SOME EXAMPLES OF CONDITIONALLY FREE PRODUCT

WOJCIECH MŁOTKOWSKI

INTRODUCTION

Free convolution is a binary operation \boxplus on the class of probability measures on \mathbb{R} , which corresponds to the notion of free independence. More precisely, if X_1, X_2 are free random variables in a noncommutative probability space (\mathcal{A}, ψ) (i.e. \mathcal{A} is a unital complex *-algebra, ϕ is a state on \mathcal{A}), with distributions ν_1, ν_2 respectively, then $\nu_1 \boxplus \nu_2$ is the distribution of $X_1 + X_2$ (for the background on the free probability theory we refer to the books [10, 12]). The free convolution of two measures can only be described indirectly, either analytically, using the Voiculescu R-transform [12, 2, 4] or combinatorially, by free cumulants [10, 9].

Bozejko, Leinert and Speicher [3] introduced notion of conditionally freeness on a non-commutative probability space \mathcal{A} , equipped with two states. This leads to conditionally free convolution \boxplus_c , a binary operation on pairs of compactly supported probability measures on \mathbb{R} , see [3, 8, 9]. The aim of this paper is to show that in some important cases the conditionally free convolution can be reduced to the free convolution.

1. Free and conditionally free product

Let \mathcal{M} (resp. \mathcal{M}^c) denote the class of (compactly supported) probability measures on \mathbb{R} . Then for $\mu \in \mathcal{M}$ we define the *Cauchy transform*:

$$G_{\mu}(z) := \int_{\mathbb{R}} \frac{d\mu(x)}{z - x},$$

which is an analytic map from the upper half-plane $\mathbb{C}^+ := \{z \in \mathbb{C} : \Im z > 0\}$ into the lower half-plane $\mathbb{C}^- := \{z \in \mathbb{C} : \Im z < 0\}$, satisfying

(1)
$$\lim_{y \to +\infty} iy G_{\mu}(iy) = 1.$$

Moreover, every analytic function $G: \mathbb{C}^+ \to \mathbb{C}^-$ satisfying (1) is Cauchy transform of a unique probability measure on \mathbb{R} , see [1, 5].

²⁰⁰⁰ Mathematics Subject Classification. 46L54, 60C05.

Key words and phrases. Cauchy transform, continued fraction, free convolution.

Research supported by MNiSW: N N201 364436, by ToK: MTKD-CT-2004-013389, by 7010 POLO-NIUM project: "Non-Commutative Harmonic Analysis with Applications to Operator Spaces, Operator Algebras and Probability", and by joint PAN-JSPS project: "Noncommutative harmonic analysis on discrete structures with applications to quantum probability".

If $\nu \in \mathcal{M}^c$ then $G_{\nu}(z)$ can be represented as a continued fraction

WOJCIECH MŁOTKOWSKI If
$$\nu \in \mathcal{M}^c$$
 then $G_{\nu}(z)$ can be represented as a continued fraction (2)
$$G_{\nu}(z) = \frac{1}{z - u_0 - \frac{\alpha_0}{z - u_1 - \frac{\alpha_2}{z - u_2 - \frac{\alpha_3}{z - u_3 - \frac{\alpha_3}{\ddots}}}},$$
 where the $Jacobi\ parameters\ satisfy: \ \alpha_k \geq 0,\ u_k \in \mathbb{R}\ and\ if\ \alpha_m = 0$ then $\alpha_n = u_n = 0$ for all $n > m$.

where the Jacobi parameters satisfy: $\alpha_k \geq 0$, $u_k \in \mathbb{R}$ and if $\alpha_m = 0$ for some $m \geq 0$ then $\alpha_n = u_n = 0$ for all n > m.

For a pair $\mu, \nu \in \mathcal{M}^c$ we define the free and the conditionally free transform, R_{ν} and $R_{\mu,\nu}$, as complex functions which satisfy

(3)
$$\frac{1}{G_{\nu}(z)} = z - R_{\nu}(G_{\nu}(z)),$$

(4)
$$\frac{1}{G_{\mu}(z)} = z - R_{\mu,\nu}(G_{\nu}(z)).$$

Then, for $\mu_1, \nu_1, \mu_2, \nu_2 \in \mathcal{M}^c$, the conditionally free convolution

(5)
$$(\mu, \nu) = (\mu_1, \nu_1) \boxplus_c (\mu_2, \nu_2)$$

is defined by the equalities

(6)
$$R_{\nu}(z) = R_{\nu_1}(z) + R_{\nu_2}(z),$$

(7)
$$R_{\mu,\nu}(z) = R_{\mu_1,\nu_1}(z) + R_{\mu_2,\nu_2}(z).$$

In particular, ν is the free product $\nu_1 \boxplus \nu_2$.

2. A FAMILY OF TRANSFORMS

For $a \geq 0$, $u, v \in \mathbb{R}$ we define a transform $T(a, u, v) : \mathcal{M} \to \mathcal{M}$ defining $\mu :=$ $T(a,u,v)(\nu)$ by

(8)
$$\frac{1}{G_{\mu}(z)} := z - u - \frac{a}{\frac{1}{G_{\nu}(z)} - v} = z - u - \frac{aG_{\nu}(z)}{1 - vG_{\nu(z)}}.$$

Note that the measure μ is well defined, as the reciprocal of the right hand side is a function $\mathbb{C}^+ \to \mathbb{C}^-$ satisfying (1). Moreover, if G_{ν} admits the expansion (2) as continued fraction then

(8)
$$\frac{1}{G_{\mu}(z)} := z - u - \frac{a}{\frac{1}{G_{\nu}(z)} - v} = z - u - \frac{aG_{\nu}(z)}{1 - vG_{\nu(z)}}.$$
Note that the measure μ is well defined, as the reciprocal of the right hand function $\mathbb{C}^+ \to \mathbb{C}^-$ satisfying (1). Moreover, if G_{ν} admits the expansion (2) as fraction then
$$(9) \qquad G_{\mu}(z) = \frac{1}{z - u - \frac{a}{z - u_0 - v - \frac{a}{z - u_1 - \frac{a}{z - u_2 - \frac{a}{z - u_3 - \frac{a}{z}}}}}.$$
Combining (4) with (8) we observe that

Combining (4) with (8) we observe that

(10)
$$R_{\mu,\nu}(w) = u + \frac{aw}{1 - vw}.$$

Proposition 2.1. Assume that $a_1, a_2 \geq 0$, $u_1, u_2, v \in \mathbb{R}$, $\nu_1, \nu_2 \in \mathcal{M}^c$ and that $\mu_1 :=$ $T(a_1, u_1, v)(\nu_1), \ \mu_2 := T(a_2, u_2, v)(\nu_2). \ \ Then$

$$(\mu_1, \nu_1) \boxplus_c (\mu_2, \nu_2) = (\mu, \nu_1 \boxplus \nu_2),$$

where

$$\mu = T(a_1 + a_2, u_1 + u_2, v)(\nu_1 \boxplus \nu_2).$$

In particular, if ν is infinitely divisible with respect to free convolution, $a \geq 0$, $u, v \in$ \mathbb{R} , then the pair $(T(a,u,v)(\nu),\nu)$ is infinitely divisible with respect to the conditionally free convolution.

Proof. The first statement is a consequence of (6), (7) and (10). Consequently, if $\nu \in \mathcal{M}^c$ is \(\mathbb{H}\)-infinitely divisible then the family

$$ig(T(ta,tu,v)(
u^{\boxplus t}),
u^{\boxplus t}ig),$$

t > 0, is a \coprod_{c} -semigroup of pairs of measures.

Example. For a, b > 0, $u, v \in \mathbb{R}$ denote by $\mu(a, b, u, v)$ the unique measure satisfying

or
$$a,b>0,\ u,v\in\mathbb{R}$$
 denote by $\mu(a,b,u,v)$ the unique model $G_{\mu(a,b,u,v)}(z)=\dfrac{1}{z-u-\dfrac{1}{z-v-\dfrac{b}{z-v-\dfrac{b}{z-v-\dfrac{b}{z-v-\dfrac{b}{z-v-\dfrac{b}{z-v-\dfrac{b}{z-v-c}}}}}}$

(this family of measures was studied in [11]). Then, in view of the results from [6], for $a, b > 0, u, v, \alpha, \beta \in \mathbb{R}$, with $a + \alpha, b + \alpha > 0$, we have

$$\mu(a, a+\alpha, u, u+\beta) \boxplus \mu(b, b+\alpha, v, v+\beta) = \mu(a+b, a+b+\alpha, u+v, u+v+\beta).$$

With this notation the limit pairs of measures in the central and Poisson theorems for the conditionally free convolution can be represented as

(11)
$$(\mu(a,b,0,0),\mu(b,b,0,0)) = (T(a,0,0)(\mu(b,b,0,0)),\mu(b,b,0,0)),$$

$$(12) \quad \big(\mu(a,b,a,b+1),\mu(b,b,b,b+1)\big) = \big(T(a,a,1)(\mu(b,b,b,b+1)),\mu(b,b,b,b+1)\big),$$

respectively, where a, b > 0 are parameters (see [3, 7]). Denoting the former pair (11) by $\overrightarrow{\nu}(a,b)$ and the latter (12) by $\overrightarrow{\pi}(a,b)$, we note that the families $\{\overrightarrow{\nu}(a,b)\}_{a,b>0}$ and $\{\overrightarrow{\pi}(a,b)\}_{a,b>0}$ are both two-parameter semigroups with respect to the conditionally free convolution, i.e. for $a_1, b_1, a_2, b_2 >$ we have:

$$\overrightarrow{\nu}(a_1, b_1) \boxplus_c \overrightarrow{\nu}(a_2, b_2) = \overrightarrow{\nu}(a_1 + a_2, b_1 + b_2),$$

$$\overrightarrow{\pi}(a_1, b_1) \boxplus_c \overrightarrow{\pi}(a_2, b_2) = \overrightarrow{\pi}(a_1 + a_2, b_1 + b_2).$$

REFERENCES

- [1] N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh and London, 1965.
- [2] S. Belinschi, Complex analysis methods in noncommutative probability, ph.d. thesis, 2005.
- [3] M. Bozejko, M. Leinert, R. Speicher, Convolution and limit theorems for conditionally free random variables, Pacific J. Math. 175 no. 2 (1996), 357-388.
- [4] G. P. Christiakov, F. Goetze, The arithmetic of distributions in free probability theory, preprint,
- [5] W. F. Donoghue, Monotone matrix functions and analytic continuation, Springer-Verlag 1975.

WOJCIECH MŁOTKOWSKI

- [6] M. Hinz, W. Młotkowski, Free cumulants of some probability measures, Banach Center Publications 78 (2007).
- [7] W. Młotkowski, Free probability on algebras with infinitely many states, Probability Theory and Related Fields 115 (1999), 579–596.
- [8] W. Młotkowski, Operator-valued version of conditionally free product, Studia. Math. 153 (2002) 13-30.
- [9] W. Młotkowski, Combinatorial relation between free cumulants and Jacobi parameters, to appear in Infin. Dimens. Anal. Quantum Probab. Relat. Top.,
- [10] A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge University Press, 2006.
- [11] N. Saitoh, H. Yoshida, The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory, Probab. Math. Statist. 21 (2001), 159–170.
- [12] D. Voiculescu, K. J. Dykema, A. Nica, Free Random Variables, CRM Monograph Series, Volume 1, 1992.

Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

E-mail address: mlotkow@math.uni.wroc.pl