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APPLICATIONS OF AN ARITHMETIC TRACE FORMULA

BERNHARD HEIM

ABSTRACT. Recently we have found a trace formula comparing periods and special
values of automorphic forms and L-functions. In the first part of the talk we recall
the formula, which depends on comparing two different spectral decompositions of an
Eisenstein series of Siegel type. In the second part we talk about applications.

1. ARITHMETIC TRACE FORMULA

This is an extended version of a talk given at the conference:
Automorphic representations, automorphic L-functions and arithmetic,

organized by Yoshi-Hiro Ishikawa and Masao Tsuzuki at the RIMS Institute Kyoto,
January 19 - 23, 2009 1.

Let Si = Si(T") be the vector space of cuspidal modular forms of integer weight k
with respect to I' := SL2(Z). Let || || be the Petersson norm. Let g € Sk(I') be a
primitive Hecke eigenform with Satake parameters a, = a,(g), 8, = 3,(g), normalized
by a, B, = p*~!, then the Hecke- and the symmetric square L-function of g are defined
by the Euler products

L(g,9) = [I{0t-ew)-8o}"

L(sym(g),5) = [[{- a2 )1~ app™)1 - 202}

The completions of these L-functions at infinity are given by

L(g,s) = Te(s)L(g,s)
L(Sym*(g),s) := Twr(s — k+2)Tc(s) L(Sym*(g), ),

where Tg(s) := 77%/2T'(s/2) and I¢(s) := 2(27)~*T'(s). It is well-known that the Hecke
L-function continues to an entire function on C with functional equation s — 1 — s
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with sign (—1)3. By a theorem of Shimura [Sh], the symmetric square-L-function has
an analytical continuation to C, and satisfies the functional equation

L(Sym*(g), 2k — 1 — s) = L(SymZ?(g), s).
Then we define

(1) Z(Sym*(s), 1us = L(Sym*(g), 2k — 2)ag i= E(Sf?ifgl?’; e

which is known to be a non-zero, totally real algebraic number [Sh],[Z1]. Also the
related traces are interesting arithmetic objects:

(1.2) tracey, (E(Symz, 2k — 2)alg) = L(Sym*(g), 2k — 2)u € Q,
g

)

where g runs through a primitive Hecke eigenbasis of Sk(I'). The functional equation
implies that this is equal to

(1.3) tracey (Z(Sym2, 1),;,;) .

They can be explicitly calculated. The doubling method related to Siegel type Eisen-
stein series [Ga) provides a good way to do this.

For example let k = 12, 16, 18, 20,22,24. Then we have for the traces (1.3) the values:

224.3.5.7 230.32.5.73.11
( 23 - 691 )k=12 ( 313617 )Ic=16

37 .53.7. . 36 . 93 . =3, L 712
(2 e 13)k=18 (2 32837o 61171 g )k=20

43867

(242 +3-5%-72.13-17-61- 103) (242 -11%2.59- 691 - 2294824233197)
11-43-131-593 k=22 3-13-47-103 - 2294797 k=24~

Here the 43 indicates that the prime 43 does not occur and hence the numerator and
denominator of the trace in the case k = 22 are coprime to 43. In all the other cases
above, whenever 2k — 1 is a prime, this prime occurs in the denominator. The other big
primes in the denominators are irregular primes related to the k-th Bernoulli number
By.. The pattern p = 2k — 1 can be directly understood by studying the class numbers

h(v/=p) of Q(y/=p) for primes p = 3 (mod 4).

Let further (@) 0
— [ %p\g
Ap(g) = ( 0 ﬂp(g) ) ’
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then the Rankin triple L-function L(f ® g ® h, s) for three primitive Hecke eigenforms
f1 g, h is given by the infinite product

(14) H {det (18 — Ap(f) ® Ap(g) ® Ap(h)p~* }_1 :

p prime

It is well-known that the Rankin triple L-function at the critical value 2k — 2 satisfies
Deligne’s conjecture. Let

L(f®g®h,8) :=Tc(s)Te(s — k+1)°L(f @ g ® h, 5)
be the completed Rankin triple L-function. Then

R L(f®g®h,2k —2
(1.5) L(f®g® h,2k — 2),g := l(lff H";qll g 2l k|2 )

is a totally real algebraic number. This result is due to Garrett by employing pullback
formulas of Siegel type Eisenstein series of degree 3.

Consider periods (F, g) attached to Saito-Kurokawa lifts F' and cuspidal elliptic new-
forms g € Sy, of weight k:

(1.6) /P ern (00 7) TV ()2 Im(P)*~ dr .

Here j denotes the diagonal embedding of H := {z + iy € C|y > 0} into the Siegel
upper half-space H of degree 2. Ichino [Ich] proved that the square of Q(F,g) is
essentially equal to the central value of the L-function

(1.7) L(f ® Sym?(g), s).

Here f € Sy_o(T) is related to F via the Saito-Kurokawa (SK) correspondance. The
underlying picture of the spaces and automorphic forms involved in the Saito-Kurokawa
lifting is the following;:
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F e SJK
Ikeda/ : \Maass
h = Sl-:-_l E EZ' @ c J;ulsp
2 ' < P ‘ - Q(F7 g)
SK| v s <—-—-- (P, g)
g € Sk
Shimura
Shimura
f € Sax—2

The described isomorphisms are compatible with the action of the underlying Hecke
algebras. We have an isomorphism between the plus space S;'"_ ; of modular forms of

half-integral weight k¥ — 1/2 and the space of Jacobi forms st of weight k& and index
1 due to Eichler and Zagier. We denote by SE¥ the subspace of Siegel modular forms
of degree 2 generated by Saito-Kurokawa lifts. We note that Ikeda [Ik1] obtained an
interesting construction of the Saito-Kurokawa lifts of modular forms of half-integral
weight leading to his construction of the now so-called Ikeda lifts. Mainly Maass and
Andrianov considered the explicit isomorphism between the space of Jacobi forms and
the space S§¥ explicitely. This lift can be used to define in a canonical way periods of
Jacobi forms Q(®, g). They are directly related with the periods Q(F,g). The forms
h,®, f, and F correspond to each other. The correspondence of the space of Saito-
Kurokawa lifts and Sax_o is abstract and given via eigenvalues.

Let (g.), run through a primitive Hecke eigenbasis of Sox_5. Let Kox_» denote the
totally real number field generated by the Hecke eigenvalues and ,;_; the ring of
integers, in which the Fourier coefficients are contained. It is known that a Hecke
eigenbasis of

cusp + SK
Sok—25 Jey Sk_%, Sk

can be choosen such that the Fourier coefficients are contained in Kgr_o. We fix such
a basis

(1-8) (f‘i)i ’ (Qi)i ’ (hi)i ’ (Fl); ’
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and indicate the correspondance by the index. Let || H || be the Petersson norm of the
form H. Then

T E Z)Zk -3 Q Ey a
L(fi; 2k — 3)aig := '-(]Icl‘a”l‘lz—za Q(Fi, ga)aig = ﬁ € Kag—2.

o~

Let ((s) be the completed Riemann zeta function. Then we have for the values at the
positive even integers:

C(k)

k
T2

(1.9) Ck)alg = € Q% (k €N, even).

Now we state the announced formula [H1], which relates special values of different kind
of L-functions at points inside and outside the convergent domain of the Euler product.

Theorem: [Arithmetic Trace Formula]
Let k be a positive even integer. Then we have

23k 1 -
= L(Sym?(g4), 1)alg 94 ® ga
2k —2 ((k)aq Zd: )

+(—1)§2k_2 Zz(ga ® gp ® ge, 2k — 2)alg Ga ® Gp

ab,c
_(~1)3 2%+ 1 T(k — 1) T'(k)?
- 2%k—-2  ((2k-— 2)ag [(2k —1)T(k/2)?

Z Z(Symz(ga), 1>)a|g 21\(Symz(gb)a 1)alg 9. Q g

a,b

+ Z Z {23k—3 . E(f, 2k — 3)alg . Q(F, ga)alg : Q(F7 gb)alg} 9a ® Go-

2. APPLICATIONS

2.1. Congruences for primes 2k — 1.
In the following let p := 2k — 1 be a prime. The normalized trace of the special value
of the Rankin triple L-function

dgk E(gaA® 9b 3y 9e, k)alg )
C(2k — 2),1g

a,b,c=1
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is congruent mod p to a quadratic polynomial evaluated at the trace of the special
value of the symmetric-square L-function

dim 'Sy E(Sym2 (gd), 1)all
(2.1) ; ( 2k = D )
We have:

Theorem: [Congruence Relations of Special Values]
Let p be a prime with p = 3 (mod 4), p > 23 and k = B2, Let (9.), be a primitive
Hecke eigenbasis of Sk(I'). Then

(=1)(+h(V=P)/2 4im Sk ( L(go ® 9y ® ge, K)aig ) _
ok C(2k — 2)aig

a,b,e=1

dim Sg 2 i(Symz(ga), 1)alg 2 1 dim Sg 9 E(Symz(ga), 1)3'3
{ 2 g—'( C(2k — 2)aig "~ h(v/=p) ; g? 2k - 2)ug (mod p).

The following non-vanishing results make the congruence relation powerful. In a joint
project with Neil Dummigan [DH], motivated by the results from above, we obtained
the following three results.

Theorem I: Appearence of the prime 2k — 1.
Let p be a prime (p > 23) and p = 3 (mod 4). Then

(2.2) traceps (E(Symz, 1))alg € p‘IZ(’;)
if and only if h(\/—p) > 1.

Here Z ;) is the localization of Z at p. In a way, the p in the denominator has nothing
to do with the class number. But when h(,/=p) = 1, a subtle cancellation occurs:

Theorem II: Class number one.
Let p a prime (p > 23), p =3 (mod 4), and the class number h(\/=p) = 1. Then

(2.3) tracepy (E(Sym2, 1))a'g S/

Next we turn to congruences of modular forms. Let A(z) = ¢ [[2,(1 — ¢")* =
> me1T(n) g" be the unique normalised cusp form of weight 12 for SL,(Z). Wilton
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[Wi] proved the following congruences. Let £ # 23 be a prime.

0 (mod23) if (F)=-1;
7(€) =<2 (mod 23) if () =1 and £ = u? + 23v%
—1 (mod 23) otherwise.

Swinnerton-Dyer [SD] considered more generally a normalised, cuspidal Hecke eigen-
form g = ) 77 | an, g™ for SLo(Z), of weight k. For simplicity suppose that the a, are
rational. This probably means that k£ = 12,16, 18, 20,22 or 26. He showed that if p

is a prime, and if for all primes ¢ such that (ﬁ) = —1 we have a; = 0 (mod p), then

necessarily p < 2k. In the case p = 2k — 1 (if it is prime), he observed that such
congruences hold for k = 12 (p = 23, i.e. Wilton’s case), and also for k£ = 16 (p = 31),
but not for k = 22 (p = 43). In fact, we have the following.

Theorem III: Dihedral congruences.
Let k be an even integer such that p := 2k — 1 is prime. There exists a normalised,
cuspidal Hecke eigenform g = 3> 7 | an q" for SLa(Z), of weight k, and a prime p | p

of Q({a.}) such that a; = 0 (mod p) for all primes £ with (ﬁ) = —1, if and only if
h(y/—p) > 1.

Theorems I and III may appear to describe two unrelated consequences of the condition
h(v/=p) > 1. We can explain that they are linked by the Bloch-Kato conjecture on
special values of L-functions. The Galois representation behind Theorem III is used
to produce a non-zero p-torsion element in some “global torsion” group whose order
appears in the denominator of the conjectural formula for the ratio of L(Sym?(g),1) to
a canonical Deligne period. This may be viewed as explaining the non-integrality in
Theorem 1.

What happens in the case h(y/~—p) = 1?7 The solution involves periods Q(F, g) at-
tached to Saito-Kurokawa lifts F (of primitive Hecke eigenforms f € Spx_2(T") via the
Saito-Kurokawa (SK) correspondance [Z2]) and primitive Hecke eigenforms g € Si(I").

Theorem [Class number #1]
Let p be a prime, and let Sp(T') for k = 2-'5—-1- be non-trivial. If the class number of
Q(v/=p) 1is one, then
2k+1 dimS’k(I‘) A dimSk(I‘) N k2
k) z L(Sym2(gd)’1)a|g+ Z L(ga®gb®gcak)alg = (_1) 2 22—k
2

: d=1 ab,c=1

dimSk(I") dimSg;—2(T")

Z {2%—3 . E(f,-, 2k — 3)alg . Q(Fivga)alg ’ Q(Fh gb)=|8} (mod p)'

a,b=1 i=1
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2.2. Periods. In the following let

_x— L(fi, 2k — 3) QF, ga) QF;, g5)
(2.4) W(Ga, ) 1= Z EAE Tl Tl

Theorem: Vanishing of periods.

Let p be an irregular primes. Let k be an even positive integer with p]% and p4 %fc"T‘;.
Then we have
dimS (")

(2.5) D Pw(9a®) 9a®g =0 (mod p).

a,b=1

Remark:
There exist infinitely many primes p with this property (H2]).
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