0000000000
0 16580 20090 161-172 161

Free Kawasaki Dynamics in the Continuum

L. Streit
June 2, 2009

CCM, Univ. da Madeira and BiBoS, Univ. Bielefeld

1 Introduction

The Ising model with spins &1 on the sites of a lattice, in its interpretation
as a “lattice gas” is paradigmatic for models of discrete configurations where a
particle is present resp. absent at the site. Sin flips are interpreted as birth resp.
death of a particle at the site. Processes with independent births and deaths
are called “Glauber dynamics”, while “Kawasaki dynamics” involve simultaneous
death and birth at a pair of sites: particles hop from one site to the other, the
particle number is conserved.

For the dynamics of particles in discrete configuration spaces - lattice gases
- there exists a vast literature [16]. For configurations in the continuum much
less is known. Recent results can e.g. be found

e for Glauber dynamics in [1]
o for Kawasaki in [12]-[15],

and in the literature cited there.

Relevant methods are those of Markov processes, with the complications
that for infinite configurations infinitely many jumps may occur in any finite
time interval, and that - even without interactions - jumps can produce infinite
local densities in finite times.

Hilbert space methods include Dirichlet forms, evolution operators, etc., and
are in particular suitable to describe the (approach to) equilibrium states.

In this paper our intention is to present some - and by far not all! - of the
Hilbert space methods which can be used for the study of such infinite particle
systems, and to illustrate them with the example of free Kawasaki dynamics
which was recently elaborated in [12].
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2 Configuration Space, Poisson Measures [19]

2.1 Configuration Space

We want to describe infinite systems of particles: "configurations" of indistin-
guishable point particles in R? or in some subset X C R%.

The configuration space I' := I'x is the set of all locally finite subsets of
X, e,

I''={yCX:#(yNK) < oo for bounded K C X}.
For a given configuration v = {z1, 2, ...} we denote
(0 0) =Y f@) = 3 [ e —a)f)aa
€Yy zEY

This is well defined if f is continuous and zero outside a finite volume: the sum
is then finite - no problem of convergence arises.

2.2 Dynamics on Configurations

Kawasaki dynamics would then be described by

oF() = T [ dva (Fo\eUy) ~ FQ)).

TEY

Particles are hopping from x to y with rate g , which might depend on z,y, v.If
the jump rate does not depend on the configuration, we shall speak of free
Kawasaki dynamics, with g = g(z — y).

Glauber "Birth and Death" with birth rate b and death rate d would be
described by

oF() = [ dub) (FGUw) = F))
+3d(@) (F\e) - F()

2.3 Poisson Measures
We begin by considering configurations in a finite volume:
1X|=V <

For configurations of only one pointv x € R? the obvious choice will be a proba-
bility proportional to the volume element dv.

For n-point configurations, elements of I‘S‘?) we shall use

1 n
dnhl::;j(dv)



the combinatorial 1/n! factor for the indistinguishability of the n particles. -
But we are interested in configurations of arbitrary many particles, i.e. we want
a probability measure on

o0
rx=||r{.
n=0

We first extend the measures m,, to a measure m on I'x, simply by setting
m]rg?) = My.

This is not a probability:

m(x) = m(!j I“‘(,?')>:Zm(szb))

n=0 n

= Z% (/de)n=exp(V).

n

Must normalize to get a probability measure on I
T=exp(—=V)-m

2.4 The Characteristic Function

For the measure 7it is now straightforward to calculate the characteristic func-
tion

B(expli (1) = [ expli (v, M)dn(y)
= 3 [, ot Minty

= (MY ( [ oS s@n Il (du))
n k=1
= eV 27—11-' (/X exp(z'f(:r.))d:c)n =e Vv (/; exp(z’.f(:c))dx)

= exp (/}; (exp(if(z) — 1) dm) .

We have (re)discovered the characteristic function or Fourier transform, of
the Poisson White Noise probability measure:

B(expli (1, f)) = exp ( /. (eXP(if(w)—l)dw)
= C.(f)= f e F) drr(w)
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Note: No need to restrict ourselves to a space of finite volume, since

Culh) = ( [, exnir@ =) dx)

is well defined even in the limit where X = R¢, and we have a limiting measure

= lim =«

X->Rd Ir

Likewise for mcre general densities, with

dv = z(x)dz

where z is a non-negative “intensity”

Cr, (f) = exp (/Rd (exp(if(z) — 1) z(m)da:)

Recall that the Bochner-Minlos theorem guarantees the existence of a prob-
ability measure on the space of distributions such that

Cr() = [ &0Ddm(y)

see e.g. [3]. - In our explicit construction we have used the formula
o)) = 1@ = [ da - f(a)da
TEY TEY

We see from this that the measure is concentrated on only those distributions
which are sums of Dirac §-functions

~ o= 251.

TEY

2.5 Charlier Polynomials

In L?(dr.) consider functions

e(f,7) = exp ({1, In(1 + f)) = (N =exp (= (M [[Q+ f=), @)

rey
with
() = / f(@)2(z)dz.

Their scalar product is computed straightforwardly from the characteristic
function:

(e (-f) € (g)i)L2(dﬂ.z) = e(f’g)Lz(dv) ]



Note that this is exactly the scalar product of two coherent states in Fock
space!

e( f,fy) is generating function of orthogonal polynomials (“ Charlier polyno-
mials” ) in w. Expanding e(f) in orders of f

oC

(£, 1) = 3 73(Cal1), £57),

n=0

we get the orthogonality relation

((Cn(7)a f®n>, (C'm(7)a g®m>)L2(d7r) = 5mn’n:' (f®n= g®n) L2

Extending from
fo = f(z1)... f(@n)
to symmetric functions

fn= fn(a’ls---,-’tn)

we can express any square integrable F' as

F(v)= Z(Cn(')’)’fn)

n=0

and obtain an isomorphism of Hilbert spaces L2 (I, dm (7)) ~ F:
o0
/F (v) G () dr(%) = Z n! / fa(Z1, oo Zn)gn(T1, .. oy Tn)d .
n=0

2.6 Annihilation and creation operators in Poisson space

Recall that in Fock space coherent states are eigenstates of annihilation opera-
tors. What is their image in the Poisson L? space?

a (k) e(f) = (h, fle(f).
For

F(v)=e(f,7) =exp({(v,In(1+ f)) = (F))

one verifies

WP = [(FaUED-Fmh@d
be
and hence by linear extension for all Fe D(a(h)).

We intend to also determine the action of the adjoint operator a*(g). To do
so we use the "Mecke Identity"

[Sataanty = [ [H6U e

ey
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(see, e.g., [1T]).
The action of a*(g) turns out to be

(@*(9)F) (7) := Y F(\{e})g(x) - (9) F (7).

ey

For later reference we finally introduce

en(f,wy) = exp(f)ep(f,wy) = [J(1 + f(2)).

rey

Their expectations w.r. suitable measures pon configuration space

Een(f) = [ enlfuwdu(n) =3 5 (k. so")

are called Bogoliubov functionals and are the generators of the ntPorder corre-
lation functions for the distribution wu.

3 Return to Kawasaki

Recall the free Kawasaki dynamics:

aF() = HFG) =Y [ dya—v) (Fo\=Uw) - F)

TEYy

In terms of creation and annihilation operators one finds

H = /dx z(x) /dy (g(x — y) — god(x — y)) (a* (x)a(y) — a(y)),

Clearly, in Fock space language this corresponds to a quadratic Hamiltonian
and time development can be calculated in closed form.

Time evolution of Bogoliubov exponentials takes on a particularly simple
form:

eftep(f) = en(ef)
Af@) = [ dyale—v) (f@) - S@).
Evolution of the initial (Poisson) distribution
m, — P, Tzt

under the adjoint of et is characterized by
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[ oo Prestan) = [ ente o mpman <o ([ A p@)(o)e )

A Markov process X; on I', associated with the Kawasaki dynamics, requires
a technical restriction [12]: the process may not start at any arbitrary initial
configuration v € I'. Consider the set © of all v € I'" such that, for some m € N
(depending on «),

YB(n)| € mvol(B(n)), VneN.

Have ©(©) = 1 for every probability measure 4 on I' whose correlation
functions k,(,,n), n € N, fulfill the Ruelle bound

()
k,gn <

i.e. for Poisson measures with bounded intensity, and for Gibbs measures with
suitable potentials, cf. [Ruelle; 1970]. '
Below we shall use the so-called empirical field corresponding to a ¢ € D(R?),

ne(p, X) = (p, Xe) = > o(a).
. zeX,
3.1 Evolution of Distributions

The distribution at time ¢, P,_:(dy) is again Poissonian, with intensity z; €
L (R4, dz), given by

/ dz & f(z)2(z) = / dz f(z)2(x), )
R4 Rd

for all f € L'(R%,dx). Since e4 is positivity preserving in L1(R4,dx), it follows
from (2) that z; > 0. :
3.1.1 Invariant Distributions

Poisson distributions are invariant under free Kawasaki dynamics iff their in-
tensity
z(x) = const.

H*1 = 0 iff the linear annihilation term in H vanishes:

[ avaw) ([ doz @) 0z -9)~ g @) Lo

Using Fourier transforms one sees that this requires z=const.
In the symmetric case, for g even and constant z > 0, H gives rise to a
symmetric Dirichlet form on L?(T, 7,),
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1
(FHP) = =5 [ (@)Y [ dvglo—u) IFI*.
Jr R¢
zEY
This allows to derive a Markov process on I' with cadlag paths and having
7, as an invariant measure . In this setting H is a negative essentially self-

adjoint operator on L%(T', 7,), and the generator of a contraction semi-group on
L? (T, m2).

4 Asymptotics
4.1 Large Time Asymptotics

Asymptotics t— oo

We have seen that any Poisson state of constant intensity is invariant under
the evolution (equilibrium). Now we consider “local equilibria™ Poisson states
with non-constant intensity z=z(x).

Recall that the state at t>0 is again Poissonian, with intensity z; € L= (R¢, dz),
given by

/ dmemf(x)z(:v)=/ dz f(z)z(x).
R4 Rd

4.1.1 Convergence to the Arithmetic Mean

One says that a function z € L .(R?,dz) has arithmetic mean whenever

1

i —_— z = 3
R0 OB (R) B(R)d‘” (z) = mean(2) 3)

exists.

Theorem. Let z > 0 be a bounded measurable function whose Fourier trans-
form Z is a signed measure. Then z has arithmetic mean and the one-dimensional
distribution Py, ; converges weakly tO Tmean(z) @S t goes to infinity.

Proof (Outline):

In this case mean(z) = Z({0}) ,

/Rd dx f(z)z(z) = /Rd dx et? f(z)z(x) — mean(z) fmd dz f(x),

and
T., — MTmean(z)
weakly, because of convergence of characteristic functions.

Remark:
1. the same conclusion holds e.g. for

Z(CL) — 21 if 1 2> 0
zp otherwise



with mean(z) = —Z-Q-f;—zl , by explicit calculation although in this case % is not
a signed measure. It seems natural to expect that the large time asymptotic
exists for all bounded intensities which have arithmetic mean.

2. On the other hand, not all measurable bounded non-negative functions

2 have an arithmetic mean. Counterexamples are slowly oscillating functions
such as

z(x) = c+ cos(In(1 + |z])), =z € R4,
where ¢> 1. Then for large R

1 1
vol(B(R)) Jp(r) V1+d?

3. The non-ergodicity of the infinite particle processes is reflected in the non
ergodicity of the one particle processes in this class of initial intensities.

z(x)dz ~ c+ sin(ln(R) + arctan(d)).

4.2 The hydrodynamic limit

The first correlation function p,(z) is the probability density for (the first mo-
ment of) the empirical field:

B (nel, X)) = B (0. X:)) = [ p(@)pu(e)de

Consider space-time scale transformation given by (p,v) — &%{p(e'),7),
t — €7t for suitable k > 0 (see below), z — z(¢g-).
1. If

gt = / dz z;9(z) # 0,
JR4
then for kK =1
[ depiare@ = [ dosta+tg M),

R¢ R¢
so that, if the intensity z is smooth enough

0 .

5;(@) =g - Vpula) = div(g™ pi())

with the initial condition pg = 2.
2. If gV =0, and

o = [ dwaiagle)
Rd

then for Kk = 2

1 . ikx ,—4 (gD k,k) 5(]
/Rd dz pi(z)p(z) = Gnae /Rd dx z(x) /Rd dke*"%e™2 @(k),
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solving the partial differential equation

o 1 d (2) ok
7@ =3 Z«  Bzdm; )

3. Consider weak asymmetries, decomposing g into a sum of an even function
p and an odd function ¢, and use the scaling
ge :=p+€q

and kK = 2. The limiting density p: is then solution of the partial differential
equation

0

62
50t(@) = div(gWpe(2)) + 5 § , 95 5 ().
i,j=1 v

4.3 Far from Equilibrium

‘The construction of the free Kawasaki process and its scaling limits are not
restricted to Poissonian initial distributions. Sufficient conditions for admissi-
ble measures can be stated in terms of their correlation functions and are in
particular fulfilled for Gibbs measures at high temperatures.

Gibbs Measures

A probability measure p on T is called a Gibbs measure for V, intensity
function z > 0, and inverse temperature (3 if it fulfills the Georgii-Nguyen-Zessin
equation [18]

[utan) S H@ ) = [wan [ dex@B@AUENe oD @)

Ty

with

SVe-y), Y |[V@-y)| <o

€
Blz,7) =4 ¥ ver
+o00, otherwise

(Equivalent to DLR-equation, see [Georgii, Nguyen-Zessin]|.)

The correlation functions corresponding to such measures fulfill a Ruelle
bound, and thus, the measures are supported on ©, but are neither reversible
nor invariant initial distributions for the free Kawasaki dynamics.

Consider a Gibbs measure with translation invariant potential V, tempera-
ture and activity z which is in the high temperature low activity regime, and
let the Fourier transform of z be a bounded signed measure. Then

1. the first correlation function has arithmetic mean, and the one-dimensional
distribution P;_; converges weakly to Tmean(z) When t goes to infinity.

2. Hydrodynamic scaling PDEs hold as before, where now the initial value
po(z) is a scaling limit of the first correlation function.
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Specifically, because of translation invariance the 1st correlation function for
a constant activity c is a constant

P = oM ()
For z = z(x) have
po(z) = pM(2(z)).
A proof and more details can be found in [12].
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