15) ¢ I* & H.

But : ¢ : (A;4—1) surely defines an unbounded operator (of which
region is the outside of H).

Through the analogous discussions as above, we have the following
result:

Theorem 1.1 Let d > 3, and 0 < r < oo. For each : ¢o(f1) - - do(fn) :,
fieS, i=1,...,n,n € NU{0}, the multiplication

c g (Ara-1)o : ¢o(f1) - po(fn) : defines an unbounded operator on
D which admits an expression by means of a matrix (c¢f. (1.15)). Such
operators map the elements of D to a region that is wider than H.

Concluding Remark 3. In the construction of P(¢)q Euclidean
QFT, in particular the (: ¢* :); Euclidean QFT (with a truncation), for
the corresponding sharp time field we have to prepare the term such that

exp{: ¢¢ : (Ara_1)}. (1.17)

It is well known and also we pointed out that (1.17) does not exist as a
random variable. However, by using Theorem1.1 and the earlier results
(Hida product) reported by the same authors in the previous seminars
in RIMS, we may have some substitute of (1.17). Such a consideration
will be announced in the next seminar.

O
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