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Abstract

In the theory of modular forms, modular forms with weights are impor-
tant objects. For automorphic forms on SL(2,R), the notion of weights
are translated to characters of SO(2). Hence for general cases, K-types
of admissible representations can be seen as a generalization of weights of
corresponding automorphic forms. In this paper, we consider degenerate
principal series representations and define a class of their K-types which
are called strongly spherical (Definition 3.2). And we give a characteriza-
tion of generalized Whittaker functions with strongly spherical K-types
of degenerate principal series representation (Theorem 5.2). The contents
in this paper will appear with concrete proofs in [2].

1 Notation and preliminaries

In this section we give a quick review of some definitions and well known facts
in the representation theory of Lie groups.

Let G be a connected real semisimple Lie group, K a maximal compact
subgroup and 6 the associated Cartan involution. Throughtout this paper we
assume that G is split over R and has a complexification G¢. The differentiation
of @ is also written by same symbol. The associated Cartan decomposition of
Lie algebra g of G is denoted by g = ¢ ® s. Here  and s are eigenspaces of 6
with eigenvalues 1 and —1 respectively.
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Let a be a maximal abelian subspace of s and ¥ the root system of (g,a).
Its Weyl group W is isomorphic with Ng (a)/Zk(a). Fix a pesitive system £+
of ¥ and denote the set of simple roots by II = {a,,...,a,}. Let n be the sum
of the root space g, = {X € g | [H,X] = a(H)X for any H € a} for o € TV,
ie, n =@, cx+ 8a- Then we have an Iwasawa decompositions g = t D ad n
and G = KAN where A = expa and N = expn. Also we define it = P ecx+g-a
and N = expii. Let us denote the Killing form on g by B. For A\ € a*, we take
H) € a satisfying the equations A\(H) = B(H, H) for any H € a. We introduce
an inner product ( , ) on a* defined by (u,v) = B(H,, H,) for u,v € a*.

We denote the centralizer of A in K by M. Then a minimal parabolic
subgroup P is defined by P = MAN. Let © C II be a finite subset and
define the parabolic subgroup Pe associated to © as follows. Let ag = {H €
a| a(H) = 0 for any a € ©} and af the orthgonal complement of ag in a
with respcet to the Killing form. Furthermore let ne = € e5+\span(e) S and

me = a5 ® P ,entnspan(e) Ja- Then we can define the parabolic subalgebra
associated to © by pg = mg @ ae P ng. Let Lg = Zg(ag), Ko = Le N K and
Mg = Ko exp(mg Ns). Then we can define the parabolic subgroup assocated
to © by Po = MgAeNg. If © = (), the parabolic subgroup Py = MpApNg
equals to the minimal parabolic subgroup P = M AN defined above.

We write gc, kc etc. as the complexfications of g, € etc. Let U(g), U(€) etc. be
the universal enveloping algebras of complexfications of g, &, etc. Also let Z(g),
Z(%) be the centers of universal enveloping algebras U(g), U(€) respectively. As
it is well-known, there is an inclusion

Z(g) Cc U(a) @ 0cU(g)-

Let o: Z(g) — U(a) be the projection map along this decomposition. Put
p = tr(Ad|,) € a%, then we can define the p-shfted map o’: Z(g) — U(a) by
o' (X)(N\) = o(X)(\ - p) for X € Z(g) and A € ag. It is well known that this
map gives an algebra isomorphism

o' Z(g) — U™,

which is called Harish-Chandra isomorphism. For A € ag, we can define a
character of Z(g) by

xx: Z(g) — C
X — dX)N).

For C*(G, E), the space of smooth functions from G to a finite dimentional
vector space F, we can consider natural actions of G and g by left (right)
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translations and left (right) derivations, i.e.,

Lyf(z) = f(g™ ), Ref(z) = f(zg),  (L.1)
LXf(x) = %L(exth)f(x)|t=0’ RX = %R(exth)f($)|t=0a (12)

where z,g € G, X € gand f € C*(G, E).
Let (7, E) be a continuous representation of G where E is a Hausdorff locally

convex complete topological vector space. We write the space of K-finite vectors
of F by Fk.

2 Poisson transform on vector bundle.

The Poisson transform is a continuous G-homomorphism from a spherical prin-
cipal series representation to the space of right K-invariant functions on G. As
a generalization of this, we will define a vector-valued Poisson transform and
determine its image.

Let (7, V;) be an irreducible unitary representation of K and A an element of

ag.. Then we consider the induced representation 7, » realized as follows. The
rerpresentation space is

™=
{f € C®(G,V,) | f(gman) = 7(m)"ta*~"f(g) for (m,a,n,g) € M x A x N x G}

and G acts on this space by left translation, i.e., mx(9)f(z) = Lyf(z) =
f(g7tz) for f € H, and g € G. This is an admissible representation of G with
infinitesimal character x. Also we denote the space of K-finite vectors of H>°,
by H,  which becomes a (gc, K)-module naturally.
Also we consider another induced representation. The representation space
is
CZ(G/K;xx) =

- f(gk) = (k)2 f(g), (k,g) € K x G,
{f o=@ vl T K o X e 260 }

and G acts on this space by left translation. We denote the space of its K-finite
vectors by C°(G/K; x\)k-
We define the generalized Harish-Chandra C-function as follows,

COA7) = /I_V_ (k(7))e~A+PH®) g
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Here g = k(g) exp H(g)n(g) for k(g) € K,H(g) € a and n(g) € N. It is known
that this integral is absolutely convergent by the operator norm of End(V;) in
{A € at | Re()\, @) > 0 for any a € £T}. It is meromorphically continued in all
ag (cf. [4]).

Since M is the finite abelian group, V, can be decomposed as the direct sum
of 1-dimentional repsesentations of M. Therefore we can take a basis {v1,...,v}
of V; so that there exist 1-dimentional representation o; (¢ = 1,...,1) of M such
that 7(m)v; = o;(m)v; (i = 1,...,1) for m € M. Also we take the dual basis
{vi,..., v} of V¥ = Home(V;,C), i.e., each v; satisfies v} (v;) = d;; for i, =
1,...,l. We regard V* as a representation space of M by the contragradient
representation.

Definition 2.1 (Poisson transform). We define the G-homomorphism P x from
o 10 C2°(G/K;xa) by

Pra: -?-?)\ — O (G/K;xa)
f — fK 7(k) f(gk) dk
This is called the Poisson transform.

We see that P, , gives a bijection between the K-finite subspaces for generic
A€ ag.

Theorem 2.2. We put following assumptions.

1. X € ag s regular and dominant, i.e.,

oA B)
28,8

2. The determinant of C(7,\) € End(V,) is nonzero.

¢ {0,—1,-2,...} for any B € =t.

Then Pr » gives a (gc, K)-isomorphism,
Pra: Hrx = CP(G/K;x2) k-
Remark 2.3. This theorem is first proved by An Yang [5] in more general

settings. However Yang put a stronger assumption

oA B)
<ﬂ6>¢Zforany,8€2

This is too strong for our purpose in this paper. Therefore we need a refined
theorem under the weaker condition as above.
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3 Strongly spherical K-types and vector valued
Poisson transforms of degenerate principal se-
ries representations

Our purpose of this note is to give a charactarization of the vector-valued gen-
eralized Whittaker functions of degenerate principal series. To do this, we need
the Poisson transforms on degenerate principal series representations. Hence
we need to restrict the vector-valued Poisson transform to degenerate principal
series representations and determine their images.

Take a finite subset © C II and let Pg be the corresponding parabolic
subgroup of G. For X € (ag)c, we define a character Ag of pe by

)\e: Po — C
X+H — AH),

where X € mg +ng and H € ag. We take a character Ag of Pg whose
differentiation is Ag. Then we define a degenerate principal series representation
of G as follows. The representation space is C*°(G/Pg;Ae) = {f € C®(G) |
flgp) = Ae(p)f(g) for p € Po,g € G}. The action of G on this space is defined
by left translation. We denote the space of K-finte vectors of C*®°(G/Pg; Ag)
by H@’ A

Definition 3.1 (annihilator ideal). We define a left ideal of U(g) by

Jo(N) = D U@X —le(X))

Xe(po)lc

and also define a two-sided ideal

Ie(N) = (1) Ad(g)Je(N).

geG

This two-sided ideal Ig(A) is studied by H. Oda and T. Oshima in (3] and
they give explicit generators of Ig(A). This ideal is very important tool to
investigate C*°(G/Peo; Ae), because we can show that for any X € Ig(A) and
f € C*(G/Ps;Ag), we have Rx f = 0, i.e., Ig(A) is the annihilator ideal of
C*(G/Pg;Ae). Also it is known that Ig(A) is the annihilator of the generalized
Verma module U(g)/Jo(N).

We define the notion of strongly spherical K-types.
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Definition 3.2 (Strongly spherical K-type). Let (7, V:) be a irreducible unitary
representation of K such that dim Homg (V;, He ) # 0. We call this repres-
ntation T a strongly spherical K -type of He,x if the dimension of V"Mt = [y ¢
Ve | 7(X)v =0 for X € mg Nt} is equal to 1.

Remark 3.3. If © = 0, i.e., Py is minimal parabolic subgroup, this condi-
tion says V; is 1-dimensional because mg is trivial. On the other hand, if
(K, Mo NK) is a symmetric pair, it is easy to see that every irreducible unitary
representation of K is strongly spherical.

For these strongly shperical K-types, we can consider vector valued Poisson
transform of degenerate principal series. And we can determine its image. For
an irreducible representation (7, V) of K, we define a space

CP(G/K;1e(N)) =
{feC®(G, V)| flgk) =7(k)f(9),Rxf =0forge G,k K, X € Ie(N\)}.
This is a G-representation by the left translation.
Theorem 3.4. We use the notations as above. For \ € (ag)c, we assume that

1. A+ p is reqular and dominant.

2. det C(1, A+ p) # 0.

Let (7,V;) be a strongly shperical K -type of He x. Then the restirction of Pr.a
to He  gives a following (gc, K)-isomorphism,

Pox: Hex — CX(G/K;Ie(N)k
¢ [N fK T(k)¢(gk) dk.

Here we note that we can see af, C a* by the Killing form B.

Proof. By the assumption, we have the (gc, K)-isomorphism

Pra: Hpxn — CX(G/K;xa)k
¢ +— [ 7(k)p(gk)dk.

Since Heg,» is a (gc, K)-submodule of H; 5, we have

Pra(Hen) CCXF(G/K;Ie(MN))k-
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Here we notice that since it is easy to show that >y 7, U(8)(X — xa(X)) C
Io(A), we have C°(G/K;Ig(N)) C CX(G/K;xx). It remains to show that
Heo D P;i(CSO(G/K; Io(M\)) k). To show this, we take an arbitrary element
u € CX(G/K;Ig(N)). We can see A € (ag)c as an element of ag, hence we

denote this by Ag € ag. We define a character of the Borel subalgebra of gc,
b = ac + nc¢ as follows, :

)‘b: b —_— C
H+X — XH)

where H € ac and X € nc. We define a left ideal of U(g) by J(As) =
> xep U(@)(X — Xp(X)). Then for any X € J(Xp) and f € Hrx we have
Rxf = 0. Hence P:}\u satisfies that RX’PT_,,I\u = 0 for any Jeg()) because
Jo(A\) = Ig(\) + J(Ap) by the result of Oda and Oshima (Theorem 3.12 in
[3]). This implies that there exists a representation o of Mg which satisfies
that Hompenk (0, 7) # {0} and differentiation of o is trivial. And P_ su €

cee -Indge (0 ® e~* ® 1n,). However since dim V"¢ = 1, o must be equal to
ANe|me - a

4 Maximal globalization

The vector-valued Poisson transform gives a (gc, K )-isomorphism from the de-
generate principal series Hg ) to C°(G/K;Ie()))k if 7 is a strongly spherical
K-type of Hg . Furthermore, we see that this (gc, K)-isomorphism extends to
the continuous G-isomorphism.

Let X be an admissible (gc, K)-module with finite length. We consider the
space of (gc, K)-homomorphisms from the dual (gc, K)-module X* to C*(G),
Homy, ) (X*, C*®(G)) where G acts on C*(G) by left translation. Since
C*(G) has a unifromly covergent topology and X* has a countably many basis,
we can define the complete locally convex topology on Hom 4. k) (X™, C*(G))-
On the other hand, G can also act on C*°(QG) by right translation. This action is
continuous on the topology of Hom g k) (X*,C®(G)). the space of K-finite el-
ements of Hom g, k) (X*, C°(G)) can be identified with (X™*)* = X by the eval-
uation at the origin, i.e., for I € Homye, k) (X*,C®(G)), X* 2 v I(v)(e) €C
is a linear form of X*. Hence Homy k) (X*,C™(G)) is a continuous G rep-
resentation and its K-finite subspace is X, i.e., Hom k) (X*,C®(G)) is a
globalization of X. This is called the maximal globalization [1].

Let us return to our setting. In the previous section we see that there is a
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(gc, K)-isomorphism

Pox: Heox — CP(G/K;Ie(N)k
b — fK 7(k)p(gk) dk.

This (gc, K)-isomorphism can be extend to G-isomorphism as follows. If (1, V)
is a strongly spherical K-type of (gc, K )-module Hg , it is multiplicity free by
definition. We fix a K-projection p, : Hg x — V;. We define a K-embedding
tr: V' H§ , as the dual map of p,.

Theorem 4.1. We assume that

1. Ao + p is regular and dominant.

2. det C(A+ p,7) # 0.

Let (1,V;) be a strongly shperical K -type of He . Then we have the following
topological G-isomorphism.

®:  Homg x)(HE», CP(G) — CX(G/K;le(N))
I — i I () (g)vs

5 Generalized Whittaker models

Finally we give the main theorem of this note. We can give a characteriza-
tion of vector-valued generalized Whittaker functions as solutions of system of
differential equations which comes from Ig ().

Let U be a closed subgroup of N and (,V;) an irreducible unitary rep-
resentation of U. We consider a representation of G induced from 7. The
representation space is

CP(U\G) = {f: G — V;° smooth | f(ug) = n(u)f(g) for all u € U,g € G}.

Here V> stands for the space of smooth vectors of V;;. We note that V,> has a
Hausdorff complete locally convex topology and we can define the derivation of
f: G — V> by the convergence on the topology of V,>°.

Definition 5.1 (Generalized Whittaker model). Let X be an admissible (gc, K)-
module with finite length. Let U be a closed subgroup of N and (n,V,) an
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irreducible unitary representation of U. We consider the space of (gc, K)-
homorphisms from X to C°(U\G),

Hom 4, 1) (X, C (U\G)).

If Hom g, k) (X, C°(U\G)) # {0}, we say X has generalized Whittaker models.

We consider genelarized Whittaker models of Hg 5. Let (7, V) be a strongly
spherical K-type of Hg ). Take a irreducible unitary representation (7, V;) of
N. For the algebraic tensor product V,>° ® V., we can define a natural topology
comes from Vn°° because V; is finte dimensional. Hence we can consider the
following space of smooth functions from G to V,;* ® V,

O3 (UN\G/K) =
{f: G = V°®V; smooth | f(ugk) = n(w)T(k™ ) f(g)forue U,g € G,k € K, }.

Also we define
Cnr(U\G/K;Ie(N)) = {f € C7(U\G/K) | Rxf =0 for X € Ie(A)}.

As a colloraly of Theorem 4.1, we have the follwing characterization of
genelarized Whittaker models.

Theorem 5.2. We use the same notations as Theorem 4.1. We assume that

1. Ao + p is reqular and dominant.

2. detC(A + p,7) # 0.

Let (1,V,) be a strongly shperical K -type of He x. Then we have the following
linear isomorphism.

&: Hom x)(Hs , CP(U\G) — CZ(U\G/K;Ie(N)
I — Y I (D)) (@)
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