Genelarized Whittaker functions of degenerate principal series

Kazuki Hiroe*

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan.

Abstract

In the theory of modular forms, modular forms with weights are important objects. For automorphic forms on $SL(2,\mathbb{R})$, the notion of weights are translated to characters of SO(2). Hence for general cases, K-types of admissible representations can be seen as a generalization of weights of corresponding automorphic forms. In this paper, we consider degenerate principal series representations and define a class of their K-types which are called strongly spherical (Definition 3.2). And we give a characterization of generalized Whittaker functions with strongly spherical K-types of degenerate principal series representation (Theorem 5.2). The contents in this paper will appear with concrete proofs in [2].

1 Notation and preliminaries

In this section we give a quick review of some definitions and well known facts in the representation theory of Lie groups.

Let G be a connected real semisimple Lie group, K a maximal compact subgroup and θ the associated Cartan involution. Throughtout this paper we assume that G is split over $\mathbb R$ and has a complexification $G_{\mathbb C}$. The differentiation of θ is also written by same symbol. The associated Cartan decomposition of Lie algebra $\mathfrak g$ of G is denoted by $\mathfrak g = \mathfrak k \oplus \mathfrak s$. Here $\mathfrak k$ and $\mathfrak s$ are eigenspaces of θ with eigenvalues 1 and -1 respectively.

^{*}E-mail:kazuki@ms.u-tokyo.ac.jp

Let $\mathfrak a$ be a maximal abelian subspace of $\mathfrak s$ and Σ the root system of $(\mathfrak g,\mathfrak a)$. Its Weyl group W is isomorphic with $N_K(\mathfrak a)/Z_K(\mathfrak a)$. Fix a positive system Σ^+ of Σ and denote the set of simple roots by $\Pi = \{\alpha_1, \ldots, \alpha_r\}$. Let $\mathfrak n$ be the sum of the root space $\mathfrak g_\alpha = \{X \in \mathfrak g \mid [H,X] = \alpha(H)X \text{ for any } H \in \mathfrak a\}$ for $\alpha \in \Sigma^+$, i.e., $\mathfrak n = \bigoplus_{\alpha \in \Sigma^+} \mathfrak g_\alpha$. Then we have an Iwasawa decompositions $\mathfrak g = \mathfrak k \oplus \mathfrak a \oplus \mathfrak n$ and G = KAN where $A = \exp \mathfrak a$ and $N = \exp \mathfrak n$. Also we define $\overline{\mathfrak n} = \bigoplus_{\alpha \in \Sigma^+} \mathfrak g_{-\alpha}$ and $\overline{N} = \exp \overline{\mathfrak n}$. Let us denote the Killing form on $\mathfrak g$ by B. For $\lambda \in \mathfrak a^*$, we take $H_\lambda \in \mathfrak a$ satisfying the equations $\lambda(H) = B(H_\lambda, H)$ for any $H \in \mathfrak a$. We introduce an inner product $\langle \ , \ \rangle$ on $\mathfrak a^*$ defined by $\langle \mu, \nu \rangle = B(H_\mu, H_\nu)$ for $\mu, \nu \in \mathfrak a^*$.

We denote the centralizer of A in K by M. Then a minimal parabolic subgroup P is defined by P = MAN. Let $\Theta \subset \Pi$ be a finite subset and define the parabolic subgroup P_{Θ} associated to Θ as follows. Let $\mathfrak{a}_{\Theta} = \{H \in \mathfrak{a} \mid \alpha(H) = 0 \text{ for any } \alpha \in \Theta\}$ and $\mathfrak{a}_{\Theta}^{\perp}$ the orthogal complement of \mathfrak{a}_{Θ} in \mathfrak{a} with respect to the Killing form. Furthermore let $\mathfrak{n}_{\Theta} = \bigoplus_{\alpha \in \Sigma^{+} \setminus \operatorname{span}(\Theta)} \mathfrak{g}_{\alpha}$ and $\mathfrak{m}_{\Theta} = \mathfrak{a}_{\Theta}^{\perp} \oplus \bigoplus_{\alpha \in \Sigma^{+} \cap \operatorname{span}(\Theta)} \mathfrak{g}_{\alpha}$. Then we can define the parabolic subalgebra associated to Θ by $\mathfrak{p}_{\Theta} = \mathfrak{m}_{\Theta} \oplus \mathfrak{a}_{\Theta} \oplus \mathfrak{n}_{\Theta}$. Let $L_{\Theta} = Z_{G}(\mathfrak{a}_{\Theta})$, $K_{\Theta} = L_{\Theta} \cap K$ and $M_{\Theta} = K_{\Theta} \exp(\mathfrak{m}_{\Theta} \cap \mathfrak{s})$. Then we can define the parabolic subgroup assocated to Θ by $P_{\Theta} = M_{\Theta}A_{\Theta}N_{\Theta}$. If $\Theta = \emptyset$, the parabolic subgroup $P_{\emptyset} = M_{\emptyset}A_{\emptyset}N_{\emptyset}$ equals to the minimal parabolic subgroup P = MAN defined above.

We write $\mathfrak{g}_{\mathbb{C}}$, $\mathfrak{k}_{\mathbb{C}}$ etc. as the complexifications of \mathfrak{g} , \mathfrak{k} etc. Let $U(\mathfrak{g})$, $U(\mathfrak{k})$ etc. be the universal enveloping algebras of complexifications of \mathfrak{g} , \mathfrak{k} , etc. Also let $Z(\mathfrak{g})$, $Z(\mathfrak{k})$ be the centers of universal enveloping algebras $U(\mathfrak{g})$, $U(\mathfrak{k})$ respectively. As it is well-known, there is an inclusion

$$Z(\mathfrak{g})\subset U(\mathfrak{a})\oplus ar{\mathfrak{n}}_{\mathbb{C}}U(\mathfrak{g}).$$

Let $\sigma \colon Z(\mathfrak{g}) \to U(\mathfrak{a})$ be the projection map along this decomposition. Put $\rho = \operatorname{tr}(\operatorname{Ad}|_{\mathfrak{n}}) \in \mathfrak{a}_{\mathbb{C}}^*$, then we can define the ρ -shfted map $\sigma' \colon Z(\mathfrak{g}) \to U(\mathfrak{a})$ by $\sigma'(X)(\lambda) = \sigma(X)(\lambda - \rho)$ for $X \in Z(\mathfrak{g})$ and $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$. It is well known that this map gives an algebra isomorphism

$$\sigma' \colon Z(\mathfrak{g}) \longrightarrow U(\mathfrak{a})^W,$$

which is called Harish-Chandra isomorphism. For $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$, we can define a character of $Z(\mathfrak{g})$ by

$$\chi_{\lambda} \colon \quad Z(\mathfrak{g}) \quad \longrightarrow \quad \mathbb{C}$$
 $X \quad \longmapsto \quad \sigma'(X)(\lambda).$

For $C^{\infty}(G, E)$, the space of smooth functions from G to a finite dimentional vector space E, we can consider natural actions of G and \mathfrak{g} by left (right)

translations and left (right) derivations, i.e.,

$$L_g f(x) = f(g^{-1}x),$$
 $R_g f(x) = f(xg),$ (1.1)

$$L_X f(x) = \frac{d}{dt} L_{(\exp tX)} f(x)|_{t=0}, \qquad R_X = \frac{d}{dt} R_{(\exp tX)} f(x)|_{t=0},$$
 (1.2)

where $x, g \in G$, $X \in \mathfrak{g}$ and $f \in C^{\infty}(G, E)$.

Let (π, E) be a continuous representation of G where E is a Hausdorff locally convex complete topological vector space. We write the space of K-finite vectors of E by E_K .

2 Poisson transform on vector bundle.

The Poisson transform is a continuous G-homomorphism from a spherical principal series representation to the space of right K-invariant functions on G. As a generalization of this, we will define a vector-valued Poisson transform and determine its image.

Let (τ, V_{τ}) be an irreducible unitary representation of K and λ an element of $\mathfrak{a}_{\mathbb{C}}^*$. Then we consider the induced representation $\pi_{\tau,\lambda}$ realized as follows. The representation space is

$$\mathcal{H}^{\infty}_{\tau,\lambda} =$$

$$\{f \in C^{\infty}(G, V_{\tau}) \mid f(gman) = \tau(m)^{-1}a^{\lambda-\rho}f(g) \text{ for } (m, a, n, g) \in M \times A \times N \times G\}$$

and G acts on this space by left translation, i.e., $\pi_{\tau,\lambda}(g)f(x) = L_g f(x) = f(g^{-1}x)$ for $f \in \mathcal{H}^{\infty}_{\tau,\lambda}$ and $g \in G$. This is an admissible representation of G with infinitesimal character χ_{λ} . Also we denote the space of K-finite vectors of $\mathcal{H}^{\infty}_{\tau,\lambda}$ by $H_{\tau,\lambda}$ which becomes a $(\mathfrak{g}_{\mathbb{C}}, K)$ -module naturally.

Also we consider another induced representation. The representation space is

$$C_{\tau}^{\infty}(G/K;\chi_{\lambda}) = \begin{cases} f \in C^{\infty}(G,V_{\tau}) \mid & f(gk) = \tau(k)^{-1}f(g), \ (k,g) \in K \times G, \\ & R_{X}f = \chi_{\lambda}(X)f \text{ for } X \in Z(\mathfrak{g}) \end{cases}$$

and G acts on this space by left translation. We denote the space of its K-finite vectors by $C_{\tau}^{\infty}(G/K;\chi_{\lambda})_{K}$.

We define the generalized Harish-Chandra C-function as follows,

$$C(\lambda, \tau) = \int_{\overline{N}} \tau(k(\overline{n})) e^{-(\lambda + \rho)H(\overline{n})} d\overline{n}.$$

Here $g = k(g) \exp H(g) n(g)$ for $k(g) \in K$, $H(g) \in \mathfrak{a}$ and $n(g) \in N$. It is known that this integral is absolutely convergent by the operator norm of $\operatorname{End}(V_{\tau})$ in $\{\lambda \in \mathfrak{a}_{\mathbb{C}}^* \mid \operatorname{Re}\langle \lambda, \alpha \rangle > 0 \text{ for any } \alpha \in \Sigma^+\}$. It is meromorphically continued in all $\mathfrak{a}_{\mathbb{C}}^*$ (cf. [4]).

Since M is the finite abelian group, V_{τ} can be decomposed as the direct sum of 1-dimentional representations of M. Therefore we can take a basis $\{v_1, \ldots, v_l\}$ of V_{τ} so that there exist 1-dimentional representation σ_i $(i=1,\ldots,l)$ of M such that $\tau(m)v_i=\sigma_i(m)v_i$ $(i=1,\ldots,l)$ for $m\in M$. Also we take the dual basis $\{v_1^*,\ldots,v_l^*\}$ of $V_{\tau}^*=\operatorname{Hom}_{\mathbb{C}}(V_{\tau},\mathbb{C})$, i.e., each v_i satisfies $v_i^*(v_j)=\delta_{ij}$ for $i,j=1,\ldots,l$. We regard V_{τ}^* as a representation space of M by the contragradient representation.

Definition 2.1 (Poisson transform). We define the G-homomorphism $\mathcal{P}_{\tau,\lambda}$ from $\mathcal{H}^{\infty}_{\tau,\lambda}$ to $C^{\infty}_{\tau}(G/K;\chi_{\lambda})$ by

$$\begin{array}{cccc} \mathcal{P}_{\tau,\lambda} \colon & \mathcal{H}^{\infty}_{\tau,\lambda} & \longrightarrow & C^{\infty}_{\tau}(G/K;\chi_{\lambda}) \\ & f & \longmapsto & \int_{K} \tau(k) f(gk) \, dk \end{array}$$

This is called the Poisson transform.

We see that $\mathcal{P}_{\tau,\lambda}$ gives a bijection between the K-finite subspaces for generic $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$.

Theorem 2.2. We put following assumptions.

1. $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ is regular and dominant, i.e.,

$$2\frac{\langle \lambda, \beta \rangle}{\langle \beta, \beta \rangle} \notin \{0, -1, -2, \ldots\} \text{ for any } \beta \in \Sigma^+.$$

2. The determinant of $C(\tau, \lambda) \in \text{End}(V_{\tau})$ is nonzero.

Then $\mathcal{P}_{\tau,\lambda}$ gives a $(\mathfrak{g}_{\mathbb{C}},K)$ -isomorphism,

$$\mathcal{P}_{\tau,\lambda} \colon H_{\tau,\lambda} \xrightarrow{\sim} C_{\tau}^{\infty}(G/K;\chi_{\lambda})_{K}.$$

Remark 2.3. This theorem is first proved by An Yang [5] in more general settings. However Yang put a stronger assumption

$$2\frac{\langle \lambda, \beta \rangle}{\langle \beta, \beta \rangle} \notin \mathbb{Z} \text{ for any } \beta \in \Sigma.$$

This is too strong for our purpose in this paper. Therefore we need a refined theorem under the weaker condition as above.

3 Strongly spherical K-types and vector valued Poisson transforms of degenerate principal series representations

Our purpose of this note is to give a characterization of the vector-valued generalized Whittaker functions of degenerate principal series. To do this, we need the Poisson transforms on degenerate principal series representations. Hence we need to restrict the vector-valued Poisson transform to degenerate principal series representations and determine their images.

Take a finite subset $\Theta \subset \Pi$ and let P_{Θ} be the corresponding parabolic subgroup of G. For $\lambda \in (\mathfrak{a}_{\Theta}^*)_{\mathbb{C}}$, we define a character λ_{Θ} of \mathfrak{p}_{Θ} by

$$\lambda_{\Theta}: \quad \mathfrak{p}_{\Theta} \quad \longrightarrow \quad \mathbb{C}$$
 $X + H \quad \longmapsto \quad \lambda(H),$

where $X \in \mathfrak{m}_{\Theta} + \mathfrak{n}_{\Theta}$ and $H \in \mathfrak{a}_{\Theta}$. We take a character Λ_{Θ} of P_{Θ} whose differentiation is λ_{Θ} . Then we define a degenerate principal series representation of G as follows. The representation space is $C^{\infty}(G/P_{\Theta}; \Lambda_{\Theta}) = \{f \in C^{\infty}(G) \mid f(gp) = \Lambda_{\Theta}(p)f(g) \text{ for } p \in P_{\Theta}, g \in G\}$. The action of G on this space is defined by left translation. We denote the space of K-finte vectors of $C^{\infty}(G/P_{\Theta}; \Lambda_{\Theta})$ by $H_{\Theta,\lambda}$.

Definition 3.1 (annihilator ideal). We define a left ideal of $U(\mathfrak{g})$ by

$$J_{\Theta}(\lambda) = \sum_{X \in (\mathfrak{p}_{\Theta})_{\mathbb{C}}} U(\mathfrak{g})(X - \lambda_{\Theta}(X))$$

and also define a two-sided ideal

$$I_{\Theta}(\lambda) = \bigcap_{g \in G} \operatorname{Ad}(g) J_{\Theta}(\lambda).$$

This two-sided ideal $I_{\Theta}(\lambda)$ is studied by H. Oda and T. Oshima in [3] and they give explicit generators of $I_{\Theta}(\lambda)$. This ideal is very important tool to investigate $C^{\infty}(G/P_{\Theta}; \Lambda_{\Theta})$, because we can show that for any $X \in I_{\Theta}(\lambda)$ and $f \in C^{\infty}(G/P_{\Theta}; \Lambda_{\Theta})$, we have $R_X f = 0$, i.e., $I_{\Theta}(\lambda)$ is the annihilator ideal of $C^{\infty}(G/P_{\Theta}; \Lambda_{\Theta})$. Also it is known that $I_{\Theta}(\lambda)$ is the annihilator of the generalized Verma module $U(\mathfrak{g})/J_{\Theta}(\lambda)$.

We define the notion of strongly spherical K-types.

Definition 3.2 (Strongly spherical K-type). Let (τ, V_{τ}) be a irreducible unitary representation of K such that $\dim \operatorname{Hom}_K(V_{\tau}, H_{\Theta, \lambda}) \neq 0$. We call this representation τ a strongly spherical K-type of $H_{\Theta, \lambda}$ if the dimension of $V_{\tau}^{\mathfrak{m}_{\Theta} \cap \mathfrak{k}} = \{v \in V_{\tau} \mid \tau(X)v = 0 \text{ for } X \in \mathfrak{m}_{\Theta} \cap \mathfrak{k}\}$ is equal to 1.

Remark 3.3. If $\Theta = \emptyset$, i.e., P_{Θ} is minimal parabolic subgroup, this condition says V_{τ} is 1-dimensional because \mathfrak{m}_{Θ} is trivial. On the other hand, if $(K, M_{\Theta} \cap K)$ is a symmetric pair, it is easy to see that every irreducible unitary representation of K is strongly spherical.

For these strongly shperical K-types, we can consider vector valued Poisson transform of degenerate principal series. And we can determine its image. For an irreducible representation (τ, V_{τ}) of K, we define a space

$$C_{\tau}^{\infty}(G/K; I_{\Theta}(\lambda)) = \{ f \in C^{\infty}(G, V_{\tau}) \mid f(gk) = \tau(k^{-1})f(g), R_{X}f = 0 \text{ for } g \in G, k \in K, X \in I_{\Theta}(\lambda) \}.$$

This is a G-representation by the left translation.

Theorem 3.4. We use the notations as above. For $\lambda \in (\mathfrak{a}_{\Theta}^*)_{\mathbb{C}}$, we assume that

- 1. $\lambda + \rho$ is regular and dominant.
- 2. det $C(\tau, \lambda + \rho) \neq 0$.

Let (τ, V_{τ}) be a strongly shperical K-type of $H_{\Theta, \lambda}$. Then the restirction of $\mathcal{P}_{\tau, \lambda}$ to $H_{\Theta, \lambda}$ gives a following $(\mathfrak{g}_{\mathbb{C}}, K)$ -isomorphism,

$$\begin{array}{cccc} \mathcal{P}_{\Theta,\lambda} \colon & H_{\Theta,\lambda} & \longrightarrow & C^{\infty}_{\tau}(G/K; I_{\Theta}(\lambda))_{K} \\ & \phi & \longmapsto & \int_{K} \tau(k) \phi(gk) \, dk. \end{array}$$

Here we note that we can see $\mathfrak{a}_{\Theta}^* \subset \mathfrak{a}^*$ by the Killing form B.

Proof. By the assumption, we have the $(\mathfrak{g}_{\mathbb{C}}, K)$ -isomorphism

$$\begin{array}{cccc} \mathcal{P}_{\tau,\lambda} \colon & H_{\tau,\lambda} & \longrightarrow & C^{\infty}_{\tau}(G/K;\chi_{\lambda})_{K} \\ \phi & \longmapsto & \int_{K} \tau(k)\phi(gk) \, dk. \end{array}$$

Since $H_{\Theta,\lambda}$ is a $(\mathfrak{g}_{\mathbb{C}},K)$ -submodule of $H_{\tau,\lambda}$, we have

$$\mathcal{P}_{\tau,\lambda}(H_{\Theta,\lambda}) \subset C^{\infty}_{\tau}(G/K; I_{\Theta}(\lambda))_{K}.$$

Here we notice that since it is easy to show that $\sum_{X\in Z(\mathfrak{g})} U(\mathfrak{g})(X-\chi_{\lambda}(X)) \subset I_{\Theta}(\lambda)$, we have $C^{\infty}_{\tau}(G/K;I_{\Theta}(\lambda)) \subset C^{\infty}_{\tau}(G/K;\chi_{\lambda})$. It remains to show that $H_{\Theta,\lambda} \supset \mathcal{P}^{-1}_{\tau,\lambda}(C^{\infty}_{\tau}(G/K;I_{\Theta}(\lambda))_{K})$. To show this, we take an arbitrary element $u \in C^{\infty}_{\tau}(G/K;I_{\Theta}(\lambda))$. We can see $\lambda \in (\mathfrak{a}^{*}_{\Theta})_{\mathbb{C}}$ as an element of $\mathfrak{a}^{*}_{\mathbb{C}}$, hence we denote this by $\lambda_{\Theta} \in \mathfrak{a}^{*}_{\mathbb{C}}$. We define a character of the Borel subalgebra of $\mathfrak{g}_{\mathbb{C}}$, $\mathfrak{b} = \mathfrak{a}_{\mathbb{C}} + \mathfrak{n}_{\mathbb{C}}$ as follows,

$$\lambda_{\mathfrak{b}}: \quad \mathfrak{b} \longrightarrow \quad \mathbb{C}$$
 $H+X \longmapsto \lambda(H)$

where $H \in \mathfrak{a}_{\mathbb{C}}$ and $X \in \mathfrak{n}_{\mathbb{C}}$. We define a left ideal of $U(\mathfrak{g})$ by $J(\lambda_{\mathfrak{b}}) = \sum_{X \in \mathfrak{b}} U(\mathfrak{g})(X - \lambda_{\mathfrak{b}}(X))$. Then for any $X \in J(\lambda_{\mathfrak{b}})$ and $f \in H_{\tau,\lambda}$ we have $R_X f = 0$. Hence $\mathcal{P}_{\tau,\lambda}^{-1} u$ satisfies that $R_X \mathcal{P}_{\tau,\lambda}^{-1} u = 0$ for any $J_{\Theta}(\lambda)$ because $J_{\Theta}(\lambda) = I_{\Theta}(\lambda) + J(\lambda_{\mathfrak{b}})$ by the result of Oda and Oshima (Theorem 3.12 in [3]). This implies that there exists a representation σ of M_{Θ} which satisfies that $\operatorname{Hom}_{M_{\Theta} \cap K}(\sigma, \tau) \neq \{0\}$ and differentiation of σ is trivial. And $\mathcal{P}_{\tau,\lambda}^{-1} u \in C^{\infty}$ -Ind $_{P_{\Theta}}^{G}(\sigma \otimes e^{-\lambda} \otimes 1_{N_{\Theta}})$. However since $\dim V_{\tau}^{\mathfrak{m}_{\Theta} \cap \mathfrak{k}} = 1$, σ must be equal to $\Lambda_{\Theta}|_{M_{\Theta}}$.

4 Maximal globalization

The vector-valued Poisson transform gives a $(\mathfrak{g}_{\mathbb{C}}, K)$ -isomorphism from the degenerate principal series $H_{\Theta,\lambda}$ to $C^{\infty}_{\tau}(G/K; I_{\Theta}(\lambda))_{K}$ if τ is a strongly spherical K-type of $H_{\Theta,\lambda}$. Furthermore, we see that this $(\mathfrak{g}_{\mathbb{C}}, K)$ -isomorphism extends to the continuous G-isomorphism.

Let X be an admissible $(\mathfrak{g}_{\mathbb{C}},K)$ -module with finite length. We consider the space of $(\mathfrak{g}_{\mathbb{C}},K)$ -homomorphisms from the dual $(\mathfrak{g}_{\mathbb{C}},K)$ -module X^* to $C^{\infty}(G)$, $\mathrm{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(X^*,C^{\infty}(G))$ where G acts on $C^{\infty}(G)$ by left translation. Since $C^{\infty}(G)$ has a unifromly covergent topology and X^* has a countably many basis, we can define the complete locally convex topology on $\mathrm{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(X^*,C^{\infty}(G))$. On the other hand, G can also act on $C^{\infty}(G)$ by right translation. This action is continuous on the topology of $\mathrm{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(X^*,C^{\infty}(G))$. the space of K-finite elements of $\mathrm{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(X^*,C^{\infty}(G))$ can be identified with $(X^*)^*\cong X$ by the evaluation at the origin, i.e., for $I\in\mathrm{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(X^*,C^{\infty}(G))$, $X^*\ni v\mapsto I(v)(e)\in\mathbb{C}$ is a linear form of X^* . Hence $\mathrm{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(X^*,C^{\infty}(G))$ is a continuous G representation and its K-finite subspace is X, i.e., $\mathrm{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(X^*,C^{\infty}(G))$ is a globalization of X. This is called the maximal globalization [1].

Let us return to our setting. In the previous section we see that there is a

 $(\mathfrak{g}_{\mathbb{C}},K)$ -isomorphism

$$\begin{array}{cccc} \mathcal{P}_{\Theta,\lambda} \colon & H_{\Theta,\lambda} & \longrightarrow & C^{\infty}_{\tau}(G/K; I_{\Theta}(\lambda))_{K} \\ & \phi & \longmapsto & \int_{K} \tau(k) \phi(gk) \, dk. \end{array}$$

This $(\mathfrak{g}_{\mathbb{C}}, K)$ -isomorphism can be extend to G-isomorphism as follows. If (τ, V_{τ}) is a strongly spherical K-type of $(\mathfrak{g}_{\mathbb{C}}, K)$ -module $H_{\Theta, \lambda}$, it is multiplicity free by definition. We fix a K-projection $p_{\tau} \colon H_{\Theta, \lambda} \to V_{\tau}$. We define a K-embedding $\iota_{\tau} \colon V_{\tau}^* \hookrightarrow H_{\Theta, \lambda}^*$ as the dual map of p_{τ} .

Theorem 4.1. We assume that

- 1. $\lambda_{\Theta} + \rho$ is regular and dominant.
- 2. det $C(\lambda + \rho, \tau) \neq 0$.

Let (τ, V_{τ}) be a strongly shperical K-type of $H_{\Theta, \lambda}$. Then we have the following topological G-isomorphism.

$$\Phi \colon \operatorname{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(H_{\Theta,\lambda}^*, C^{\infty}(G)) \longrightarrow C_{\tau}^{\infty}(G/K; I_{\Theta}(\lambda)) \\ I \longmapsto \sum_{i=1}^{l} I(\iota_{\tau}(v_i^*))(g)v_i$$

5 Generalized Whittaker models

Finally we give the main theorem of this note. We can give a characterization of vector-valued generalized Whittaker functions as solutions of system of differential equations which comes from $I_{\Theta}(\lambda)$.

Let U be a closed subgroup of N and (η, V_{η}) an irreducible unitary representation of U. We consider a representation of G induced from η . The representation space is

$$C^{\infty}_{\eta}(U\backslash G)=\{f\colon G\to V^{\infty}_{\eta}\text{ smooth }|\ f(ug)=\eta(u)f(g)\text{ for all }u\in U,g\in G\}.$$

Here V_{η}^{∞} stands for the space of smooth vectors of V_{η} . We note that V_{η}^{∞} has a Hausdorff complete locally convex topology and we can define the derivation of $f: G \to V_{\eta}^{\infty}$ by the convergence on the topology of V_{η}^{∞} .

Definition 5.1 (Generalized Whittaker model). Let X be an admissible $(\mathfrak{g}_{\mathbb{C}}, K)$ module with finite length. Let U be a closed subgroup of N and (η, V_{η}) an

irreducible unitary representation of U. We consider the space of $(\mathfrak{g}_{\mathbb{C}}, K)$ -homorphisms from X to $C_{\eta}^{\infty}(U\backslash G)$,

$$\operatorname{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(X,C^{\infty}_{\eta}(U\backslash G)).$$

If $\operatorname{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(X,C^{\infty}_{\eta}(U\backslash G))\neq\{0\}$, we say X has generalized Whittaker models.

We consider genelarized Whittaker models of $H_{\Theta,\lambda}$. Let (τ,V_{τ}) be a strongly spherical K-type of $H_{\Theta,\lambda}$. Take a irreducible unitary representation (η,V_{η}) of N. For the algebraic tensor product $V_{\eta}^{\infty}\otimes V_{\tau}$, we can define a natural topology comes from V_{η}^{∞} because V_{τ} is finte dimensional. Hence we can consider the following space of smooth functions from G to $V_{\eta}^{\infty}\otimes V_{\tau}$,

$$C_{\eta,\tau}^{\infty}(U\backslash G/K) =$$

$$\{f \colon G \to V_{\eta}^{\infty} \otimes V_{\tau} \text{ smooth } | f(ugk) = \eta(u) \otimes \tau(k^{-1}) f(g) \text{ for } u \in U, g \in G, k \in K, \}.$$

Also we define

$$C_{\eta,\tau}(U\backslash G/K;I_{\Theta}(\lambda)) = \{f \in C_{\eta,\tau}^{\infty}(U\backslash G/K) \mid R_X f = 0 \text{ for } X \in I_{\Theta}(\lambda)\}.$$

As a colloraly of Theorem 4.1, we have the following characterization of genelarized Whittaker models.

Theorem 5.2. We use the same notations as Theorem 4.1. We assume that

1. $\lambda_{\Theta} + \rho$ is regular and dominant.

2.
$$\det C(\lambda + \rho, \tau) \neq 0$$
.

Let (τ, V_{τ}) be a strongly shperical K-type of $H_{\Theta, \lambda}$. Then we have the following linear isomorphism.

$$\Phi \colon \operatorname{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(H_{\Theta,\lambda}^*, C_{\eta}^{\infty}(U \backslash G)) \longrightarrow C_{\eta,\tau}^{\infty}(U \backslash G/K; I_{\Theta}(\lambda)) \\ I \longmapsto \sum_{i=1}^{l} I(\iota_{\tau}(v_{i}^{*}))(g)v_{i}$$

Acknowledgement

The author would like to thank Professor Yoshihiro Ishikawa for his many advice to make this article more readable.

References

- [1] Kashiwara, M., Schmid, W.: Quasi-equivariant \mathscr{D} -modules, equivariant derived category, and representations of reductive Lie groups. Lie theory and geometry, 457–488, Progr. Math., 123, Birkhäuser Boston, 1994.
- [2] Hiroe K.: Genelarized Whittaker functions of degenerate principal series. in preparation.
- [3] Oda H., Oshima T.: Minimal polynomials and annihilators of generalized Verma modules of the scalar type. J. Lie Theory 16 (2006), no. 1, 155–219.
- [4] Wallach N.: On Harish-Chandra's generalized C-functions. Amer. J. Math. 97 (1975), 386–403.
- [5] Yang A.; Poisson transforms on vector bundles. Trans. Amer. Math. Soc. 350 (1998), no. 3, 857–887.