LIMIT PERIOD FORMULA FOR SPECIAL CYCLES ON REAL HYPERBOLIC SPACES

MASAO TSUZUKI:都築正男 (上智大学理工学部)

1. PRELIMINARY

1.1. Let G be a connected semisimple Lie group with finite center of non-compact type. We fix a Haar measure dg of G. Given a uniform lattice $\Gamma \subset G$ i.e., discrete subgroup such that $\Gamma \backslash G$ is compact, let $L^2(\Gamma \backslash G)$ be the Hilbert space of all the measurable functions $\phi: G \to \mathbb{C}$ such that $\phi(\gamma g) = \phi(g)$ for any $\gamma \in \Gamma$ with the finite L^2 -norm

$$\int_{\Gamma \backslash G} |\phi(g)|^2 \, \mathrm{d}g < +\infty.$$

Then, the right regular action of G on $L^2(\Gamma \backslash G)$ yields a unitary representation of $(R_{\Gamma}, L^2(\Gamma \backslash G))$, which, by a fundamental theorem of Gelfand, Graev and Piatetsuki-Shapiro, is discretely decomposable to irreducible unitary representations of G with finite multiplicities:

there exists a function $\hat{G} \ni \pi \mapsto m_{\Gamma}(\pi) \in \mathbb{N}$ s.t.

$$L^{2}(\Gamma \backslash G) = \bigoplus_{\pi \in \hat{G}} L^{2}(\Gamma \backslash G)_{\pi},$$

$$L^{2}(\Gamma \backslash G)_{\pi} \cong \pi^{\oplus m_{\Gamma}(\pi)} \quad (\pi\text{-isotypic part})$$

Let K be a maximal compact subgroup of G and (τ, F_{τ}) an irreducible unitary representation of K. Then, the space of F_{τ} -valued π -automorphic forms on Γ defined by

$$L^{2}_{\tau}(\Gamma \backslash G)_{\pi} \stackrel{\text{def}}{=} \operatorname{Hom}_{K}(F_{\tau}^{\vee}, L^{2}(\Gamma \backslash G)_{\pi})$$
$$\cong \{L^{2}(\Gamma \backslash G)_{\pi} \otimes_{\mathbb{C}} F_{\tau}\}^{K}$$

becomes a Hilbert space in a natural way; it is of finite dimension

$$\dim_{\mathbb{C}} L^2_{\tau}(\Gamma \backslash G)_{\pi} = m_{\Gamma}(\pi) \operatorname{mult}_{K}(\tau^{\vee}, \pi).$$

1.2. Let H be a connected symmetric subgroup of G. Thus, there exists an involutive automorphism σ of G such that $H = (G^{\sigma})^{\circ}$. We assume that σ is taken so that $\sigma(K) = K$. Then, $K_H = K \cap H$ is a maximal compact subgroup of H. Let (τ, F_{τ}) be an irreducible unitary representation of K. Since K_H is a symmetric subgroup of K, the trivial representation of K_H occurs in $\tau|K^H$ at most once, i.e., dim $F_{\tau}^{K_H} \leq 1$.

trivial representation of K_H occurs in $\tau|K^H$ at most once, i.e., dim $F_{\tau}^{K_H} \leq 1$. Let \mathfrak{L}_G^H be the set of uniform lattices $\Gamma \subset G$ such that $\sigma(\Gamma) = \Gamma$. For each $\Gamma \in \mathfrak{L}_G^H$, the intersection $\Gamma_H = \Gamma \cap H$ is a uniform lattice of H.

Fix a Haar measure dh of H. Given $\Gamma \in \mathfrak{L}_G^H$, $\pi \in \hat{G}$ and $\tau \in \hat{K}$, consider the map

$$L^2_{\tau}(\Gamma \backslash G)_{\pi} \quad \ni \phi \longrightarrow \phi^H \stackrel{\mathrm{def}}{=} \int_{\Gamma_H \backslash H} \phi(h) \, \mathrm{d}h \in \quad F_{\tau}^{K_H}$$

and set

$$\mathbb{P}_{ au}(\Gamma)_{\pi} \stackrel{\mathrm{def}}{=} \sum_{\phi \in \mathcal{B}_{ au}(\Gamma)_{\pi}} \left\|\phi^{H}\right\|^{2},$$

where $\mathcal{B}_{\tau}(\Gamma)_{\pi}$ is an orthonormal basis of $L^{2}_{\tau}(\Gamma \backslash G)_{\pi}$. It is easy to see that $\mathbb{P}_{\tau}(\Gamma)_{\pi}$ is independent of the choice of $\mathcal{B}_{\tau}(\Gamma)_{\pi}$.

- **1.3.** In this note, we are interested in the asymptotic behavior of $\mathbb{P}_{\tau}(\Gamma)_{\pi}$ (with fixed π and τ) when ' $\Gamma \to \{e\}$ '. To make the meaning of ' $\Gamma \to \{e\}$ 'more exact, we introduce the notion of a tower of lattices. A sequence $\{\Gamma_n\}_{n\in\mathbb{N}}$ is called a tower if
 - (1) Γ_n is uniform lattice in G
 - (2) $\Gamma_{n+1} \subset \Gamma_n$, $[\Gamma_n : \Gamma_{n+1}] < +\infty$
 - (3) Γ_n is normal in Γ_0
 - $(4) \bigcap \Gamma_n = \{e\}$

A tower $\{\Gamma_n\}$ in G is said to be H-admissible if $\Gamma_n \in \mathfrak{L}_G^H$ for all n. Then, for a given tower of H-admissible uniform lattices in G, we have some speculation on the limiting behaviour of $\mathbb{P}_{\tau}(\Gamma_n)_{\pi}$ as $n \to \infty$; we report a partial result obtained for a particular symmetric pair (G, H).

2. Speculations

2.0.1. Group case. Let G_0 be a connected semisimple Lie group with finite center, and $\{\Gamma_{0,n}\}$ a tower of uniform lattices in G_0 . Let $\hat{G}_{0,d}$ be the equivalence classes of irreducibel unitary representations with square integrable matrix coefficients. Then, for any $\pi_0 \in \hat{G}_{0,dis}$, the formal degree of π_0 is the number $d(\pi_0)$ such that

$$\int_{G} (\pi_{0}(g)v_{1}|v_{2}) \overline{(\pi(g)w_{1}|w_{2})} \, \mathrm{d}g = \frac{(v_{1}|w_{1}) \overline{(v_{2}|w_{2})}}{d(\pi_{0})} \quad \text{for any} \quad v_{1}, v_{2}, w_{1}, w_{2} \in \mathcal{H}_{\pi_{0}}.$$

For convenience, set $d(\pi_0) = 0$ for $\pi_0 \in \hat{G}_0 - \hat{G}_{0,d}$. Then, the limit multiplicity formula proved by DeGeorge-Wallach [5] asserts

(2.1)
$$\lim_{n \to \infty} \frac{m_{\Gamma_{0,n}}(\pi_0)}{\operatorname{vol}(\Gamma_{0,n} \backslash G_0)} = d(\pi_0), \qquad \pi_0 \in \hat{G},$$

which was extended to a tower of non-uniform lattices by L.Clozel and G. Savin.

This result is reformulated in our framework as follows. Fix a maximal compact subgroup $K_0 \subset G_0$. Then, $K = K_0 \times K_0$ is a maximal compact subgroup of $G = G_0 \times G_0$. For $\pi_0 \in \hat{G}_0$ and $\tau_0 \in \hat{K}_0$, set $\pi = \pi_0 \boxtimes \check{\pi}_0$ and $\tau = \tau_0 \boxtimes \check{\tau}_0$.

If $\Gamma \subset G$ is of the form $\Gamma_0 \times \Gamma_0$ with $\Gamma_0 \subset G_0$ a uniform lattice, then

$$L^2_{\tau}(\Gamma \backslash G)_{\pi} \cong L^2_{\tau_0}(\Gamma_0 \backslash G_0)_{\pi_0} \hat{\boxtimes} L^2_{\tilde{\tau_0}}(\Gamma_0 \backslash G_0)_{\tilde{\tau_0}}.$$

If $H = \Delta G_0$ is the diagonal subgroup of G, then,

$$\mathbb{P}_{\tau}(\Gamma)_{\pi} = \frac{\operatorname{mult}_{K_0}(\tau_0^{\vee}, \pi_0)}{\dim \tau_0} \, m_{\Gamma_0}(\pi_0).$$

Given a tower of uniform lattices $\{\Gamma_{0,n}\}$ in G_0 , the direct products $\Gamma_n = \Gamma_{0,n} \times \Gamma_{0,n}$ affords an H-admissible tower in G and the limit multiplicity formula (2.1) is equivalent to

$$\lim_{n\to\infty} \frac{\mathbb{P}_{\tau}(\Gamma_n)_{\pi}}{\operatorname{vol}(\Gamma_n\cap H\backslash H)} = \frac{\operatorname{mult}_{K_0}(\tau_0^{\vee},\pi_0)}{\dim \tau_0} d(\pi_0).$$

2.1. Limit period formula.

2.1.1. Problem. The group case suggests that the main term of $\mathbb{P}_{\tau}(\Gamma)_{\pi}$ as $\Gamma \to \{e\}$ should be $\operatorname{vol}(\Gamma_H \setminus H)$. Now, we raise the following question:

Let $(\pi, \mathcal{H}_{\pi}) \in \hat{G}$ and $(\tau, F_{\tau}) \in \hat{K}$ be such that the condition (2.2) is satisfied. Let $\{\Gamma_n\}$ be an H-admissible tower in G. Does the limit

$$\lim_{n\to\infty} \frac{\mathbb{P}_{\tau}(\Gamma_n)_{\pi}}{\operatorname{vol}(\Gamma_n\cap H\backslash H)}$$

exists? If exists, what is the limit value? \Box

If the limiting value is non zero, we infer that $\mathbb{P}_{\tau}(\Gamma_n)_{\pi}$ is non vanishing for sufficiently large n, which in turn yields a new proof of the existence of a realization of π in the space $L^2(\Gamma_n\backslash G)$.

We put a remark here. Let $\Gamma \in \mathcal{L}_G^H$, $\pi \in \hat{G}$ and $\tau \in \hat{K}$. The non-vanishing of $\mathbb{P}_{\tau}(\Gamma)_{\pi}$ imposes the following restriction on the data (Γ, π, τ) .

- $m_{\Gamma}(\pi) \neq 0$;
- The (local) compatibility condition of π and τ :

(2.2)
$$\exists \ell \in (\mathcal{H}_{\pi}^{-\infty})^{H}, \ \exists \theta \in (\mathcal{H}_{\pi}^{\infty}[\tau])^{H \cap K} \text{ s.t. } \ell(\theta) \neq 0,$$

in particular,

$$F_{\tau}^{H\cap K} \neq \{0\}, \qquad (\mathcal{H}_{\pi}^{-\infty})^H \neq \{0\}$$

Here, $\mathcal{H}_{\pi}^{\infty}$ denotes the space of C^{∞} -vectors of π , $\mathcal{H}_{\pi}^{\infty}[\tau]$ the τ -isotypic part of $\mathcal{H}_{\pi}^{\infty}$ and $\mathcal{H}_{\pi}^{-\infty}$ the space of distribution vectors of π .

2.1.2. Relative discrete series of $H\backslash G$. Let G, H be as in 1.2. An irreducible unitary representation (π, \mathcal{H}_{π}) of G is called to be H-spherical if $(\mathcal{H}_{\pi}^{-\infty})^H \neq 0$; π is called to be a relative discrete series representation of $H\backslash G$ if $\mathcal{L}_{\pi} \neq 0$. Here, $(\mathcal{H}_{\pi}^{-\infty})^H$ is the space of H-invariant distribution vectors of π , and \mathcal{L}_{π} is the space of all those $\ell \in (\mathcal{H}_{\pi}^{-\infty})^H$ such that

$$\exists v \in \mathcal{H}_{\pi}^{\infty} \quad \text{s.t.} \qquad \int_{H \setminus G} |\ell(\pi(g)v)|^2 dg < +\infty$$

We denote by \hat{G}^H the set of equivalence classes of all H-spherical irreducible unitary representations of G and by \hat{G}^H_d the subset of \hat{G}^H of those classes containing a relative discrete series.

- **2.1.3.** Formal degree. We define an analogue of formal degree as follows. Let $\pi \in \hat{G}^H_d$ and $\tau \in \hat{K}$ are such that
 - $\dim \mathcal{L}_{\pi} = 1$ (multiplicit one condition).

$$\int_{H\backslash G} \ell(\pi(g)v) \cdot \overline{\ell(\pi(g)w)} \, \mathrm{d}g = \frac{d_{\tau}^{H\backslash G}(\pi)^{-1}}{\dim \tau} \frac{|\ell(\theta)|^2}{\|\theta\|^2} \cdot (v|w)_{\pi}, \quad \forall v, w \in \mathcal{H}_{\pi}^{\infty}.$$

Note that the number $d_{\tau}^{H\backslash G}(\pi)$ is independent of the choice of (ℓ,θ) .

2.1.4. Limit period formula. Now, from the experience of the group case, we pose the following.

Conjecture: Let $\pi \in \hat{G}_{d}^{H}$ and $\tau \in \hat{K}$ be such that the conditions $(\lozenge)_{i}$ (i = 1, 2, 3) in 1.4.3 are satisfied. Let $\{\Gamma_{n}\}$ be an H-admissible tower in G. Then,

(2.3)
$$\lim_{n \to \infty} \frac{\mathbb{P}_{\tau}(\Gamma_n)_{\pi}}{\operatorname{vol}(\Gamma_n \cap H \backslash H)} = d_{\tau}^{H \backslash G}(\pi).$$

For $\pi \in \hat{G} - \hat{G}_{d}^{H}$ and $\tau \in \hat{K}$, the same limit should be zero. \Box Note that this conjecture is compatible with the group case.

3. Results

We consider the case

$$G = SO_0(d, 1),$$
 $(d \ge 2),$
 $H = SO_0(d - p, 1) \times SO(p),$ $(1 \le p < [d/2]),$

and report a partial result to the conjecture for some π and for an H-admissible tower of congruence subgroups of G.

3.1. Setting. Let F be an algebraic number field such that F/\mathbb{Q} is totally real and $n_F = [F:\mathbb{Q}]$ is greater than 1. We enumerate all the embeddings of F to \mathbb{R} as ι_{ν} : $F \hookrightarrow \mathbb{R}$ $(1 \leqslant \nu \leqslant n_F)$. Let V be an F-vector space of dimension $d+1 (\geqslant 2)$ and Q a non-degenerate F-quadratic form on V. Define G be the restriction of scalars from F to \mathbb{Q} of the orthogonal O(Q) of the quadratic space (V,Q). Thus, for a \mathbb{Q} -algebra A,

$$\mathsf{G}(A) = \{g \in \operatorname{GL}(V \otimes_{\mathbb{Q}} A) | \, Q \circ g = Q\}.$$

For each ν , let $V^{(\nu)} = V \otimes_{F,\iota_{\nu}} \mathbb{R}$ and $Q^{(\nu)}$ the \mathbb{R} -quadratic form on $V^{(\nu)}$ induced by Q. From now on, we suppose

$$sgn(Q^{(1)}) = (d+, 1-),$$

$$sgn(Q^{(\nu)}) = ((d+1)+, 0-), \qquad (2 \le \nu \le n_F)$$

Set $\tilde{G} = O(Q^{(1)})$ and $G = \tilde{G}^{\circ}$. Then,

$$\begin{split} \mathsf{G}(\mathbb{R}) &\cong \tilde{G} \times \prod_{\nu=2}^{n_F} \mathsf{O}(Q^{(\nu)}) & \xrightarrow{\mathrm{pr}_1} \tilde{G} \\ & \tilde{G} \cong \mathsf{O}(d,1) \quad \text{(real rank one)} \\ & \mathsf{O}(Q^{(\nu)}) \cong \mathsf{O}(d+1) \quad \text{(compact)} \quad (\nu \geqslant 2) \end{split}$$

Let $U \subset V$ be an F-subspace such that $Q^{(\nu)}|U^{(\nu)}>0$ for all ν . We suppose $p:=\dim_F(U)\in [1,[d/2]-1]$. Set

$$\mathsf{H} = \mathrm{Res}_{F/\mathbb{Q}}(\mathrm{Stab}_{\mathrm{O}(Q)}(U))$$

and

$$H = \operatorname{pr}_1 \mathsf{H}(\mathbb{R})^{\circ} \subset G.$$

Thus, H is a connected symmetric subgroup of G such that

$$G \cong SO_0(d, 1), \quad H \cong SO_0(d - p, 1) \times SO(p).$$

Let \mathcal{L} be an \mathfrak{o}_F -lattice in V such that $\mathcal{L} = (\mathcal{L} \cap U) \oplus (\mathcal{L} \cap U^{\perp})$. Let $\mathfrak{a} \subset \mathfrak{o}_F$ an \mathfrak{o}_F -ideal. Set

$$\tilde{\Gamma}_{\mathcal{L}}(\mathfrak{o}_F) = \operatorname{GL}(\mathcal{L}) \cap \mathsf{G}(\mathbb{Q}) \quad \hookrightarrow \mathsf{G}(\mathbb{R}),
\tilde{\Gamma}_{\mathcal{L}}(\mathfrak{a}) = \{ \gamma \in \tilde{\Gamma}_{\mathcal{L}}(\mathfrak{o}_F) | \gamma v - v \in \mathfrak{a} \mathcal{L} \, (\forall v \in \mathcal{L}) \},
\Gamma_{\mathcal{L}}(\mathfrak{a}) = \operatorname{pr}_1(\tilde{\Gamma}_{\mathcal{L}}(\mathfrak{a})) \cap G$$

Then, $\Gamma_{\mathcal{L}}(\mathfrak{a})$ is a uniform lattice of G belonging to \mathfrak{L}_G^H . If $\{\mathfrak{a}_n\}$ is a sequence of \mathfrak{o}_F -ideals such that $\mathfrak{a}_{n+1} \subset \mathfrak{a}_n$ and such that the distance from 0 to $\mathfrak{a}_n - \{0\}$ in $F \otimes_{\mathbb{Q}} \mathbb{R}$ tends $+\infty$ with n. Then, $\Gamma_n = \Gamma_{\mathcal{L}}(\mathfrak{a}_n)$ is an H-admissible tower in G.

We fix a maximal compact subgroup $K \cong SO(d)$ of G such that $K \cap H$ is maximally compact in H. The unitary dual \hat{K} is parametrized by the set of dominant integral weights, which are δ -tuples

$$[l_1, l_2, \dots, l_{\delta}] \in (\mathbb{Z}/2)^{\delta}, \quad (\delta = [d/2])$$

such that

$$l_1 \geqslant \ldots \geqslant l_{\delta} \geqslant 0 \quad (d : \text{odd})$$

 $l_1 \geqslant \ldots \geqslant l_{\delta-1} \geqslant |l_{\delta}| \quad (d : \text{even}).$

We remark that $(\tau_{\lambda})^{H\cap K} \neq 0$ if and only if

$$\lambda = [l_1, \ldots, l_p, 0, \ldots, 0].$$

Let () be the bilinear form on $V^{(1)}$ associated with $Q^{(1)}$:

$$(v,w) = 2^{-1} \{ Q^{(1)}(v+w) - Q^{(1)}(v) - Q^{(1)}(w) \}.$$

We may suppose that K is the stabilizer in G of a vector $v_0 \in V^{(1)}$ such that $Q^{(1)}(v_0) = -1$, $v_0 \perp U^{(1)}$. Thus, the tangent space of G/K at the origin o = eK is identified with the orthogonal complement of v_0 in the natural way: $T_o(G/K) \cong (v_0)^{\perp}$. Then, the restriction $(,)|v_0^{\perp}|$ is a positive definite bilinear form, which propagates a G-invariant metric on G/K. The associated Riemannian volume form is denoted by $d\mu_{G/K}$. Fix the Haar measure dk

with the total volume 1. Then, we fix the Haar measure dg of G in such a way that the quotient dg/dk coincides with $d\mu_{G/K}$. We fix a Haar measure dh of H by a similar construction.

3.2. The case p=1 (i.e. $H \cong SO_0(d-1,1)$). Let P=MAN be a minimal parabolic subgroup of $G = SO_0(d, 1)$. Then,

$$M \cong SO(d-1), \quad A \cong \mathbb{R}_{>0}.$$

For any $s \in \mathbb{C}$, the K-spherical principal series $\pi_0(s)$ is defined to be the representation of G (unitarily) induced from the character $1_M \otimes e^s \otimes 1_N$ of P:

$$\pi_0(s) = \operatorname{Ind}_P^G(1_M \otimes e^s \otimes 1_N).$$

The following properties of $\pi_0(s)$ is known:

$$s \in \sqrt{-1}\mathbb{R} \cup (-\rho, \rho)$$
 (where $\rho = \frac{d-1}{2}$).

 $\spadesuit_3 \pi_0(s) (\text{Re}(s) > 0)$ is reducible iff

$$s = \rho + k$$
, $\exists k \in \mathbb{N} = \{0, 1, \dots\}.$

 \spadesuit_4 For $k \in \mathbb{N}$, $\pi_0(\rho + k)$ has a unique irreducible (\mathfrak{g}, K) -submodule

$$\delta_k = \bigoplus_{l \geqslant k+1} \tau_{[l,0,\dots,0]} \hookrightarrow \pi_0(\delta + k).$$

 \spadesuit_5 Set $\delta_{-1} = \pi_0(\rho - 1)$ if $d \geqslant 4$. Then

$$\hat{G}_{\mathrm{d}}^{H} = \begin{cases} \{\delta_{k} | k \in \mathbb{N} \}, & d = 2, 3, \\ \{\delta_{k} | k \in \mathbb{N} \} \cup \{\delta_{-1} \}, & d \geqslant 4. \end{cases}$$

Theorem 1. Let $\{\mathfrak{a}_n\}$ be a sequence of \mathfrak{o}_F -ideals such that $\mathfrak{a}_{n+1} \subset \mathfrak{a}_n$ and such that the Euclidean distance from 0 to the lattice points $a_n - \{0\}$ in $F \otimes_{\mathbb{Q}} \mathbb{R}$ tends infinity with n. $set \ \Gamma_n = \Gamma_L(\mathfrak{a}_n).$

(1) If

$$\pi = \delta_k, \qquad \tau = \tau_{[k+1,0,\dots,0]}, \qquad (k \in \mathbb{N}),$$

then

(3.1)
$$\lim_{n \to \infty} \frac{\mathbb{P}_{\tau}(\Gamma_n)_{\pi}}{\operatorname{vol}(\Gamma_n \cap H \backslash H)} = \frac{1}{\sqrt{\pi}} \frac{\Gamma(\rho + k + 1/2)}{\Gamma(\rho + k)}$$
$$= d_{-}^{H \backslash G}(\pi)$$

(2) If $\pi \in \hat{G} - \hat{G}_d^H$, then for any $\tau \in \hat{K}$,

$$\lim_{n\to\infty} \frac{\mathbb{P}_{\tau}(\Gamma_n)_{\pi}}{\operatorname{vol}(\Gamma_n \cap H \backslash H)} = 0$$

Remark:

- (i) δ_k is integrable (i.e. $\hookrightarrow L^1(H\backslash G)$) if and only if $k \geqslant 1$
- (ii) The first identity in (3.1) for k = 0 has been proved by a geometric technique ([1]).
- (iii) (3.1) is true even for $\pi = \delta_{-1}$, if we assume the existence of "spectral gap" at δ_{-1} along $\pi_0(s)$, i.e.,

$$(\exists \epsilon > 0)(\forall n \in \mathbb{N})$$

$$[(m_{\Gamma_n}(\pi_0(s)) \neq 0, |s| < \rho - 1) \implies (|s| \leq \rho - 1 - \epsilon)]$$

This is a consequence of Arthur's conjecture (cf. [3], [2]).

Corollary 2. Let $k \in \mathbb{N}$ and $\tau = \tau_{[l,0,\dots,0]}$. Let $\{\Gamma_n\}$ be as in Theorem 1.

(1) There exists $n \in \mathbb{N}$ and $\phi: G \to F_{\tau}$ satisfying

$$\begin{split} \phi(\gamma g k) &= \tau(k)^{-1} \, \phi(g), \qquad \forall \gamma \in \Gamma_n, \, \forall k \in K \\ C_{\mathfrak{g}} \phi &= 2k(k+\rho) \, \phi \qquad (C_{\mathfrak{g}} : \, \textit{Casimir operator}), \\ \int_{\Gamma_n \cap H \backslash H} \phi(h) \, \mathrm{d}h \neq 0. \end{split}$$

(2) $m_{\Gamma_n}(\delta_k) \neq 0$ if n is large enough.

Remark: This is not new. Indeed, for k > 0, this is a special case of [10], and for k = 0, this may be deduced from [7].

3.3. The case p > 1 (i.e. $H \cong SO_0(d-p,1) \times SO(p)$). Let $\pi_{p-1}(s) = Ind_P^G(\xi_{p-1} \otimes e^s \otimes 1_N)$ $(s \in \mathbb{C})$ be the non-unitary principal series with

$$\xi_{p-1}: M = \mathrm{SO}(d-1) \longrightarrow \mathrm{GL}_{\mathbb{R}}(\wedge^{p-1}\mathbb{R}^{d-1}).$$

The following properties are known.

 $\clubsuit_1 \pi_{p-1}(s)$ is irreducible unitarizable iff

$$s \in \sqrt{-1}\mathbb{R} \cup (-\rho_p, \rho_p)$$
 (where $\rho_p = \frac{d-1}{2} - p + 1$).

 $\clubsuit_2 \ \pi_{p-1}(s) \ (\text{Re}(s) > 0)$ is reducible iff

$$[s = \rho_p]$$
 or $[s = \rho + k, \exists k \in \mathbb{N} = \{0, 1, \dots\}].$

- \clubsuit_3 $\pi_{p-1}(\rho_p)$ contains a unique irreducible (\mathfrak{g}, K) -submodule $\delta^{(p)} \hookrightarrow \pi_{p-1}(\rho_p)$. For $k \in \mathbb{N}$, $\pi_{p-1}(\rho+k)$ has a unique irreducible (\mathfrak{g}, K) -submodule $\delta^{(p)}_k \hookrightarrow \pi_{p-1}(\delta+k)$.
- $\clubsuit_4 \{\delta^{(p)}\} \cup \{\delta_k^{(p)}|k \in \mathbb{N}\} \subset \hat{G}_d^H.$

We remark that \hat{G}_{d}^{H} is *not* exhausted by $\delta^{(p)}$ and $\delta_{k}^{(p)}$.

Theorem 3. Let $\{\mathfrak{a}_n\}$ and $\Gamma_n = \Gamma(\mathfrak{a}_n)$ be as in Theorem 1. Suppose the existence of "spectral gap" at $\delta^{(p)}$ along $\pi_{p-1}(s)$, i.e.,

$$(\exists \epsilon > 0)(\forall n \in \mathbb{N})$$

$$[(m_{\Gamma_n}(\pi_{p-1}(s)) \neq 0, |s| < \rho_p) \implies (|s| \leqslant \rho_p - \epsilon)]$$

Then, for $\pi = \delta^{(p)}$ and $\tau : K = SO(d) \to GL(\wedge^p \mathbb{R}^d)$, we have the formula:

(3.2)
$$\lim_{n \to \infty} \frac{\mathbb{P}_{\tau}(\Gamma_n)_{\pi}}{\operatorname{vol}(\Gamma_n \cap H \backslash H)} = \frac{1}{\pi^{p/2}} \frac{\Gamma(\rho_p + 1/2)}{\Gamma(\rho_p)} = d_{\tau}^{H \backslash G}(\pi)$$

Remark: (i) Although we do not settle the case for $\delta_k^{(p)}$'s yet, we expect a similar formula.

- (ii) $\delta^{(p)}$ is not integrable (on $H\backslash G$).
- (iii) Theorem is true under a weaker hypothesis

$$(\exists \epsilon > 0)(\forall n \in \mathbb{N})$$

$$[(\mathbb{P}_{\tau_p}(\Gamma_n)_{\pi_{p-1}(s)} \neq 0, |s| < \rho_p) \implies (|s| \leqslant \rho_p - \epsilon)].$$

- (iv) The first identity of (3.2) was conjectured by Bergeron in a geometric form (explained below). His method may yields a proof of the formula under a spectral gap hypothesis for Hodge-Laplacian on p-forms.
- **3.4.** Application to geometry. Let $G = SO_0(d, 1)$ and $H \cong SO_0(d p, 1) \times SO(p)$ with $1 \leq p < [d/2]$. Given a torsion free lattice $\Gamma \in \mathfrak{L}_G^H$, we have a (d p)-dimensional cycle

$$C_H^{\Gamma} = \Gamma_H \backslash H/K_H \stackrel{\iota}{\hookrightarrow} \Gamma \backslash G/K$$

on $\Gamma \backslash G/K$. Then, the harmonic Poincare dual form ω_H^{Γ} of C_H^{Γ} is defined by

$$\begin{split} [C_H^{\Gamma}] \in \mathrm{H}_{d-p}(\Gamma_H \backslash H/K_H; \mathbb{Z}) &\xrightarrow{\iota_*} \mathrm{H}_{d-p}(\Gamma \backslash G/K; \mathbb{Z}) \to \mathrm{H}^{d-p}(\Gamma \backslash G/K; \mathbb{R})^{\vee} \\ &\stackrel{\mathrm{PD}}{\cong} \mathrm{H}^p(\Gamma \backslash G/K; \mathbb{R}) \\ &\cong \{ \text{ harmonic } p\text{-forms} \} \ni \omega_H^{\Gamma}, \end{split}$$

where PD is the Poincaré duality map. The L^2 -norm of ω_H^Γ is defined as

$$\|\omega_H^{\Gamma}\|^2 = \int_{\Gamma \backslash G/K} \omega_H^{\Gamma} \wedge *\omega_H^{\Gamma},$$

where * is the Hodge *-operator of $\Gamma \backslash G/K$

Proposition 4. Let $\{\Gamma_n = \Gamma_L(\mathfrak{a}_n)\}$ be as in Theorem 1. Suppose the 'H-spectral gap hypothesis'

$$(\exists \epsilon > 0)(\forall n \in \mathbb{N})$$

$$[(\mathbb{P}_{\tau_p}(\Gamma_n)_{\pi_{p-1}(s)} \neq 0, |s| < \rho_p) \implies (|s| \leqslant \rho_p - \epsilon)].$$

is true if p > 1. Then,

(3.3)
$$\lim_{n \to \infty} \frac{\|\omega_H^{\Gamma_n}\|^2}{\operatorname{vol}(C_H^{\Gamma_n})} = \frac{1}{\pi^{p/2}} \frac{\Gamma(\rho_p + 1/2)}{\Gamma(\rho_p)}.$$

Remark:

- (1) The form ω_H^{Γ} is explicitly constructed as a residue of the analytic continuation of some Poincaré series ([7], [8]).
- (2) The formula (3.3) for p = 1 is proved by a geometric method [1]. The unconditional validity of (3.3) for p > 1 is also conjectured by [1].

4. A FEW WORDS ON PROOFS

Following [11] (where the case G = U(p,q), $H = U(p-1,q) \times U(1)$ is discussed), we prove Theorem 2 by showing the two inequalities:
(1)

$$\limsup_{n\to\infty}\frac{\mathbb{P}_\tau(\Gamma_n)_\pi}{\operatorname{vol}(\Gamma_n\cap H\backslash H)}\leqslant \frac{1}{\pi^{p/2}}\frac{\Gamma(\rho_p+1/2)}{\Gamma(\rho_p)}.$$

To prove this, we follow the argument used by [9] in the proof of the limit multiplicity formula.

(2)
$$\liminf_{n \to \infty} \frac{\mathbb{P}_{\tau}(\Gamma_n)_{\pi}}{\operatorname{vol}(\Gamma_n \cap H \backslash H)} \geqslant \frac{1}{\pi^{p/2}} \frac{\Gamma(\rho_p + 1/2)}{\Gamma(\rho_n)}.$$

This part is accomplished by a form of relative trace formula.

5. Remarks

- Similarly, we can treat the cases:
 - $-G = U(p,q), H = U(p-1,q) \times U(1)$
 - $-G = SO_0(p,q), H = SO_0(p-1,q)$
 - $-G = U(n,1), H = U(n-p,1) \times U(p) (1 \leqslant p < n)$
- We expect the same method works at least when the split rank of $H\backslash G$ is 1.
- The following (naive) question seems natural. For $S \subset \hat{G}$, set

$$\mu_{\tau}^{H}(\Gamma; S) = \sum_{\pi \in S} \mathbb{P}_{\tau}(\Gamma)_{\pi}.$$

Does the measure

$$S \mapsto \frac{\mu_{\tau}^{H}(\Gamma_{n}; S)}{\operatorname{vol}(\Gamma_{n} \cap H \backslash H)},$$

approximate the spectral measure (Plancherel measure) of the decomposition of $L^2(H\backslash G;\tau)$? By extending the argument in [11], we already have a regords result on this observation for the case $(G,H)=(\mathrm{U}(p,q),\mathrm{U}(p-1,q))$ ([12]).

REFERENCES

- [1] Bergeron, N., Asymptotique de la norme L² d'un cycle géodesique dans les revêtments des congruence d'une variété hyperboliques arithmétiques, Math.Z. **241** (2002),101-125.
- [2] Bergeron, N., Clozel, L., Spectre automorphe des variétés hyperboliques et applications topologiques, Astérisque 303 (2005).
- [3] Burger, M. Sarnak, P., Ramanujan duals II, Invent.Math.106 (1991), 1-11.
- [4] Borel, A., Introduction aux groupes arithmétique, Hermann, Paris (1969).
- [5] DeGeorge, D.L., Wallach, N., Limit formulas for multiplicities in $L^2(\Gamma \backslash G)$, Ann. of Math. (2) 107 (1978), 133-150.
- [6] Heckman, G., Schlichtkrull, H., Harmonic Analysis and Special Functions on Symmetric Spaces, Perspectives in Math. 16, Academic Press, Inc. (1994).
- [7] Kudla, S.S, Millson, J.J, The theta correspondence and harmonic forms. I, Math. Ann. 274 (1986), 353-378.
- [8] Oda, T., Tsuzuki, M., The secondary spherical functions and Green currents associated with certain symmetric pair, Pure and Applied Mathematical Quarterly, 5 No.3 (2009), 977-1028.

- [9] Savin, G., Limit multiplicities of cusp forms, Invent. Math. 95 (1989), 149-159.
- [10] Tong, Y. L., Wang, S. P., Geometric realization of discrete series for semisimple symmetric spaces, Invent. Math. 96 (1989), 425-458.
- [11] Tsuzuki, M., Limit formulas of period integrals for a certain symmetric pair, J. Func. Anal. 255, No.5 (2008), 1139-1190.
- [12] Tsuzuki, M., Limit formulas of period integrals for a certain symmetric pair II, preprint (2009).

Masao TSUZUKI

Department of Science and Technology

Sophia University,

Kioi-cho 7-1 Chiyoda-ku Tokyo, 102-8554, Japan

 $E ext{-}mail: \texttt{tsuzuki@mm.sophia.ac.jp}$