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LIMIT PERIOD FORMULA FOR SPECIAL CYCLES ON REAL
HYPERBOLIC SPACES

MASAO TSUZUKI : #8IEH (EF KRFBTHE)

1. PRELIMINARY

1.1. Let G be a connected semisimple Lie group with finite center of non-compact type.
We fix a Haar measure dg of G. Given a uniform lattice I' C G i.e., discrete subgroup such
that I'\G is compact, let L?(I"\G) be the Hilbert space of all the measurable functions
¢ : G — C such that ¢(yg) = ¢(g) for any v € I" with the finite L2-norm

/ 16(g)[2 dg < +oo.
NG

Then, the right regular action of G on L?(I'\G) yields a unitary representation of (Rr, L(T'\G)),
which, by a fundamental theorem of Gelfand, Graev and Piatetsuki-Shapiro, is discretely
decomposable to irreducible unitary representations of G with finite multiplicities:

there exists a function G 3 7 — mp(r) € N s.t.

2 _ A 2
L*I\G) = D, _ L*(T\G)n,
LY(I\G), = 7®™r(™  (n-isotypic part)
Let K be a maximal compact subgroup of G and (7, F;) an irreducible unitary represen-
tation of K. Then, the space of F;-valued m-automorphic forms on I" defined by
L2(T\G)x & Hom (Fy, L*(T\G)x)
= {Lz(F\G).,, ®c FT}K
becomes a Hilbert space in a natural way; it is of finite dimension
dim¢ L2(T\G)r = mp(7) multg (7Y, 7).

1.2. Let H be a connected symmetric subgroup of G. Thus, there exists an involutive
automorphism o of G such that H = (G7)°. We assume that o is taken so that o(K) =
K. Then, Ky = K N H is a maximal compact subgroup of H. Let (7, F,) be an
irreducible unitary representation of K. Since K is a symmetric subgroup of K, the
trivial representation of Ky occurs in 7|K* at most once, i.e., dim FX# < 1.

Let £F be the set of uniform lattices I' C G such that o(I') = I'. For each T € £, the
intersection I'y = I' N H is a uniform lattice of H. R R

Fix a Haar measure dh of H. Given I" € £&, 7 € G and 7 € K, consider the map

IXT\G)r 3¢ — ! & / $(hydh € FKn
FH\H
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and set

P.(D). < S (o7,

$EB (D)

where B,(I'), is an orthonormal basis of L2(I'\G),. It is easy to see that P,(I), is
independent of the choice of B,(I'),.

1.3. In this note, we are interested in the asymptotic behavior of P, ('), (with fixed =
and 7) when T — {e}’. To make the meaning of ‘T" — {e}'more exact, we introduce the
notion of a tower of lattices. A sequence {I',}.en is called a tower if

(1) T, is uniform lattice in G

(2) ' C r,, [Pn : Fn+1] < 400

(3) I', is normal in Ty

(4) NTn = {e}
A tower {I',} in G is said to be H-admissible if I", € £& for all n. Then, for a given tower
of H-admissible uniform lattices in G, we have some speculation on the limiting behaviour

of P,(T's)~ as n — 00; we report a partial result obtained for a particular symmetric pair
(G, H).

2. SPECULATIONS

2.0.1. Group case. Let Gy be a connected semisimple Lie group with finite center, and
{Ton} a tower of uniform lattices in Go. Let G4 be the equivalence classes of irreducibel
unitary representations with square integrable matrix coefficients. Then, for any m, €
é’o,dis, the formal degree of 7 is the number d(m) such that

— v1|wn) (vo|w
/(ﬂo(g)v1|v2)(7r(g)w1|w2) dg = (vifun) (vz|ws) for any vy, vz, wy, wy € Hpy,.
G d(mo)
For convenience, set d(m) = 0 for my € Go — Gayd. Then, the limit multiplicity formula
proved by DeGeorge-Wallach [5] asserts

. mp,.. (M)
2.1 vol(To \Go)
(2.1) A ol(To\Go)

which was extended to a tower of non-uniform lattices by L.Clozel and G. Savin.

This result is reformulated in our framework as follows. Fix a maximal compact sub-
group Ko C Gp. Then, K = Kj x Kj is a maximal compact subgroup of G = Gy x G.
For mg € Gg and 7y € Ko, set m=mg X 7o and 7 = 19 B 75.

If I C G is of the form I'y x Ty with I'y C Gy a uniform lattice, then

LZ(T\G)x = L2 (To\Go)o® LZ (To\Go) o
If H = AGj is the diagonal subgroup of G, then,

= d(mp), Ty € G’,

_ multg, (19, mo)
P, (), = dim g mr, (o).
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Given a tower of uniform lattices {I'o»} in Go, the direct products I',, = Iy, X [y, affords
an H-admissible tower in G and the limit multiplicity formula (2.1) is equivalent to

lim P, (Thn)x _ multg, (19, mo)
n—co vol(T', N H\H) dim 7y

d(ﬂ'o).

2.1. Limit period formula.

2.1.1. Problem. The group case suggests that the main term of P.(T"), as T' — {e} should
be vol(I'y\H). Now, we raise the following question:

Let (1,H,) € G and (7, F,) € K be such that the condition (2. 2) is satisfied. Let {I',}
be an H-admissible tower in G. Does the limit

lim Pr (L)
n—oo vol(I', N H\H)

exists? If exists, what is the limit value? 4

If the limiting value is non zero, we infer that P,(I',), is non vanishing for sufficiently
large n, which in turn yields a new proof of the existence of a realization of 7 in the space

L3(T,\G). ) ,

We put a remark here. Let I' € £4, 7 € G and 7 € K. The non-vanishing of P,(I'),
imposes the following restriction on the data (T, 7, 7).

e mp(m) # 0;
e The (local) compatibility condition of w and 7 :

(2.2) 3 € (H;°)H, 30 € (H[r])HNK s.t. £(0) # 0,

in particular,
FEOR£{0},  (Hz™)H # {0}

Here, H3° denotes the space of C™-vectors of 7, HS°[r] the T-isotypic part of H®
and H; > the space of distribution vectors of .

2.1.2. Relative discrete series of H\G. Let G, H be as in 1.2. An irreducible unitary
representation (7, H,) of G is called to be H-spherical if (H;*°)¥ # 0; 7 is called to be
a relative discrete series representation of H\G if £, # 0. Here, (H;®)¥ is the space of
H-invariant distribution vectors of 7, and L, is the space of all those £ € (H;*°)¥ such
that

v e HY s.t. / [e(m(g)v)|* dg < +o0
H\G

We denote by GH the set of equivalence classes of all H-spherical irreducible unitary

representations of G and by GH the subset of G¥ of those classes containing a relative
discrete series.
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2.1.3. Formal degree. We define an analogue of formal degree as follows. Let 7 € C?f
and 7 € K are such that '

01 dim £, = 1 (multiplicit one condition).

02  multg(r,7) = 1.

Os (3 € L)(30 € HP[r]5H)(€(6) # 0) (cf. (22)).
Then, there exists d7 \G(7r) such that

H\G( -1 2
T, - G (M) ()]

c(v|w), Yv,w € HE.

Note that the number @? \G(7r) is independent of the choice of (¢, 6).

2.1.4. Limit period formula. Now, from the experience of the group case, we pose the
following.

Conjecture : Let 7 € G¥ and 7 € K be such that the conditions ()i (2 =1,2,3) in
1.4.3 are satisfied. Let {I',} be an H-admissible tower in G. Then,

lim Pr (T
e Sol(T A HH)

(2.3) = d¥\% (7).

For m € G — G and 7 € K, the same limit should be zero. O
Note that this conjecture is compatible with the group case.

3. RESULTS
We consider the case
G=800(d,1), (d>2),
H = SOqy(d — p, 1) x SO(p), (1< p<|d/2]),
and report a partial result to the conjecture for some 7 and for an H-admissible tower of

congruence subgroups of G.

3.1. Setting. Let F be an élgebraic number field such that F/Q is totally real and
np = [F : Q] is greater than 1. We enumerate all the embeddings of F' to R as ¢, :
F—R (1<v<np) LetV be an F-vector space of dimension d + 1 (> 2) and Q a
non-degenerate F-quadratic form on V. Define G be the restriction of scalars from F to
Q of the orthogonal O(Q) of the quadratic space (V, Q). Thus, for a Q-algebra A,
G(A) ={g € GL(V ®q 4)|Qo g = Q}.

For each v, let V) = V ®f,, R and Q™ the R-quadratic form on V® induced by Q.
From now on, we suppose ‘

sgn(Q) = (d+,1-),

gn(Q") = ((d+1)+,0-),  (2<v<np)
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Set G = O(QW) and G = G°. Then,

ng
GR) =G x [Jo@*) =&
v=2
G = 0(d,1) (real rank one)
o(QM) = 0O(d+1) (compact) (v = 2)
Let U C V be an F-subspace such that QM |U® > 0 for all v. We suppose p :=
dimp(U) € [1,[d/2] — 1]. Set
H= ResF/Q(Stabo(Q)(U))
and
H = pr;H(R)° cG.
Thus, H is a connected symmetric subgroup of G such that
G = S0¢(d,1), H =SO0¢(d—p,1) x SO(p).

Let £ be an og-lattice in V such that L = (LNU)® (L NUL). Let a C oF an op-ideal.
Set

Te(or) = GL(L) NG(Q) — G(R),
Te(a) = {yeTs(or)|yv—veal (Ve L)},
Te(e) = pry(Ce(@) NG
Then, 'z (a) is a uniform lattice of G belonging to £&. If {a,} is a sequence of op-ideals
such that a,;; C a, and such that the distance from 0 to a, — {0} in F ®q R tends +o00
with n. Then, I', = I'g(a,) is an H-admissible tower in G.
We fix a maximal compact subgroup K = SO(d) of G such that K N H is maximally

compact in H. The unitary dual K is parametrized by the set of dominant integral
weights, which are -tuples

(L, lg, ..., 1] € (Z/2)%, (6 =1[d/2])

such that

L=2...201:20 (d:odd)

L>2...20_12|lsl (d: even).
We remark that (7,)#7% # 0 if and only if

A=[l,...,1,,0,...,0].
Let () be the bilinear form on V() associated with Q():
(v,w) =27HQW(v + w) — QW (v) — QW (w)}.

We may suppose that K is the stabilizer in G of a vector vy € V(1) such that Q) (vy) = —1,
vo LUM. Thus, the tangent space of G/K at the origin 0 = eK is identified with the
orthogonal complement of vp in the natural way: T,(G/K) = (vp)*. Then, the restriction

(, )|vg is a positive definite bilinear form, which propagates a G-invariant metric on G/K.
The associated Riemannian volume form is denoted by dug k. Fix the Haar measure dk
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with the total volume 1. Then, we fix the Haar measure dg of G in such a way that
the quotient dg/dk coincides with dug/x. We fix a Haar measure dh of H by a similar
construction.

3.2. The case p =1 (i.e. H = SOy(d —1,1)). Let P = M AN be a minimal parabolic
subgroup of G = SOy(d, 1). Then,

M=S0(d-1), AR,

For any s € C, the K-spherical principal series mo(s) is defined to be the representation
of G (unitarily) induced from the character 1); ® e* ® 1y of P:

mo(s) = IndS(1y @ e® ® 1n).

The following properties of my(s) is known:

», 7To(S)|K=s0(az) = @zeN T4,0,...,0}-
#: 7y(s) is irreducible unitarizable iff

s € V—IRU (—p, p) (wherep = 1),
#®; 7o(s) (Re(s) > 0) is reducible iff
s=p+k 3JkeN=1{01,...}.
#4 For k € N, mo(p + k) has a unique irreducible (g, K)-submodule

Ok = @ T1,0,..,00 < To(d + k).

1Z2k+1
#; Set 6_1 = mo(p—1) if d > 4. Then
au _ J{ol ke N}, d=2,3,
d {6k e N}U{6_;}, d=4.

Theorem 1. Let {a,} be a sequence of op-ideals such that a,., C a, and such that the
Euclidean distance from 0 to the lattice points a, — {0} in F ®q R tends infinity with n.
set Fn = FL(Cln).

(1) If
T = O, T = Tk+1,0,...,0)> (k € N),
then
. P.(Cn)r 1 T(p+k+1/2)
(3.1) A TN BN ~ 7 T TR
= df\%(mr)

(2) If m € G- GH, then for any 7 € K,

lim Pr(Ln)a =
n—oo vol([, N H\H) ~

0
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Remark:
(1) d is integrable (i.e. — LY(H\G)) if and only if k > 1
(ii) The first identity in (3.1) for k = 0 has been proved by a geometric technique ([1]).
(iii) (3.1) is true even for # = §_;, if we assume the existence of “spectral gap” at §_;
along mo(s) ,i.e.,

(3e > 0)(Vn € N)
[(mr,(mo(s)) # 0, [s|l <p—1) = (Is|<p—1—¢)]
This is a consequence of Arthur’s conjecture (cf. [3], [2]).
Corollary 2. Let k € N and 7 = 79, 0). Let {I'z} be as in Theorem 1.
(1) There ezists m € N and ¢ : G — F, satisfying
¢(vgk) =7(k)" ¢(g), VYEDn,VEkEK
Cop=2k(k+p)¢ (Cy: Casimir operator),

/ (h) dh # 0.
CnNH\H
(2) mr,(6k) # 0 if n is large enough.

Remark : This is not new. Indeed, for £ > 0, this is a special case of [10], and for k = 0,
this may be deduced from [7].

3.3. Thecasep > 1 (i.e. H = SOq(d—p,1)xSO(p)). Let m,_1(s) = Ind§(£,-1®e*®1y)
(s € C) be the non-unitary principal series with

£p—1 1 M = S0(d — 1) — GLg(AP!R?1).

The following properties are known.
&, m,_1(s) is irreducible unitarizable iff

s € V-IRU (=Pp, Pp) (where p, = %l —-p+1).
&; mp_1(38) (Re(s) > 0) is reducible iff
[s=pp] or [s=p+k, FkeN={0,1,...}]
&; m,_1(pp) contains a unique irreducible (g, K)-submodule 6 — m,_;(p,).
~ Fork €N, m,_1(p+k) has a unique irreducible (g, K)-submodule 6% — 7,_; (6 + k).
&, (6P} U {6k e N} c GH.
We remark that G¥ is not exhausted by 6®) and 6.

Theorem 3. Let {a,} and I', = I'(a,) be as in Theorem 1. Suppose the ezistence of
“spectral gap” at 6P along m,_,(s) ,i.e.,

(3¢ > 0)(Vn € N)
| [(mr, (mp-1(8)) # 0, [s| < pp) => (Is| < pp —€)]
Then, for m = 6 and 7 : K = SO(d) — GL(APR?), we have the formula:

(3.2) tim — ErTn)e 1 T(pp+1/2) _

_ H\G
n—oo vol(I', N H\H) 7P/2  T(p,) ar(m
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Remark : (i) Although we do not settle the case for 5,(:’ Vs yet, we expect a similar
formula.
(ii) 6® is not integrable (on H\G).
(iii) Theorem is true under a weaker hypothesis
(3e > 0)(Vn € N)

[(pr(rn)wp_l(s) #0, |s| < pp) = (|8 < Pp =€) .

(iv) The first identity of (3.2) was conjectured by Bergeron in a geometric form (explained
below). His method may yields a proof of the formula under a spectral gap hypothesis
for Hodge-Laplacian on p-forms.

3.4. Application to geometry. Let G = SOq(d, 1) and H = SOy(d — p, 1) x SO(p)
with 1 < p < [d/2]. Given a torsion free lattice I' € £, we have a (d — p)-dimensional
cycle

Ch =Tu\H/Ky < I\G/K
on I'\G/K. Then, the harmonic Poincare dual form wf; of C§ is defined by
[Ch] € Hap(Tu\H/Ku; Z) 5 Ha_p(T\G/K; Z) — H*P(T\G /K R)"
= HP(T\G/K; R)
= { harmonic p-forms} > wk;,

where PD is the Poincaré duality map. The L2-norm of w}; is defined as

O 7
JI\G/K .

where * is the Hodge *-operator of I'\G/K

Proposition 4. Let {T', = I';(a,)} be as in Theorem 1. Suppose the ‘H-spectral gap
hypothesis’

(Je > 0)(Vn € N)
[(Prp(rn)ﬂp_1(s) 75 O’ lsl < pp) = (IS' < Pp — 6)]
is true if p > 1. Then, '

Wl 1 T(p,+1/2)
3.3 1 = ;
(3:3) nmoo vol(CLr) 772 T(p,)
Remark :

(1) The form wi; is explicitly constructed as a residue of the analytic continuation of some
Poincaré series ([7], [8]).

(2) The formula (3.3) for p = 1 is proved by a geometric method [1]. The unconditional
validity of (3.3) for p > 1 is also conjectured by [1].



104

4. A FEW WORDS ON PROOFS

Following [11] (where the case G = U(p,q), H = U(p — 1,q) x U(1) is discussed), we
prove Theorem 2 by showing the two inequalities :

(1)
_ P (Tp)x 1 D(pp+1/2)
< .
b SUp ST N AN S 77 T(py)

To prove this, we follow the argument used by [9] in the proof of the limit mult1phc1ty
formula.

(2)

P, (Ty)s 1 T(p,+1/2)
= .

ot T, A BN = ol T(p,)

This part is accomplished by a form of relative trace formula.

5. REMARKS

e Similarly, we can treat the cases :

- G=1U(p,q), H=U(p—-1,q) x U(1)

-G= SOO(p7 Q), H= SOO(p -1 Q)

~G=Un,1), H=Un-p,1) x U(p) (1 <p <n)
e We expect the same method works at least when the split rank of H\G is 1.
e The following (naive) question seems natural. For S C G, set

WA (D3 9) = 3P (D),
TeS
Does the measure
/‘f (Cn; S )

vol(I', N H\H)’
approximate the spectral measure (Plancherel measure) of the decomposition of
L*(H\G; ) ? By extending the argument in [11], we already have a regorus result
on this observation for the case (G, H) = (U(p,q), U(p — 1,q)) ([12]).

S —
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