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1 Bernstein functions and Lévy subordinators

1.1 Introduction

This is a review article of [Hir09, HIL09, HS09]. It is proven that the Feynman-Kac type
formula is a useful tool to investigate a strongly continuous one parameter semigroup
generated by a self-adjoint elliptic operator. The Schrodinger operator with a vector
potential a = (a1, a2, az) and spin 1/2 is given as a self-adjoint operator on L?(R3; C?)
and it is defined by

h= -;—(o-(p—a))2+V, (1.1)

where o = (01,09, 03) denotes 2 x 2 Pauli matrices satisfying o;0; + 0j0; = 20;;1> with
the 2 x 2 identity I, and V : R® — R is an external potential. The path integral
representation of the semigroup et t > 0, is constructed through a Lévy process
on a cédlag path space in [ALS83, HIL09]. Instead of this in [ARS91] a path integral
representation for the relativistic Schrodinger operator

hea=+(0-(p—a)?+m?-—m+V (1.2)

is considered. In terms of the Schrédinger operator h, the relativistic Schrédinger
operator hy can be expressed as

h,cl=v2h+m2—m+V.

We would like to extend ke to a more general form. The function

fw)=vV2u+m?2-m, u=0, mz2=0,



satisfies that
(1) FeC™((0.00)), @) f@)>0, &) (~1"TL <o n>1.

In general a real-valued function ] satisfying (1) - (3) is called a Bernstein function. So,

in this article we will give a functional integral representation of general self-adjoint
operators of the form

H* =¥ (5 (-0 ) +V (1.3)

where U is an arbitrary Bernstein function. Typical examples of Bernstein functions are
U(u) =u* 0 <a<1,and ¥(u) = v2u + m2 — m. The cases we consider include not
only the relativistic Schrédinger operator h. but also fractional Schrédinger operator

(%(a-(p—a))z)a+w 0<a<l (1.4)

By using a subordinator we will give the Feynman-Kac type formula of the semigroup
e~*HY for an arbitrary Bernstein function ¥. This path integral representation can be
also applied to study the spectral properties of models in quantum field theory. In
particular it can be applied to study the Nelson model with a relativistic kinematic
term and a relativistic Pauli-Fierz model.

1.2 Bernstein function and subordinators

We refer [BF73] for Bernstein functions.

Definition 1.1 (Bernstein function) Let

{feC’“’((O o)) lf(x)>0 and (— 1)"(dnf)(a:)<0 for all n=1,2,. }

An element of & is called a Bernstein function. We also define the subclass

—{re=

lim f(u)=0,.
u—0-+ f( )
Bernstein functions are positive, increasing and concave. Examples of functions in %,

include ¥(u) = cu®, ¢ >0, a € (0,1], and ¥(u) =1 —e" ™, a 20.
Let .# be the set of Borel measures A on R\ {0} such that

(1) A(~00,0)) =0, (2) / A DAE) < oo
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Note that each A € .Z satisfies that fR\ {O}(y2/\1))\(dy) < oo so that X is a Lévy measure.
Denote R, = [0,00). We give the integral representation of Bernstein functions with
vanishing right limits at the origin. It is well known that for each Bernstein function
U € %, there exists (b, \) € R, x £ such that

U(u) = bu+ /0 "1 = ) \(dy). (1.5)

Conversely, the right hand side of (1.5) is in %, for each pair (b,\) € R, x Z. Thus
the map %y — R4 x &, ¥+ (b, \) is a one-to-one correspondence.

Next we consider a probability space (2, &#,,v) given, with , C R, and the
following special class of Lévy processes.

Definition 1.2 (Lévy subordinator) A random process (T;);>0 on (0, #F,,v) is
called a (Lévy) subordinator whenever

(1) (Ti)e>o0 is a Lévy process starting at 0, i.e., v(Tp = 0) = 1;
(2) T; is almost surely non-decreasing in t.

Subordinators have thus independent and stationary increments, almost surely no neg-
ative jumps, and are of bounded variation. These properties also imply that they are
Markov processes. Let . denote the set of subordinators on (€2, #,,v). In what fol-
lows we denote expectation by EZ,[---] = [ ---dm® with respect to the path measure
m® of a process starting at z.

Proposition 1.3 Let U € %, or, equivalently, a pair (b,\) € Ry x & be given. Then
there erists a unique (T3)i>0 € & such that

Eple Tt = etV ™), (1.6)

Conversely, let (T,)1>0 € #. Then there exists ¥ € %y, i.e., a pair (b,\) € Ry x &
such that (1.6) is satisfied.

In particular, (1.5) coincides with the Lévy-Khintchine formula for Laplace exponents
of subordinators.

By the above there is a one-to-one correspondence between %, and ., or equiva-
lently, between %, and Ry x .&. For clarity, we will use the notation T," for the Lévy
subordinator associated with ¥ € %,.

Example 1.4 (First hitting time) Since ¥(u) = V2u+m? —m € %, for m > 0,
there exists T,Y € .% such that

E%le*T¢'] = exp (—t(\/m - m)) .
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This case is thus related with the one-dimensional 1/2-stable process and it is known
that the corresponding subordinator T,¥ can be represented as the first hitting time
process T,¥ = inf{s > 0| B, + ms = t} for one-dimensional Brownian motion (B;):>o.

1.3 Quantum field theory

The Nelson model: The Nelson model describes a linear interaction between quan-
tum particles and a scalar fleld. Let & = ®32,L2,,(R%), and a'(k) and a(k) de-

n=0
note the creation operator and the annihilation operator, respectively, which satisfy

[a(k),at(k)] = 6(k — k’). The Hamiltonian of the Nelson model with kinetic term
W (p?/2) is defined as a self-adjoint operator on

LR F (¢ /}: Fdzx)

by
Hy = (T(p?/2) + V) ® 1+ 1® H; + ady. (1.7)

Here
Hy = / Ik|at (k)a(k)dk

is the free Hamiltonian on % and ¢, denotes a scalar field smeared by a cutoff function
 given by

@
6= [ dola)i,

where
e—ikx@(k) e+ikz¢(_k)

() = [ ot ) 8D | ey PR )
bo(z) ﬁf((k)\/m+(k) e )dk

Relativistic Pauli-Fierz model: Next let us introduce a relativistic Pauli-Fierz model.
Let Fpr = O3 (L2, (R* x {—1,1}), and a'(k, j) and a(k, j), j = 1,2, are the creation
operator and the annihilation operator, respectively, which satisfy [a(k, j), at(k',j")] =
8;i»0(k — k). Relativistic Pauli-Fierz model describes a minimal coupling between
quantum particles and a quantized radiation field. The Hamiltonian of the relativistic

Pauli-Fierz model is defined as a self-adjoint operator on

D
L*(R3) ® Fpr (= / Fppdzr)
R3

HPF=\/(p®1-aA¢,)2+m2—m+V®1+1®HfPF. ‘ (1.8)
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Here

-3 / (klat (k, )a(k, j)dk

i=1.2

is the free Hamiltonian on &pr and A, is a quantized radiation field smeared ¢ given
by

S3]
A, = / Ay(z)dz,
RS
where

T —ikz A( ) e+ikx¢,(_k)
Z/ k ’)( ()= + ko) ﬁé?‘)d’“'

e(k,j) denotes polarization vectors such that k - e(k,j) = 0, e(k,1) - e(k,2) = 0,
e(k,1)xe(k,2) = k/|k| and |e(k, j)| = 1. The Hamiltonian (1.8) can be mathematically
generalized as
1
\If(§(p®1—A¢,)2)+V®1+1®HfPF (1.9)

by a Bernstein function V.

It is a crucial issue to study the spectrum of H, = Hy, Hpr, since all the eigenvalue
of these Hamiltonian with a = 0 are embedded in the continuum. Thus in order to see
the spectral properties of H, but a # 0 the regular perturbation theory [Kat76] can
not be applied directly. One advantage to use a path integral representation of e~tH+
is to be non-perturbative. We discuss quantum field models in [HS09] and [Hir09].

2 Path integrals

2.1 Generalized Schrodinger operators with no spin

Throughout we consider spinless Schrédinger operators for simplicity and we will use
the following conditions on the vector potential.

Assumption 2.1 The vector potential a = (a1,...,aa) 5 a vector-valued functions
whose components a,, p = 1,...,d, are real-valued functions. Furthermore, we consider
the following regularity conditions:

(Al) aec (Lloc(Rs))3'
(A2) a € (L3 (R?)® and V - a € Lj,(R?).
(A3) a € (LE (R?)® and V - a € L}, (R?).
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Let 9, : 2'(R%) — 2'(R%), u = 1, ..., d, denote the pth derivative on the Schwartz
distribution space 2'(R®). Let p, = —i8, and D, = p, — a,, u = 1,...,d. Define the
quadratic form

3

q(f,9) = >_(Duf, Dpg) (2.1)
p=1

with domain Q(q) = {f € L?(R3)|D,f € L*{R3),u = 1,...,d}. It can be seen that
Q(q) is complete with respect to the norm || f|l; = v/q(f, f) + [ f]|? under Assumption
(Al). By this g is a non-negative closed form and thus there exists a unique self-
adjoint operator h satisfying (hf, g) = q(f,g) for f € D(h) and g € Q(q) with domain
D(h) = {f € Q(g) |4(f,) € L*(R®)'}. The self-adjoint operator A is our main object
in this section. We summarize some facts about the form core and operator core of h
[LS81].

Proposition 2.2 (1) Let Assumption (A1) hold. Then C$°(R3) is a form core of h.
(2) Let Assumption (A3) hold. Then C$°(R3) is an operator core for h.

Note that in case (2) of Proposition 2.2,
1, 1
hf=5p°f—a-pf+(~-5a-a=(p-a))f.
Let ¥ € %, and take Assumption (A1l). Whenever V is bounded we call

HY =¥ (h)+V (2.2)

generalized Schrédinger operator with vector potential a. Note that ¥ > 0 and ¥(h) is
defined through the spectral projection of the self-adjoint operator h.

Theorem 2.3 Take ¥ € .
(1) Let Assumption (A3) hold. Then C$*(R3) is an operator core of W(h).

(2) Let Assumption (A1) hold. Then C3°(R3) is a form core of W(h).

2.2 Singular magnetic fields

Before constructing a functional integral representation of e~**, we extend stochastic
integration to a class including L2 .(R3) functions since the vector potentials we consider
may be more singular.
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Let (B;)¢>0 denote d-dimensional Brownian motion starting at z € R? on standard

Wiener space (2p, Fp,dP%). Let f be a C3-valued Borel measurable function on R?
such that

B [ [ 15B0Pas] <0 (23)

Then the stochastic integral f; f(B,) - dB, is defined as a martingale and the It6
2
isometry E% “ s f(Bs) - dB, } = E% [ IIf (Bs)|2ds] holds. However, vector poten-

tials a under Assumption 2.1 do not necessarily satisfy (2.3). As we show next, a

stochastic integral can indeed be defined for a wider class of functions than (2.3),

and then f(f f(B,) - dB, will be defined as a local martingale instead of a martingale.

This extension will allow us to derive a functional integral representation of e~** with
€ (L2 (R3))>.

loc

Consider the following class of vector valued functions on R3.

Definition 2.4 We say that f = (fi, ..., fa) € ioc if and only if for all t > 0

P? (/Ot |f(Bs)|*ds < oo> =1. (2.4)

Let R,(w) = n A inf {t >0 \fot |f(Bs(w))|?ds > n} be a sequence of stopping times
with respect to the natural filtration FF = 0(B,,0 < s < t). Define

fn(37w) = f(Bs(w))l{Rn(w)>s}- (25)

Each of these functions satisfies [, |fn(s,w)|?ds = fOR" | fu(s,w)|?ds < n. In particular,

we have E} [ IN fn|2ds] < oo and thus [; fn - dB, is well defined. Moreover, it can be
seen that

tARm t
/ fuls,w) - dB, = / fn(s,w) - dB, (2.6)
0 (4]

for m < n.

Definition 2.5 Let f € &oc. We define the integral

/t F(B,)-dB, := /t fa(s,w)-dBs, 0<t< Ry (2.7)
0 0

This definition is consistent with (2.6).
&oc has properties below:



(1) cht f € &oc. Suppose that a sequence of step functions f,, n = 1,2,
Jo | fn(Bs) — f(Bs)*ds — 0 in probability as n — co. Then

t ¢
lim [ f.(Bs)-dBs= / f(Bs) -dBs in probability.
0 0

n—o0

(2) (Lie(R%))® C o

(3) Let a € (L2 (R%))® and V - a € LL_(R?). Then

loc

t t .
f a(B,) - dBs + 1 / V - a(B;)ds
0 2 Jo

< oo almost surely.

For a € (L2 ,(R?))® such that V - a € L (R?), we denote

loc

t t t
/ a(B,) o dB, = / a(B,) - dB, + / V - a(B,)ds.
0 0 2Jo

Proposition 2.6 Under Assumption (A2) we have
(re%g) = [ dalep [FBo)g(Be B
R3

PROOF. See [Sim04, Theorem 15.5] and [HILO].

2.3 Path integral representation

..., satisfies

(2.8)

qed

Now we turn to constructing a functional integral representation for generalized Schré-

dinger operators including a vector potential term defined by (2.2).

A key element in our construction of a Feynman-Kac-type formula for e~tH" is to

make use of a Lévy subordinator.

Theorem 2.7 Let U € By and V € L=(R3). Under Assumption (A2) we have

— T¥ ot s
(freg) = /R doBEy, [f(Bo)g(BTy)e"foT a(BeyodBs g o V(Brwd].

(2.9)

PROOF. We divide the proof into four steps. To simplify the notation, in this proof

we drop the superscript ¥ of the subordinator.
(Step 1) Suppose V = 0. Then we claim that

(f,e"Mg) = / doERY, [F(Bo)g(Br)e 8 P> |
R3

(2.10)

25
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To prove (2.10) let E" denote the spectral projection of the self-adjoint operator h.
Then

(he™®g) = [ ey, Blg). (211)
pec
By inserting identity (1.6) in (2.11) we obtain

(f, e ¥ M g) = /S BT, Blg) = B [(f,e )]

Then by the Feynman-Kac-It6 formula for e~** we have

(1, ®g) = 8 | [ ds3 [FBala(Brye- o] .

thus (2.10) follows.

(Step 2) Let 0 = to < t; < -+ < tn, fo, fn € L?(R®) and assume that f; € L>°(R?) for
j=1,...,n—1 We claim that

(f °’ﬁe‘“"”—l’“h>fj) = [dom32, [f (Bo) (H fj(Bth)) e e '”“(B’)"w'] .
=1

i=1

(2.12)
For easing the notation write G; = f;[1i,,, e & % V¥® fi(Br, ). By (Step 1) the
left hand side of (2.12) can be represented as

[t [FBge By, )|

Let ZF = 0(B,,0 < s < t) and &Y = 0(T,,0 < s < t) be the natural filtrations. An
application of the Markov property of B; yields

n

i=1

—_— . T B . Teg—
— /de:}c;())(V \if(Bo)e—z fo t a(Bs)odB,IES]EPTtl l:fl (Bo)e-—l Jo™? ty a(B’)OstG'Z(BTLZ'tl )]:I
R3

= de:;D’?(v [f_(go—)ei foTt1 a(Bs)odBs
R3

th +Tt1

EB [E% [fl (BT:I ) ~ a(B,)odB, Gz(BTzl +Tiyoty )l y{{l] :H .

Hence we obtain
n
(fo’ []e 'l)w(h)fj)
j=1
Teg—t; +Tt;

dequ [f(Bo)e_lfo a'(Ba)DstIEo [fl(BTgl)e 1 Ty, a(Bs)odBs

Ga (BTtl +Ttg—ty )] ] .



The right hand side above can be rewritten as

T - o Ttg—t;
/dwEqu I:f(Bo)e—z fo 1a(B.,)odB,fI(BnTtl )]EZ” [e—z j'oT a(B")odB’G2(BTt2_tl ):” .

Using now the Markov property of T, we see that

(fo, H e—(tj—tj~1)‘1’(h)fj)

=1

—i Tt a ° —1 tha. Bg)odB,
/dZEqu[ F(Bo)e™ o " a(52) dB"fl(BTzl)EB {e Iz, a(Bu)od G2(Br,,)

#t]|
= [ asERt, | FUBajert 5" B2 i, e O G B, )

By the above procedure we obtain (2.12).

(Step 8) Suppose now that 0 # V' € L™ and it is continuous; we prove (2.9) for such
V. Since HY is self-adjoint on D(¥(h)) N D(V) the Trotter product formula holds:

—tHY ) —(t/n _
(f,e7tH"g) = ,1115.10 (f, (e~ E/m¥m =t/mVyn gy

(Step 2) yields

(/&) = Jim [ doBgS, [F(Bolg(By)emtla eoreinem EimtmY Bnyn)]
= r.hs. (2.12)

Here we used that since s — Br,(;)(w) has cadlag paths, V(Br,(ry(w)) is continuous in
s € [0, ] for each (w, ) except for at most finite points. Therefore 3.7, £V (Br,,,,) —
fo V(Br,)ds as n — oo for each path and exists as a Riemann integral.

(Step 4) Suppose that V' € L™ and V,, = ¢(z/n)(V * jn), where j, = n3¢(zn) with
¢ € C3°(R3) such that 0 < ¢ < 1, [¢(z)dz = 1 and ¢(0) = 1. Then V,(z) — V(=)
almost everywhere. V;, is bounded and continuous, moreover V,(z) — V(z) as n — oo
for x € A4, where the Lebesgue measure of .4 is zero. Thus for almost every (w,7) €
Qp x Qy, the measure of {t € [0,00) | Br,(r)(w) € A} is zero. Hence

/dePXV f(Bo)g(BTt)e‘if(;rta(Bs)OdB.e— I Vn(BTa)ds]
— /dePXU f(BO)g(BTt)e*ifgta(Bs)odBae~ fotV(BT')ds]
as n — oo. On the other hand, e #¥(M)+Vn) —, =¥ (M)+V) strongly as n — oo, since

U(h) + V,, converges to ¥(h) + V on the common domain D(¥(h)). Thus the theorem
follows. qed

27
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Let
Eg[T) = inf Spec(T).

Corollary 2.8 (Diamagnetic inequality) Let ¥ € %, V € L*(R?), and Assump-
tion (A2) hold. Then |(f, e tHY g)| < (|f], e t¥®*/2+V)|g|) and

Eg[¥(p*/2) + V] < Eg[H").

PROOF. By Theorem 2.7 we have

el < [ doB32, [I7(Bolla(Brele” 5V Pm%).

Then the corollary follows. qed

2.4 Singular external potentials

By making use of the functional integral representation obtained in the previous sub-
section we can now also consider more singular external potentials. We show results
without proofs. See [HIL09] for details.

Theorem 2.9 Let Assumption (A2) hold.

(1) Suppose |V| is relatively form bounded with respect to ¥(p®/2) with relative bound
b. Then |V| is also relatively form bounded with respect to ¥(h) with a relative
bound not larger than b.

(2) Suppose |V| is relatively bounded with respect to W(p®/2) with relative bound b.
Then |V| is also relatively bounded with respect to V(h) with a relative bound not
larger than b.

Corollary 2.10 (1) Take Assumption (A2) and let V be relatively bounded with respect
to W(p?/2) with relative bound strictly smaller than one. Then ¥(h)+V is self-adjoint
on D(¥(h)) and bounded from below. Moreover, it is essentially self-adjoint on any
core of W(h). (2) Suppose furthermore (A3). Then CP(R?) is an operator core of
V(h)+V.

PrROOF. (1) By (2) of Theorem 2.9, V is relatively bounded with respect to ¥(k)
with a relative bound strictly smaller than one. Then the corollary follows by the
Kato-Rellich theorem. (2) follows from Theorem 2.3. qed
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Theorem 2.9 also allows W(h) + V to be defined in form sense. Let V =V, — V_
where V, = max{V,0} and V_ = min{—V,0}. Theorem 2.9 implies that whenever
V_ is form bounded to ¥(p?/2) with a relative bound strictly smaller than one, it is
also form bounded with respect to ¥(h) with a relative bound strictly smaller than
one. Moreover assume that V, € Ll _(R3). We see that under Assumption (Al),
Q(¥(h)) N Q(V;) is dense. Define the quadratic form

a(f, f) 1= (W(R)V2 £, W(R)2f) + (Vi3 £, VIR ) — (VY2 £, V22 ) (2.13)

on Q(¥(h)) NQ(V,). By the KLMN Theorem [RS78] q is a semibounded closed form.
We denote the self-adjoint operator associated with (2.13) by ¥(h) + V4 — V_.

Now we are in a position to extend Theorem 2.7 to potentials expressed as form
sums.

Theorem 2.11 Take Assumption (A2). Let V =V, — V_ be such that V, € Li, (R3)
and V_ is infinitesimally small with respect to \I!(% p?) in form sense. Then the func-
tional integral representation given by Theorem 2.7 also holds for ¥(h) + V. — V_.

2.5 W-Kato class potential and hypercontractivity

In this section we give a meaning to Kato class for potentials V' relative to ¥ and
extend generalized Schrodinger operators with vector potential to such V. Recall that
for given ¥ € %,, the random process

Xt . QP X Qy =) (w, T) > B’Tt‘p(‘r)(w) (2.14)

is called subordinated Brownian motion with respect to the subordinator (T3 )¢zo. It
is a Lévy process whose properties are determined by the pair (b,A) in (1.5).
characteristic function is Exo [eXt] = e~t¥(%/2),

Assumption 2.12 Let ¥ € %, be such that [;° e Y/ dy < 0o, for allt > 0.

Under Assumption 2.12 we define

1 —izu —tW(u
pt(x) = -(2—7‘_)‘3‘ /RSC e t¥( 2/2)du : (215)

and I (z) = [~ e Mpi(z)dt. Let || fllinz=) = D nezs SUPsec, |f(2)]; Where Cy denotes
the unit cube centred at a € Z3.

Assumption 2.13 Let p; be such that supyq ||1{jzi>8Pt i 2=y < 0.

Note that Assumption 2.13 is satisfied if p; is spherically symmetric and radially non-
increasing. The next facts can be proven in the same way as Theorem III.1 in [CMS90].
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Proposition 2.14 Let V > 0. Under Assumptions 2.12 and 2.13 the following three
properties are equivalent:

(1) lim sup /t EZ2, [V(X,)lds =0,

tl0 ycR3

(2) Jim sup ((W(/2) + X)7V) (&) =0,

(3) lim sup / IIi(z — y)V(y)dy = 0.
610 geRrs |le—y|<é

Take Assumptions 2.12 and 2.13. Write V =V, — V_ in terms of its positive and
negative parts. The ¥-Kato class is defined as the set of potentials V' for which V_ and
1¢ V., with every compact subset C C R3 satisfy any of the three equivalent conditions
in Proposition 2.14. Here 1¢ denotes the indicator function on C.

By (3) of Proposition 2.14 we can derive explicit conditions defining ¥-Kato class
using the relation of the Lévy measure of the subordinator with the associated Bernstein
function. In the case d = 3, we have

1 o rsinr
II(z =—————/ dr.
NE) 2n2|z| Jo |$12 )\+\1, (2|z| ))

Lemma 2.15 Let V > 0 and ¥ € B,. Suppose that V satisfies (1) of Proposition
2.14. Then sup,cgs EBo, [efc; V(X*’)ds] < oo fort > 0.

The next result says that we can define a Feynman-Kac semigroup for ¥-Kato class
potentials.

Theorem 2.16 Let ¥ € By, V belong to ¥-Kato class and let Assumption (A2) hold.
Consider

T gt
Utf(.'L‘) — E:;-’Y?(v [evz ot a’(B’)°dB’6 Jo V(BT}')dsf(BTt)] ]

Then U, is a strongly continuous symmetric semigroup. In partwular, there exists a
self-adjoint operator K¥ bounded from below such that Uy = etk

PROOF. Let V =V, — V_. Hence by Lemma 2.15 we have
IUFI? < Celle @D £ < Cl £,

where C; = sup,cgs E%2, [e2/0 V-(X2)4]. Thus Uy is a bounded operator from L*(R®) to
L?(R3). In the same fashion as in Step 2 of the proof of Theorem 2.7 we conclude that
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the semigroup property U,U, = U4, holds for ¢, s > 0. We check strong continuity of
U; in t; it suffices to show weak continuity. Let f,g € C$°(R3). Then we have

(1,0i0) = [ demgs, [FBR)a(Bre-+ ' oorien g i ven]
Since T3(7) — 0 as t — O for each 7 € §,, the dominated convergence theorem gives

(f,Usg) — (f,9)

Finally we check the symmetry property Ui = U;. By a limiting argument it is
enough to show this for a E (CE(R3))3. Let B, = By(w,7) = BT,(T) s(w) — Br(r)(w).
Then for each 7 € Q,, Bs = B, with respect to dP®. (Here Z 2 Y denotes that Z and
Y are identically distributed.) Thus we have

(f, Utg) = ]Eg;?(u ]:/ dzf(x — ETt)e*’i foTt a(z+.§a—§T¢)°d§ae" fot V($+§Ts *ETt)dsg(:E):l .
R3
Here we changed the variable z to £ — Br,. Then in L%(Qp,dP°) we have that
Ty - ~ . Ty .
/ a(Bs — Br,) odB, = —/ a(Bs) o dB,.
0 0
Since E’n 4 —Brg, and §T, - ETt 4 Br,_T,, we have

(f, Uwg) = f dzE3S, [F(Br)et o aBnoibeg=[oV(Bn-m)dsg()]

Moreover, as T; — T, 2 T;_s for 0 < s < t, we obtain

(f, Uig) = /;ixE?gy [f(BT Ye~i ot a(B,)odBs g~ [o V(B"‘)d"]g(z‘) (U f, g)‘
R

The existence of a self-adjoint operator K'¥ bounded from below such that U, = e *X"

is a consequence of the Hille-Yoshida theorem. This completes the proof. qed

Let V be in U-Kato class and take Assumption (A2). We call K¥ given in The-
orem 2.16 generalized Schridinger operator for W-Kato class potentials. We refer to
the one-parameter operator semigroup e tKY ¢ > 0, as the W-Kato class generalized
Schrédinger semigroup. Put K¥ for the operator defined by K'Y with a replaced by 0.

Theorem 2.17 (Hypercontractivity) Let V be a ¥-Kato class potential and assume
(A2) to hold. Then e K" is a bounded operator from LP(R3) to L(R®), for all 1 <
p < q < oo. Moreover, ||le”5" |54 < ||€7*%3 ||, holds for allt > 0.
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PROOF. By the Riesz-Thorin theorem it suffices to show that et ¥ is bounded as an
operator of (1) L®(R3) — L*(R3), (2) L}(R3) — L}(R®) and (3) L'(R3) — L>*(R?).
Since

e f(e)] < e f|(=), (2.16)

we will prove (1)-(3) for e 53", For simplicity we denote E%2 = E* and P, = e~tK7,
i.e., we have P, f(z) = E2[e~Jo V(X2)ds £(X,)]. To consider (1), let f € L*°(R3). We have
by Lemma 2.15,

IPeflloo < sup (E=[e™ o VX)) | £l
z€R3

Thus (1) follows. To derive (2), let 0 < f € L*(R3) and ¢ = 1 € L*(R3). Then
P:g € L>(R?) by (1) above. In the same way as in the proof of the symmetry of U, in
Theorem 2.16 it can be shown that

/R daf(z) - Pig(z) = /R dzP.f(z) - g(z) = /R daP.f(z).

Since P, f(z) > 0, we have ||Psf|l1 < ||f]l1]|P¢1]|co. Taking any f € L'(R®) and splitting
it off as f = Rf, —Rf_ +i(Sf — Sf-), we get ||Psl1 < 4[| f|[1]|Pellloo- This gives (2).
Combining (1) and (2) with the Riesz-Thorin theorem we deduce that P is a
bounded operator from LP(R3) to LP(R3), for all 1 < p < oo. Moreover, the Markov
property of (X;):;>o implies that P; is a semigroup on LP(R?), for 1 < p < oo.
Finally we consider (3) with the diagram
LY(R®) 25 L3(R?®) 24 L°(R?). (2.17)

Let f € L?(R3). Then
IPLfIE, < BE(e2 VOB (X)) < o [ dalf @+ 0)Pou)dy

by Lemma 2.15, where C; = sup,cgs Ec[e o V(X2)de] - Since |py(y)| < fo° etV /2 dy, <
oo by Assumption 2.12, with p; in (2.15), it follows that

IPeflloo < (Cellpelloo) 2 Il fll2- (2.18)

Thus P, is a bounded operator from L?(R3) to L>(R3). Next, let f € L*(R®) and
g € L?(R3). We have /d:cPtf(:c) 9(z) = /da:f(a:) -Pig(z). Then by (2.18) we obtain
R3 R3

) / dzP.f(@) - 9(a)| < IPegllacl {11 < Cillmdleollglal 11
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Since g € L*(R®) is arbitrary, P;f € L?(R®) and

IPefllz < Cellpelooll flls (2.19)

follows, hence P; is a bounded operator from L!(R3) to L?(R?). Thus (2.17) holds.
By the semigroup property and (2.17) we have for f € L'(R3?),

IP:flleo = IIPe/2Pss2flloo < (Cellpszlloo) [ Pejafllz < (Cellpsalloo) 211 £ 111

The fact ||e7*X"||,, < |le™*5 ||, 4 follows from (2.16). This completes the proof of the
theorem. qed

3 Relativistic Schrodinger operators

Finally we consider the relativistic Schréodinger operator. We write

Pret = V(P — @)2 + m2 —m, (3.1)

Peet(0) = /P2 + m2 — m. (3.2)

Theorem 3.1 Suppose Assumption (A3) and let V' be relatively bounded with respect
to 4/p? + m? with relative bound strictly smaller than one. Then h.q is essentially
self-adjoint on C$*(R3) and

—e L TY t
(f, e——thre]'g) _— ‘[RS de??(y [f(Bo)g(an)e_'lfgt a(Bs)OdBae— fo V(BT.;I’)dS} ’ (3.3)

where T} = inf{s > 0|B, + ms = t}.

PROOF. The essential self-adjointness follows from (2) of Corollary 2.10, and (3.3)
from Theorem 2.11. qed

By Theorem 3.1 we also have the following energy comparison inequality.

Corollary 3.2 (Diamagnetic inequality) Suppose the assumptions of Theorem 3.1.
Then |(f,e ™g)| < (f], e @|g|) and Eg[hei(0)] < Eglhral.

Furthermore, by Theorem 2.17 we have the result below.

Corollary 3.3 (Hypercontractivity) Let the assumptions of Theorem 3.1 and one
of the three equivalent conditions in Proposition 2.14 with ¥(u) = v/2u + m? —m hold.
Then et =) s a bounded operator from LP(R3) to LY(R3) for all1 < p < g < o0.
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A Feynman-Kac type formula for a relativistic Schrédinger operator with spin 1/2,
V(@ (p—a))2+m2—m+V, and its generalization ¥(3(c - (p —a))?) +V can be also
constructed in [HIL09]. From this formula a diamagnetic inequality is also derived.
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